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Data-driven optimal filtering for phase and frequency of noisy oscillations:
Application to vortex flow metering
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A method for measuring the phase of oscillations from noisy time series is proposed. To obtain the phase, the
signal is filtered in such a way that the filter output has minimal relative variation in the amplitude over all
filters with complex-valued impulse response. The argument of the filter output yields the phase. Implemen-
tation of the algorithm and interpretation of the result are discussed. We argue that the phase obtained by the
proposed method has a low susceptibility to measurement noise and a low rate of artificial phase slips. The
method is applied for the detection and classification of mode locking in vortex flow meters. A measure for the
strength of mode locking is proposed.
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[. INTRODUCTION signal, knowledge about the oscillator and the contribution of
the oscillator and other processes to the signal is often poor.
Several modern methods for time series analysis mak&hus, systematically deriving estimators for particular defi-
explicit use of the phase of measured oscillatory signals. Exnitions of phase is possible only in a few exceptional cases.
amples are tests for unidirectioddl] or mutual[2] synchro-  Instead, the measure of phase is again chosen by the distinc-
nization of chaotic oscillators, based on accurate or Nd@$y tiveness of the resulting characterizati15,23. Thereby
data, identification of the coupling directid4,5], or indica- it is generally assumed correctly that, if the phase-space tra-
tors [6] for generalized synchronizatidir]. Phase analysis jectory of the oscillator was directly accessible, an improved
has successfully been applied in neuroldgy-10], cardiol- measure of phase that leads to more distinctive characteriza-
ogy [3,5,11,12, ecology[13], and astronomy14] and laser tions could be obtained.
physics[15] (for recent, comprehensive reviews, see Refs. Although some rules for selecting a method to measure
[16,17). phase for a given signal have been propdged, the choice
A number of ways have been proposed to measure this not always obvious. The wish list for properties of the
phase from univariate signals. Among these @ephase phased¢(t) includes a constant advance ofr per cycle, a

determination from the argument of the analytic Sig{l’]ﬁ], Steady accumu'atiom(;b(t)mconsﬂ, accuracy in the pres-
from the convolution of the signal with a Morlet wavelet ence of measurement noise, unambiguity with respectito 2
[15,19, or after complex demodulation or quadrature filter- phase slips, and a functional dependence on the current state
ing [20], (b) the angle of circulation of a two-dimensional of the oscillator(locality). Autonomy of the oscillator com-
(2D) projection of the reconstructed phase-space trajectorgined with steady accumulation and locality of phase implies
[17] or its time derivativg21] around a point; an€c) linear  that ¢(t) is the variable that corresponds to the zero
interpolation[1] of phase between distinct events marking Lyapunov exponent of the system—another desired property.
the beginning new cycldd7]. But only for perfectly periodic signals can all these
In principle, the problem of choosing the most appropriatewishes be fulfilled. For deterministic, chaotic oscillators the
method to obtain the phase has two aspects: First, definingnear-interpolation metho¢c) does often lead to a satisfac-
phase for the oscillator under investigation and, second, esery steady and local phase. The problem of defining a
timating this phase from an univariate signal which is typi-steady, local phase when the internal dynamics of a deter-
cally biased by noise. While for autonomous, noise-freeministic, chaotic oscillator are known was treated rigorously
limit-cycle oscillators the definition of phase has a naturalin Ref.[24]. But as internal and measurement noise become
and rigorous foundation, there is no obvious unique generstronger, some temporal averaging is required and locality in
alization of this concept to oscillators deviating from this time has to be traded for accuracy and/or unambiguity. In
ideal, e.g., due to internal noise or chaotic dynamics. PreRefs.[3,5,8,11-14 the condition of unambiguity was re-
sumably, those measures of phase are to be given preferenesed and only the cyclic phasge(t)mod2sx] of noisy os-
which lead to the most distinctive characterizations of thecillations were used. Thus data analysis was insensitive to
observed systenf22]. Of course, with increasing deviations phase slips, i.e., sudden advances of the phase-by,
from the ideal of a periodic oscillator, there are less merits invhich may or may not be artifacts of measurement noise.
using the concept of phase. Here we choose to be less demanding with respect to local-
When the phase is to be estimated from an univariatéty, in favor of a steady, accurate and, as much as possible,
unambiguous phase.
In order to identify a corresponding method to measure
*Electronic address: rossberg@uni-freiburg.de; URL: http://the phase, notice that the computation of the analytic signal
www.fdm.uni-freiburg.de (or complex demodulatiorfmethod(a)] is generally recom-
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mended to be combined with linear bandpass filtering of the a) MIRVA
desired oscillatory componef20,25. The overall effect is

the application of a complex-valued, linear bandpass filter 1
[15]. When the method of delays is used for the phase-spac
reconstruction of the angle-of-circulation methd), the 2D -
projection is also equivalent to complex-valued linear filter- -1t
ing [26], likewise the calculation of time derivatives.

0

Finally, in the vicinity of a Hopf bifurcation, where dy- il el fo

namics can be brought into Hopf normal form by a nonlinear b)
coordinate transformatiofsee, e.g., Ref27]), this transfor- 9 - ‘ ‘
mation is done in such a way that all contributions to dynam- ,, ¢ - Moriginm
ics which are “nonresonant” with the oscillation at the fun- < 5 .= L Aw=8.0
damental frequency are eliminated. In mkireticterms this 2 0 : o

. - . . . = s st A@=1.0
simply amounts to eliminating higher harmonics and offsets,& _ : S MIRVA
which can be achieved by complex, linear bandpass filtering. ‘ ‘

0 100 200 300

The SU(2) symmetry of the Hopf normal form guarantees
the steady accumulation of phase in the steady state, when
phase is measured as the angle of rotation around the origin. FIG. 1. Three different filters applied to the same time se@gs
Thus, a unified view or(a) and (b) is complex, linear (a8 The demodulated, filtered signalt)=z(t)exp(—iwgt). (b)
bandpass filtering. It achieves steady accumulation in a natu-he phasepy(t) — ot of the original signal and the relative phases
ral way when the fundamental mode is isolated. The result@(t) — ¢o(t) obtained using the three filters. See text for details.
regarding accuracy and unambiguity depend on the choice of
the filter. Since the concept of phase originates from limit-
cycle oscillations, which, in the transformed coordinates,
correspond to a motion on a circle, our idea for choosing the
filter here is to make the filtered signal move as close as

possible to a circle in the complex plane. Roughly speakingVhere(-) denotes the expectation value.
we consider the motion on the circle as the signal and the NOW, search for a filtef such that the quantity given by

deviations as noise and maximize the signal to noise ratigd- (1) has a local minimum with respect to the filter. Such a
(SNR—even though not all deviations are actually due tofilter f minimizes the relative variance of the amplitude
measurement noise. Since, with such a filter, noise-induce@/RVA) for the given signak(t). The practical computa-
excursions of the trajectory to the origin of the complextion of MIRVAfilters is addressed in Appendix A. _
plane are minimized, this is also a good way to reduce am- For every MIRVA filterf, there is a two-parameter family

biguities in the phase. The maximization of the SNR is donef MIRVAfilters f; (t)=cf(t—s) with reals and complex
not only with respect to width and center frequency of the® Below we shgall always_have a single member stand for the
filter, but with respect to the complete dynamics of its im-Whole family without saying.

pulse response. The determination of the filter is nonpara-
metric and data driven.

We proceed as follows. Section Il contains a mathematical As an example, assume tha(t) is composed of a
formulation of the ideas outlined above and lists some impli-constant-amplitude oscillation with phase fluctuations and
cations. In Sec. Il the method is applied to simulated datawhite measurement noise,
with special attention to the effect of filtering on measured
frequencies. A practical application to vortex flow meters is X(t)=cog wgt+ ¢o(t)]+ 5(t), 2
discussed in Sec. IV, where we also introduce a measure for
the strength of mode locking. where

t

_vaizl® _ (|Z]*)

REEEREEE

2

1, (1)

2. Example

| THEORY (do(D)po(t"))=2D6(t—t"), (n(t)n(t )>=2G5(t—t()3-)

A. MIRVA filters This signal mimics narrow-banded limit-cycle and chaotic
oscillations in the vicinity of the fundamental frequency. The
larger the noise strengtB, the more difficult the determina-
Let x(t) be a real- or complex-valued stationary signaltion of the phaseby(t) from x(t) becomes. We simulatgt)
with oscillatory components. Denote lagt) the signal ob- with D=1, G=0.01, andwy=20 over an interval of length
tained fromx(t) by linear filtering with a complex-valued T=256. Without any filtering, the SNR is zero. Figuré)l

1. Definition

filter with impulse responséd(t), i.e., z=f*x where “*” shows the demodulated signafgt)=z(t)exp(~iwgt) for
indicates convolution. Defing as the non-negative number three different complex filters(t). The first two filters are of
such that the form
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f(t)~exdiogt—3(Awt)?]. (4) 3. Remarks on the minimization of g

Let g, denote the value off attained at a local mini-
One is a comparatively wideAw=8.0) bandpass, the other mum. Since the operation of linear filtering defines a semi-
one is rather narrokAw=1.0). The third is the MIRVA filter  group, g, is also a local minimum ofy with respect to
obtained by minimizing Eq(1). It is approximated by Eq. further filtering ofz(t), i.e., forq calculated withz replaced
(4) with Aw=2.9. As is shown in Fig. (b), both the narrow by z’ :=g*z. The minimum is attained when the filtgiis the
and the wide filter lead to artificial phase slips. Only whenunit element of the semigroup, the Diracfunction. As a
using the MIRVA filter is ¢q(t) faithfully tracked. result one has

1 oaq? | (lzlPzinz(t— )|z — (|20 ) 2(t— 7))
0_ —_ =
2.89(7) |, (lz®)?

©)

for all 7. In particular, when differentiating with respectto found. It is not clear whether these persist in the limit

at 7=0 and taking the imaginary part, it follows that T—oo.
NEC = (2 ‘:'> = Wmean (6) B. The phase of MIRVA filtered signals
4 )
<|Z| > <|Z| > 1. Definition and error estimates
where w; is the instantaneous frequency defined by The main purpose of MIRVA filtering is to obtain the
) phase
z
wi==|m[2} (7)

t
¢>(t)=J w;(t")dt'=argz (mod 27) (8)
and wmeaniS known as thenean frequencydefined either by
the last equation of Ed6) or, equivalently, as the “center of
mass” of the power spectrum of the sigrzaFor the relation
?f the mean f.r_equency t(; tml?ﬁlse frequencyor average measurement noisey(t) to z(t) has on the measured
re((})t;teenncy 'wr;:;@c)gnts;ﬁ oegilat'bn at several different fre phase 4(t), denote byzo(t):=2(t)=#(t) the noise-free
quencieé S,IAgsysStematicI mesihlod Ito :xtraitnarioué oscillatio%ﬁqOmponent ofz(t), and the phase that would have been
frequencies has been proposed in R28]. When using the easured in the absence of measurement noisedy)

S S - = [1Im{Zzy(t")/zo(t")}dt’. Two kinds of errors in¢(t)
poncept of l\'/IIR\(A.flltermg,.d|st|nct local minima af can .be caused by measurement noise can be distinguished: devia-
identified with distinct oscillatory components of the signal.

tions by multiples of 7, i.e., phase slips, which are due to
noise-induced excursions pft) around the origin and accu-
mulate as time proceeds, and errors in the cyclic phase
In two special cases the problem of finding MIRVA filters [ ¢(t) — ¢o(t) + w]Jmod27w— 7, which have a finite correla-
can be discussed analytically. For perfectly periodic or quation time. The distinction is particularly sharp whep,, is
siperiodic signals there is, for every Fourier mode excited bysmall enough, so that the probability density for values of
the signal, a MIRVA filter that extracts exactly this mode. z(t) near zero is small, or, as we shall consider now, wien
The filtered signal is of the fornz(t) =expiwt) and qmin is small for general filters.
=0. This holds true also if the signal is overlaid by any kind  An order-of-magnitude estimate for an upper bound to the

of noise. rate of noise-induced phase slips is given by
For Gaussian, linear processes it is always possible to find
filters such thatz?)=0 and(|z|?)#0, e.g., by letting only

of the oscillations extracted by the filter.
In order to analyze the effect that the contribution of

4. Special cases

2
Fourier modes with positive frequency pass. Thgn?) P |Z|2 =0|Aw, 9
=2(|2|?)?, q=qmin=1, and all these filters are MIRVA fil- (121%)
ters.

The processes we are interested in here are typically loavhere the first term denotes the probability density of
cated between these two poles: noisy, nonlinear, periodifz|?/(|z|?) at zero and the second term denotes the spectral
processes with some fluctuations in the phase. Thus we exvidth of the filter. The first term typically decays exponen-
pect 0<q,,<1. When solving the optimization problem tially fast asq? decreases, while the relation betwegnand
g2=min numerically with time series of finite length(see  Aw is only algebraic in general. Hence, minimiziag is a
Appendix A), local minima with g,;,>>1 have also been good strategy to minimize phase slips.
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For the noise-induced error in the cyclic phase, an exadiltering of the original signak(t) in the following sense. Let
upper bound can be obtained in the limit to@tis small. For  y(t) be a signal obtained from(t) by linear filtering, i.e.,
simplicity, assume that the noise has undergone sufficient=h*x, and letf be a MIRVA filter for x. Then, a MIRVA
temporal averaging by the filté so that the central limit filter for y is, at least formally, given by’ =f*h", where
theorem applies ang(t) is Gaussian. Sinckis a complex h~1!is the inverse oh defined byh~**h= 5. So the filtered
bandpass filter 72)=0. In order to derive an upper bound signal z=f*x=f'*y which satisfies the minimization con-
for {|»|?) from g2, we assume the worst case, that is, alldition (5) is identical forx andy. For example, MIRVA fil-
variation in|z|? is due toy only, while|zo|>=const=1 with-  tering can be used to obtain the phase and frequency of an
out loss of generality. For limit-cycle oscillators the resulting oscillatory signal which has been “bleachef9], i.e., fil-
upper bound is attained. In the general case, including chaered such as to make its power spectrum wiiee Ref.
otic oscillators, a conservative estimate of the noise intensity30]).

is obtained. The concept of MIRVA filtering carries straightforwardly
Since 7 is independent of,, Eq. (1) can then be written over to a discrete-time representation of signalsz and
as filters f,, sampled at time intervals of lengttt. In Ref.[30]

the notion of atopological frequencyf a time-discrete sig-
1+ 4] 5|%+2(|7|*)? nal x; is defined. Roughly speaking, this is the rate of tran-
- 1+ 2(| 5|2 +(| 9]?)? T (10 sitions of the trajectory of the signal in a sufficiently high-
dimensional delay space through a particular kind of
Solving for (| 7|?) yields Poincaresection called acountet For the topological fre-
quency, the invariance with respect to linear filtering has
been proven rigorouslyB0]. When the modulus of the signal
z, obtained by MIRVA filtering a signak; and its linear
interpolation have a nontrivial lower bound, i.élz;+ (1
The corresponding noise-induced variancepiis —1)z,4/>d>0 for O<I=<1, and when the impulse re-
sponsef, of the MIRVA filter decays sufficiently fast for

2

2
(Ind=(1-g1) *-1=0+0@"). (1

varg=varargzy+ ) —argzo)] largek, thenw,y, obtained fromg; and its linear interpolation
is (up to the sighidentical to a topological frequency of the
:va{ ar% 1+ —” oscillations of the signat; . A corresponding counter can be
%o obtained as follows. Assume that all significant contributions
7 to f\, are within a range oM consecutive delay times. Then
:var[lm(z— +0((|7*)?) the filter operationf*x can be interpreted as a projection
0 from the M-dimensional delay space of into the two-
()% - dimensional complex plane. The counter is given by all
= T+O(<| 71%)?). (12) points in delay space which are projected onto the real, non-
negative half axis.

In the general case, wheny| is not constant, we get, from

combining Eqgs(11) and(12), Ill. THE EFFECT OF MIRVA FILTERING
) ON MEASURED FREQUENCIES
q
var¢sz+0(q4). (13 In order to illustrate the effects of MIRVA filtering on

measured frequencies, the method is applied to a numerical

Thus, minimizingg? is a good strategy to minimize noise- solution of the noisy Stuart-Landau equati@r Hopf nor-
induced errors in the measured cyclic phases. mal form)

2. Phase diffusion A=(e+iw)A—(g,+ig)|APA+E, (15)

Over long time intervals¢(t) typically performs a ran- hereA=A(t) represents the complex amplitude of an os-
dom walk with drift. ThUS, an |mp0rtant characteristic of the cillator and g(t) is Comp'ex_va'ued' Gaussian' white noise

phase is its diffusion coefficient with correlations
Dz lim (p(t+T) _Z(i(t)_wph-r). (14 (Z(HZ(t))=0 and (Z(t){(t"))=4G8(t—t"). (16)

T—w

In a certain sense, this system universally describes noisy
The estimation oD from finite-length samples of(t) is  Ooscillations in the vicinity of a Hopf bifurcatiof31]. As-
discussed in Appendix B. sume the bifurcation to be supercriticad,&0) and do a
linear change of coordinates to sgt=G=1 and w;=0
without loss of generality(even though, in practicegw,

_ _ >¢€). Wheng; #0, the phase frequency,
The MIRVA filtered signalz(t) and the phase and fre-

quency derived thereof are invariant with respect to linear wpna=—0i (e+ 2N (17)

C. Invariance with respect to filtering of x(t)
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and damps the signal whew) is low reduces fluctuations in
the amplitude and, at the same time, reduces the correlation.
Since the phase frequency is only weakly affected by MIRVA
filtering, the mean frequency is shifted toward the phase fre-
guency.

IV. APPLICATION TO VORTEX FLOW METERING

A. Background

Next, an application of MIRVA filters to vortex flow me-
tering is discussed. Vortex flow meters are widely used in the
industry to measure pipe flow. The measurement principle
makes use of the phenomenon of the von¥Kan vortex
street. Behind a shedder bar inserted normal to the flow in a
pipe, a regular chain of vortices is formed, rotating alternat-

power spectral density

/ / ingly left and right. The volume flow through the tube can be
Opeans Orneanz: Ppnz D ® determined from the frequency of vortex formation. In the

device used here, a piezoelectric sensor sensitive to transver-
FIG. 2. MIRVA filtering of the proces#(t) given by Eqs(15  sal flow, which is inserted downstream behind the shedder
and(16) with =0, g;=g;=G=1, ande=2. The lower graphis par, is used to detect the vortices passing by. A common
a blowup of the upper graph. Both show the power spectral densityroplem of vortex flow metering is mode locking of the vor-
of A(t) (solid), of the filtered signak(t) (dotted, and the charac-  tex oscillations to pulsations in the flow. The second-order
teristics of the MIRVA filter (dash-dottefl The vertical lines indi-  statistics(power spectrrof the sensor signal and the bias on
cate the locations of various frequencies associated with the prahe flow measurement in the presence of mode locking have
cess. been thoroughly investigatd@3]. But it seem possible that,
by processing the sensor signal with a stronger focus on the
(where N:=m2exp(4)[1+erf(e/2)], see, e.g. Refs. nonlinear dynamics of the system, a better control of mode
[30,32), calculated fromw; o=Im{A/A} directly without locking can be achieved. _ _ _ _
filtering, differs from the corresponding mean frequency Here we describe the analysis of time series recorded in
an experiment designed to simulate the problem of detecting
I R 20f-1 mode locking in an industrial context, using only the sensor
Omean = ~Gil2€ T em4 (26t EN) T (18) signal. Methods that have been proposed to detect mode
locking from univariate time series are the analysis of the
map of subsequent period lengths of the oscillatiangle-
and|A|* (<“"vA|A|2>/<|A|.2>¢<“."vA>)' of-return-times-map[34] and the application of the estab-
~As an example, a simulation di(t) of length T=10°  jished bivariate methods on pairs of time series extracted
W',t?lezz andg;=1 is generated using Euler steps of length{om the univariate series by filterif®5]. We go along the
277 For these parameterswp,a=—2.225, wmeana lines of the second approach, making it more powerful by
=—2.899, and the relative variance of the unfiltered amp'l-app|y|ng MIRVA filters to Separate the Signa|s_
tude is (JAIY)(|A|?)?—1=(2N?~2eN—4)/(eN+2)? The setup of the experiment is sketched in Fig. 3. Pulsa-
=0.308. tions of the pipe flow were generated by a rotating cylinder
The MIRVA filter for the time seriex(t)=A(t) is calcu-  with three bores orthogonal to the cylinder axis, which is
lated by the indirect method described in Appendix A. Theinserted into the pipe in such a way that, by the rotation, the
filter reduces the relative variance of the amplitudegfq,  flow is periodically blocked. This pulsator is driven by an
=0.164. Figure 2 shows the characteristics of the MIRVAelectric motor. The sensor signal of a commercial flow meter,
filter in comparison with the power spectrum of the original which was mounted about 40 pipe diameters downstream
signal A(t) and the filtered signak(t). The locations of from the pulsator, was recorded. Estimates of the pulsation
phase and mean frequency before filtering and after filteringate v,,s and the frequency of vortex formation,,; were
[wph = —2.2492), wmean = —2.29§2)] arealso indicated. available on-site, while recording the time series. Reynolds
The MIRVA filter is a rather wide(half width 2Aw~6.5), numbers weré(10°) and the flow was highly turbulent. As
approximately symmetric bandpass filter with a center frea result, both inherent and measurement noise contribute
guencyw.~ — 1.3 below the linear frequency,=0. As a  substantially to the signal. Details of the experimental setup
result, the phase frequency of the filtered signal is alsavill be reported elsewhere. Below, two experimental time
shifted to lower frequencies, but the effeat,, ,— wp,a  Series labeled as A and B are discussed. Both were recorded

This is a direct consequence of the correlation betwegn

~—0.02=0(Aw N 'w,) (see Ref[30]) is quite small.  from the sensor of the vortex flow meter at 2 kHz over 250 s.
On the other hand, there is a pronounced shift in the mean
frequency by MIRVA filtering: the mean frequency ap- B. Series A: hard lock-in

proaches the phase frequency. This is a generic effect of
MIRVA filtering. In the presence of a negative correlation
between amplitude and instantaneous frequency, as found in When recording series A, the flow rate was adjusted such
our example, a filter that amplifies the signal whenis high  as to obtainv,,~110 Hz and the pulsation frequency was

1. Determination of the phases
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S H\\MH"""“

W 4
' . ‘ pulsator

impulse response, phase
o

c
2 = R -4
S 0 02 0.8
a‘_J tlme (sec)
S shedder _ _
2 bar FIG. 5. The impulse respondét) of the MIRVA filter calcu-
o lated for series A at the frequenay,,;. Solid, R€f(t)}; dashed,
= | Gj sensor phase off(t), relative to an oscillation at constant frequency
(9 wol2m=109.64 Hz, i.e., ald (t)exp(—iwgt)]. The overall offset in
time is an accidental choice of the search algorithm.
/ Gj down-sampling factoh=50, M =30 sampling points, a de-

modulation frequencywy/2 7=109.643 Hz, and a regular-

FIG. 3. Schematic representation of the experimental setup t?zation bym=10th order polynomials. The overall Gaussian
record the sensor signal of a vortex flow meter in pulsatile flow. The

shedder bar has a triangular cross section for efficient vortex gen-hape of the impulse response of the MIRVA filter can
eration. clearly be seen. But the filter has additional structure. The

oscillation frequency of the response function decreases with
time (see the phase in Fig).5The reason for this particular
set t0 vy~ 5 yorn- The time series was analyzed to deter-phase dynamics is not clear by now. As can be seen from the
mine the strength of the expected 2:3 lock-in. In Fig. 4, atrajectory of the demodulated filtered sigiZalshown in Fig.
representative section of series A and the power spectrum age(right), the phase of the vortex oscillations is always well
shown. The oscillations at,,; can clearly be seen. Since the defined.
pulsations themselves do not produce any transversal flow, From the construction of the pulsator it is clear that the
there is only a weak signal at,,s, presumably due to slight flow pulsations have a well defined phase. Each passage of a
asymmetries in the setup. By the nonlinear interaction obore along the pulsator inlébr outled defines one pulse. But
vortex street and pulsation, flow oscillations at =v,,;  the signal-to-noise ratio of the oscillationsgy,s is too low
—vous are excited. These contain significant transversato derive unequivocal phase information. As is shown in Fig.
components and can clearly be seen in the power spectrurg. (centey, the MIRVA filtered signal atvys repeatedly
The power spectrum also reveals several other oscillatorgeaches the origin of the complex plane.
components in the signal. Some of these are nonlinearly gen- In contrast, the phase of the oscillations:at is much
erated, others are of unknown origin. better definedsee Fig. 6, left Since the signal-to-noise ratio
The impulse response of the MIRVA filter for the 110 Hz is smaller atv_ than atv,,, the MIRVA filter at v_ is about
vortex oscillations {yo4) is shown in Fig. 5. It was calcu- eight times more narrow in Fourier space than the MIRVA
lated by the indirect method described in Appendix A using ilter at v,,,. Use of the MIRVA filter(or some approxima-
tion) is critical for measuring the phase at . Here,

@ straightforward boxcar filtering of a region in Fourier space
5 containing thev_ peak(see, e.g., Ref35]) would be insuf-
£ ficient.
g The phaseg¢_ of the oscillations atv_ can be used to
5 determine the phase,s of the pulsator. By the physical
(7]
o
2 V_ Vpuls Vyort
3 T T T
2z T
5 N
s g or
s
-1 L

o) _
2
a —— ' ' 1 0 A 4 0 A 1 0 A

0 L L L 200 400 600 ReZ ReZ Re Z

NN frequency (Hz)

FIG. 6. The trajectories of demodulated, MIRVA filtered signals
FIG. 4. Arepresentative sectidn) and the power spectral den- Z; (see section 2 of Appendixobtained from series A at the indi-
sity (b) of time series A, which was recorded in the experimentcated frequencies. The corresponding valueg@f are 0.41 ¢_),
sketched in Fig. 3. 0.81 (Wpui9, and 0.13 {yor)-
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filters leaves the overall delay of the filtered signal undeter-

mined, the relative delay ab_ and ¢, has to be adjusted

in a reasonable way. We choose the delay such ihat

becomes maximaly; 3 turns out not to vanish, see belpw

From the evolution o#, 3 it appears that the vortex oscilla-

tions contain only a single phase slip at about 150 s into the

time series. But upon closer inspection, it appears more plau-

sible to account the phase slip to an error in measuging

As expected for this case, the differencedn ; before and

after the slip is to a good accuracyr6For slips ing, o, any

0 100 200 other multiple of# would have been possible as well. Fur-
time (sec) thermore, the slip occurs just at the moment when the de-

odulated MIRVA signal atv_ (Fig. 6, lef) goes through

e small loop reaching toward the coordinate center. It ap-

.

R : WMWM MJW\%WM Wl WMMW WW] !

FIG. 7. Phases, obtained from series A. Large upper panel: thq:
unwrapped phases ¢B (t)—wot (solid) and ¢yn(t) — wot t

(dasheg, where wy/2m=109.654 Hz(nominal valug =36 pears that the MIRVA filter is too narrow for the compara-
— yor (dotted. Large lower panel: the cyclic relative phade ;. tively low pulsation frequency at this moment. In fact, the
Small panels: empirical distributions & ¢ and ¥, 3. phase slip disappears when wider filters are used—at the

price of obtaining new artificial phase slips at other times. In
interpretation of the oscillation at_ as a nonlinear excita- conclusion, the data indicate that there is not a single real

tion, one has the relation phase slip. Lock-in is hard over the full 250 s sampling time.
The relevant synchronization inde)ﬁ’6=0.l6 is much
b= dyort— Dpuls (19 smaller than one would expect for hard mode lockisge

also the distributions o, ¢ in Fig. 7). Use of a synchroni-
zation index based on Shannon entr¢@y yields a similar
result. Even when the transversal reflection symmetry was
strongly broken, the then relevant synchronization index
From the 2:3 mode locking, one expects that the relativeys .—0.62 would be rather low. But, as can be seen from Fig.

that yields ¢y for known ¢ and ¢,

2. Relative phases and symmetry

phaseg, 3, given by 10 below, the symmetry is only weakly broken. A natural
_ - 20 explanation for the discrepancy between the synchronization
$n,m=Ndyornr— Mpys, (20 index and the phase-slip statistics is to assume that most of

changes only little over time. For hard mode locking, it fluc-the fluctuations inW, 5, respectively, ¥, (Fig. 7; W45

tuates around a constant value. With both hard and soft lock= 2V 2,3mod2m), are due to measurement noise, and not in-
in, the cyclic relative phas# , ; defined by trinsic to the vortex dynamics. This view is compatible with

the upper bound derived for the variance due to noise in Sec.
W\, mi= ¢y mmod 27 (21 Il B. From q_:=Qma= 0.41 atv_ and g,¢:=Qma=0-13 at
o Py, One gets the approximate upper boundq%/4
has an uneven distribution. Generally, one expects the distriy q20n/4:0 38 for the variance contributed , 5 by mea-
. . . . . Vi " 1
bution to be increasingly sharper localized to a single valugrement noise, while the total variance isWag=0.48. It

as mode locking becomes stronger. The synchronization ingynears that, in some situations, a characterization of mode

dex defined in Refl36] as locking by phase-slip statistics is less susceptible to measure-
2 2 : 2 ment noise than characterizations based only upon cyclic
:=(cosV¥ +(sin¥ 22 . "
Vamt=(COSW pm) "+ (SINWp m) (22 phases, i.e., quantities such @g,syomod 2 or, comput-

with expectation values estimated by temporal averaginggble thereof¥,s.
was therefore proposed as a measure for the strength of mode

locking or, more general, phase locking. Absence of mode

locking is indicated byy, =0, hard coupling byy, n,=1.

In our experiment, we encounter the particular situation that 1. Determination of the phases
vortices and pulsation have opposite sy_mmetries \_/vith_respect Series B was recorded with
to transversal reflection. Thus, dynamics is equivariant al
ready with respect to a shift ab,,; by =, rather than 2.

C. Series B: Soft lock-in

vorr=110 Hz and vy
~55 Hz and 1:2 mode locking is expected. Similar as for

8 3 series A, MIRVA filtering readily yields the unwrapped phase
Ideally, one would therefore always expeég—o, with or boon OF the oscillation~expldye) at v (Fig. 8, right.

\;Vétglc?ﬁr:tmgd;lgﬁll(éngé ISSZ:jd?r:siZ;gk%this degeneracy intoye assume that, as for series A, the oscillatierexp(dpu)
Va6 3 due to pulsation alone are much weaker than the oscillations
~expldyori—i dpug €Xcited by nonlinear interaction of vor-
tices and pulsation. Thus, the nonlinear excitation dominates
The evolution of the measured values t#r and ¢, the oscillations aw s~ v_ :=vyoi— Vpus. IN contrast to se-
and of the relative phasep; ;=2 ¢yon—3 Ppus=3 d- ries A, MIR\_/A filtering at v_ does not Ieao_l to an unequivo-
— ¢yor 1S Shown in Fig. 7. Since the definition of MIRVA cal phasegFig. 8, centey. It appears that this is due to phase

3. Interpretation of the measured phases
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=V iN X'(1) v_ Voo 20 T
1 . € 4
E Of + 1 &
)
-1 + . 8
=
e
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40 * :
FIG. 8. The trajectories of demodulated, MIRVA filtered signals 0 100 200

Z; (see section 2 of Appendix)Aobtained from series B and the time (sec)

quotient signak’(t), defined in Sec. IV C, at the indicated frequen-
cies. The corresponding values @f;, are 0.30[ — vps in X' (t)],
0.39 (v_), and 0.22 yor)-

FIG. 9. Unwrapped phases, obtained from series 8,2(t)
—wot  (solid and ¢yon(t) —wot (dashedl where w27
=110.697 Hz (nominal valug; the relative phased; ,= dyon
—2¢puis (dotted.
slips in ¢, Which broaden the range of relevant frequen- ] . )
cies atv_ and, as a result, worsen the signal-to-noise ratio. 1he histogram of the cyclic relative phadg , reveals the

By making use of the MIRVA filtered signal,,(t) of the ~ WO _preferred phasg angles WhICh are due to transversal re-
vortex oscillations b, can nevertheless be measured fromflection symmetry(Fig. 10. Since the symmetry is weakly
the signal. In variation of a method proposed in R&], a broken, their separation is nqt exacﬂyAggln: it is not cIe_ar
complex-valued time seriex’ (t):=x(t)/z,o(t) is con- © what degree the broademng of the distributioridof , is
structed from the original signai(t). The overall effect of due to measurement noise and to what degree to internal
this transformation is to shift all oscillations by, to nega-  NOIS€-
tive frequencies. The oscillations that werevat are now at
V_ = Vyor= — Vpus- They are of the form~exp(—igyys),
i.e., they do not depend on the phase of the vortices. Now, In order to quantify the degree of mode locking indepen-
MIRVA filtering x'(t) at — v yields the desired unequivo- dent of measurement noise, a characterization that depends
cal phase informatiofFig. 8, leff). As is shown in Fig. 9, the only on the long-term dynamics of the phases would be use-
dvort follows ¢ s, but several phase slips occur. ful. Such a measure is, for example, givengdy,, with

2. Quantification of the degree of mode locking

‘_nZD[d’von] + sz[¢puIs] - D[¢n,m] = lim n COV[ ¢vort(t+T) - ¢vort(t)r¢puls(t+T) - qbpuls“)]
Prm™ 2 M2D[ ] T 2mvaf dpudt+T)— dpudb)] '

(23

whereD[ -] stands for the diffusion coefficient of the speci- of the measure,, , and its interpretation is yet to be worked
fied phase variablep, ,, measures in how far the response out.
oscillator (here vorticep follows phase fluctuations of the

drive oscillator(pulsation. When ¢, and ¢s evolve in- V. CONCLUSION
dependentlyp, ,=0 for all n, m. In the case of harth:m o ,
lock-in, as was found for series AD[é,n]=0, MIRVA filtering was introduced as a method for measur-

2 ) _ ing the phase of oscillations from noisy time series. It was
n“D =m-D , and =1. Weak mode cou- . :
pIingE di)r\ﬁg]rpolategqsggts\]/veen tﬁgge two extremes. Values Oq.rgued that the phase so obtained is, among other favorable
outside the rangé0,1] are possible in prin(;iple but properties, particularly robust to noise and linear filtering of
Pn,m DUESTHE oo ) S . the signal. Detailed directions for computing MIRVA filters
unphysical in the situation of direct, unidirectional coupling.

Si v the | d ) ¢ the oh ) K numerically are given in Appendix A. In a numerical case
ince only the long-term dynamics of the phases Is takely 4 it was demonstrated that MIRVA filtering introduces

into account, rather long time series are required to obtair&my little bias to the phaséor averagg frequency. A syn-
reproducible values gby, - For series B we find, using the  chronization index has been proposed, which is designed to
estimator given by Eq.(B1) with 7=12.5 s, D[¢12]  pe robust to noise if MIRVA filtering is used.

=0.4(1) s, D[won]=2.4(6) s, and 4D[dpudl By applying MIRVA filtering to the signal of a vortex flow
=2.5(6) s'!, resulting inp; ,~0.9. The empirical value of meter, we showed that the method can be used to obtain well
p1 is stable over a wide range in Of course,p, , could  defined phases from oscillatory time series even under unfa-
not be used when the frequency of the drive oscillator waworable conditions such as strong internal and measurement
perfectly stable, i.e., wheB[ ¢,,|=0. A detailed analysis noise. The phases were used to investigate the strength of
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U4 ' ' ' tion of the moments of; . For notational convenience, we
B 4| i define the second and fourth momexitsn the time-discrete
3 representation as
g2r 1
3,0 1 Cijit = (Xr—iXr— jXrkXr1) (A2)
9
<0 and
0 0.2 0.4 0.6 0.8 1

¥i/2n Cij = (Xr—iXr—j) (A3)

FIG. 10. Empirical distribution function of the cyclic relative with arbitrary 7. These expectation values are estimated by
phase¥, , obtained from series B. The double peak is a resultaveraging over time and making use of symmetries, e.g.,
of the transversal reflection symmetry of the experimental systeng;; :Eji =Cjtkj+k-

(Fig. 3. Equation(1) now reads
mode locking. As another application, the MIRVA filtered > ci fif fify
signal was used for a data driven demodulation technique in 5 ikl e
Sec. IV C. Limitations to phase measurement, which remain a = —z 1 (A4)
even when MIRVA filters are used, have been addressed. (% Cijfifj)
ACKNOWLEDGMENTS with all sums running over,1 .. M. Thus, while the com-

putation of the moments takes time of ord@(N M?3), the
The authors express their gratitude to F. Buhl and ABBtime required for the optimization itself is independent\of
Automation Products GmbH for providing the vortex flow- Besides, derivatives af? with respect tdf; are calculated at
meter data, to P. Riegler, and Y.-K. The for important com-little additional cost, and can be provided to the optimization
ments, and to the German Bundesministerium Bildung  algorithm to help finding a MIRVA filterf; .
und ForschungBMBF) for generous supportGrant No.

13N7955. 2. Down sampling, demodulation, and regularization
In order not to introduce artificial restrictions of the
APPENDIX A: COMPUTATION OF MIRVA FILTERS search space fof;, the duration of the impulse response,
i.e., M XAt should be of the order of the phase coherence
1. Main algorithms time of the oscillation. This time can easily cover several
In practical applications time series (i=1,...N), hundred oscillation periods. Computation time depends criti-

sampled fronx(t) at evenly spaced discrete timesiAt are ~ cally on M. To keepM low and make the computation fea-
given. The MIRVA filters have to be estimated from this data_Sible, it is therefore advisable not to work with the raw time
Here, two methods are proposed. The first method is morgeries x; but to perform a demodulation and a down-
appropriate for short time series, the second is more efficier@@mpling step prior to the main calculation. For the calcula-
whenN is large. With both methods, the impulse respofise tions discussed in Secs. lIl and 1V, instead>gf the de-

of the filters is restricted to a finite lengtM (j =~ Modulated time serieX; given by

=1,... M).

Xi= KiXpivexd —i(hj+I At], A5
a. Direct method ] E| Xnj+1 XL —i(hj+1)woAt] (AS)

When using the first method, the convolution were used with a symmetric, triangular smoothing keiel
at a width of two time the down-sampling factbr The
M demodulation frequency, should be set to a value close to
z=(X*faim= 21 fiXirm— (A1) the frequency of the targeted oscillations.
=

To see the effect of this transformation, notice that for
stationary, discrete-time processes the valug défined by
(for k=1,... N—M+1) is calculated directly, and the ex- Eg. (1) with z replaced byZ=F* X is for any filterF, iden-
pectation values in Ed1) are estimated as averages oker tical to the value obtained with=f*x, provided
An iterative search algorithnte.g., a quasi-Newton, soft-
Iine-;ear;:h n;inimize[38]) is used to find the MIRVA filter kaE KiF s 1ym €XplikwpAt) (AB)
f; with 9“=dpp - [

andF,:=0 for nonintegek by convention. It is not difficult
to verify thatZ;=z,; exp(—ihjwyAt), independent oK .

The second method makes use of the fact thdepends As a result, every MIRVA filterF, for X; leads by Eq.
on x(t) only through its second and fourth moments. It is (A6) to the approximate MIRVA filtef for x; . The approxi-
often more efficient than the first method but, as a trade-offmation is good if the interpolatiotA6) of F, defined byK,
entails systematic errors of the ord@(M/N) in the estima- is reasonable.

b. Indirect method
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The MIRVA filters F\ found for typical experimental data multiplicities, only those local minima were accepted for se-
are more or less deformed variants of Gaussian fillgrs lecting MIRVA filters which where found three times within
~exfd — 3(k—M/2)?h?A w?At?] with bandwidth Aw. The a series of minimization runs with random starting points,
linear interpolation forf, given by the triangulak, is good  without previously finding any point with a lower value qf
if hAwAt<1. In practice, this requires filter lengths of at
leastM ~ 15-30. APPENDIX B: REMARKS ON THE ESTIMATION OF D

Experimental time series are often not long enough to
yield faithful estimates for alD(M?®) independent elements
of Cjji - This problem can be overcome by a regularization
of F. In our calculations, we restricted the filtefg to the
family F=exgP(K)], with mth order polynomials,,.

We discuss a method to determine the diffusion coeffi-
cient D defined by Eq.(14) from samples¢(t) of finite
length (O<t<T). First w,, is estimated asw,p=[¢(T)
—¢(0)]/T. ThenD can be estimated by

T—7
3. A guide to choosing appropriate parameters f [P(t+7)— (1) — &)phr]z dt
0

The following procedures were used to find appropriate D, := 2 T—7)(1—7T) , (B1)
values for the demodulation frequenay and the down-

sampling factorh, which determines the duration of the fil- \\here o< 7<T. The last factor in the denominator compen-
ter's impulse responseMAt. The sampling ratét is as-  sates for the loss of statistical degrees of freedom by the
sumed to be given e_mlsn is restricted to a small range by ggtimation Ofwp, aS@pn. When assumingb(t) to perform a
Comﬁumt'of‘a}!f“Im'tat'onst-h e of 10 the val random walk with constant drift, it is straightforwardly veri-
eran initia; guess, the value @o was Set 10 e VaUe - fiey thata,y, is a maximum likelihood estimator and,)

of the empirically found phase frequeney,, of z in an ) . AT
iterative process. In order to adjust the envelopgF,| of 2DD/;I' L;L\ger the same assumption, the varianceigf is

the computed MIRVA filter was investigated. Whéris too
large,|Fy| has a sharp peak and vanishes for all other valuesCOV(f) D)
Whenh is too small, most weight of the filter is concentrated KT =T

near the end point§&, and Fy,. By inspection one finds I[6(1—k)2%k—2(1—k)(1+3k2)| — (1—4k)I?]
Fi~*iFy, i.e., the MIRVA filter with a constraint in the =D? 5 5

filter length approximates a simple 2D delay embeddimig. 3k(1-k)*(1-1)

adjusted accordingly. (B2)

A systematic procedure for finding good values for the
polynomial orderm has not been developed yet. But with for 0<k=<I=1/2 (the last expression was obtained with the
m~6-10 results generally depend little on the precise valuehelp of symbolic computer algebran particular,

4. Convergence and side minima [(4—111+412+613)

varD,1=D?2 Z
In Sec. Il it was proposed to identify local minima qf 3(1-1)
with distinct oscillatory components of the signal. The struc-

ture of the search space is therefore of immediate theoretic¥fNich increases monotonically with<0l < 1/2. For good es-
interest. In fact, with long enough time series sampled fronfimates ofD, the parameter should be chosen as small as

a typical signal, the numerical search algorithms used herBOSSible but large enough to justify the assumption of a ran-
consistently and effortlessly reach local minima located in edom walk over timed T. The estimatoD , can be slightly
small set of well separated points in the space of all filtersimproved by using linear combinations with differentFor
irrespective of the—randomly chosen—starting points. Aexample, the variance of
uniqgue minimum is typically singled out when using de- .
modulation and down sampling, since this effectively implies D =
a preselection of the frequency range of interest. With shorter R
time series, however, these minima split into large clusters ois about 10% smaller than db ., as is verified using Eq.
several side minima. In order to cope with these artificial(B2).

: (B3)

|57'_ |527' (B4)
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