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Summary
The unpredictability of the occurrence of epileptic seiz-
ures contributes to the burden of the disease to a major
degree. Thus, various methods have been proposed to
predict the onset of seizures based on EEG recordings.
A nonlinear feature motivated by the correlation
dimension is a seemingly promising approach. In a pre-
vious study this method was reported to identify `preic-
tal dimension drops' up to 19 min before seizure onset,
exceeding the variability of interictal data sets of 30±50
min duration. Here we have investigated the sensitivity
and speci®city of this method based on invasive long-
term recordings from 21 patients with medically
intractable partial epilepsies, who underwent invasive

pre-surgical monitoring. The evaluation of interictal 24-

h recordings comprising the sleep±wake cycle showed

that only one out of 88 seizures was preceded by a sig-

ni®cant preictal dimension drop. In a second analysis,

the relation between dimension drops within time win-

dows of up to 50 min before seizure onset and interictal

periods was investigated. For false-prediction rates

below 0.1/h, the sensitivity ranged from 8.3 to 38.3%

depending on the prediction window length. Overall,

the mean length and amplitude of dimension drops

showed no signi®cant differences between interictal and

preictal data sets.
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Introduction
Epilepsy is characterized by sudden recurrent and transi-

ent disturbances of perception or behaviour resulting from

excessive synchronization of cortical neuronal networks.

Owing to the sudden and unforeseeable occurrence of

epileptic seizures, everyday activities are impaired and

can become dangerous for patients (Cockerell et al.,

1994). The unpredictability of seizure onset is one of the

most important causes of morbidity and stress in patients

with epilepsy (Murray, 1993; Buck et al., 1997). Being

able to predict the onset of seizures would render the

implementation of alarm systems and novel therapeutic

approaches possible; e.g. automated interventional meas-

ures like the application of anticonvulsant drugs or

electrical brain stimulation (Stein et al., 2000). In

addition, the identi®cation of a pre-seizure state could

contribute to the investigation of the pathophysiological

mechanisms causing seizures.

Recently, there has been growing interest in whether

methods from nonlinear dynamics are able to identify preictal

states from EEG recordings (Iasemidis et al., 1990, 1997; Pijn

et al., 1991, 1997; Pritchard and Duke, 1992; Lehnertz and

Elger, 1995, 1998; Pritchard et al., 1995; Martinerie et al.,

1998; Osorio et al., 1998; Schiff, 1998; Moser et al., 1999;

Jerger et al., 2001; Le Van Quyen et al., 2001b; Lai et al.,

2002; Navarro et al., 2002; Osorio et al., 2002; Winterhalder

et al., 2003; for recent reviews see Lehnertz et al., 2001; Le

Van Quyen et al., 2001a; Litt and Lehnertz, 2002; Litt and

Echauz, 2002). Seizure prediction times from minutes to

hours have been reported.

In a pioneering work, the group of Lehnertz and Elger

applied a nonlinear feature motivated by the correlation

dimension to intracranial EEG data recorded from the

seizure focus (Lehnertz and Elger 1995, 1998; Lehnertz

et al., 2001). They observed reductions in the dimensional

complexity of brain activity immediately preceding seiz-

ures. `Dimension drops' of suf®cient amplitude and

duration were regarded as a speci®c feature de®ning

seizure preceding states. Such seizure-preceding states
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were found to last up to 25 min. In a study with data from

patients with mesial temporal lobe epilepsy of hippocam-

pal origin and neocortical lesional epilepsy, 67% of the

seizures from the hippocampal group and 29% of the

seizures in the neocortical group were preceded by

predictive dimension drops (Lehnertz et al., 2001).

These studies were based only on low numbers of

seizures per patient and short interictal data segments. The

acceptance of seizure-preceding dimension drops as pre-

dictive, however, depends critically on the variability of

the dimension during the interictal periods evaluated. As

Litt and Lehnertz (2002) pointed out, seizure prediction

methods should be assessed based on long-term EEG

recordings. We have thus used contiguous data segments

over 24 h, including circadian variations, to validate the

potential of the correlation dimension method to predict

seizures.

As the sensitivity of preictal dimension drops directly

preceding seizures turned out to be low when evaluated

based on long-term interictal data, we extended our

analysis by accepting false predictions and analysing

longer time windows preceding seizure onset. This allowed

for a combined evaluation of speci®city and sensitivity

based on clinical requirements and the comparison of the

method with an unspeci®c random alert system.

Material and methods
Patients
Invasive EEG recordings from 21 patients with medically

intractable focal epilepsy of temporal and extratemporal

origin were used for this study. Their clinical characteristics

are summarized in Table 1. All patients underwent a complete

presurgical evaluation comprising high resolution MRI,

functional imaging, neuropsychological evaluation, and

video telemetry with interictal and ictal surface and invasive

EEG recordings. Patients with intracranial electrodes were

chosen in order to study EEG data within the epileptogenic

zone at high signal-to-noise ratio. Intracranial recordings

were performed via stereotactically implanted depth elec-

trodes, and via subdural strip and grid electrodes implanted

through burr holes or open skull surgery, respectively. The

positions of intracranially implanted electrodes were identi-

®ed on reconstructed 3D MRI data sets (Schulze-Bonhage

et al., 2002). All patients gave their informed consent to the

evaluation of their EEG data. Retrospective evaluation of

data was approved by the Ethics Committee, Medical

Faculty, University of Freiburg.

EEG data acquisition
EEG data acquisition was performed with a Neuro®le NT

digital video EEG system (it-med, Usingen, Germany), with

Table 1 Clinical data and characteristics of selected patients

Patient
no.

Sex Age
(years)

Seizure type Origin Electrodes Resection/
outcome

No.
seizures
analysed

Interictal true
period/h

No.
interictal
segments

1 M 38 SP, CP, GTC H d IV 3 24 2
2 F 26 SP, CP, GTC H d, g, s No surgery 5 24 1
3 F 31 CP, GTC H d, g, s I 3 24 1
4 F 42 SP, CP, GTC H d I 3 25 1
5 M 47 SP, CP, GTC H d IV 5 24 1
6 F 42 SP, CP, GTC H d, g, s IV 4 25 1
7 F 22 SP, CP, GTC H d, s II 2 24 1
8 F 50 SP, CP, GTC H d, s I 5 24 2

Sum 30 194
Mean 3.8 24.3

9 F 15 SP, CP NC g, s III 5 24 1
10 M 14 SP, CP NC g, s I 5 24 1
11 F 16 SP, CP, GTC NC g, s I 5 24 3
12 F 32 SP, CP NC g, s II 2 24 2
13 M 44 CP, GTC NC g, s II 5 24 2
14 F 10 SP, CP, GTC NC g, s II 4 24 1
15 F 41 CP, GTC NC d, s I 4 24 5
16 M 31 SP, CP, GTC NC d, s III 4 24 1
17 M 28 SP, CP, GTC NC s I 5 24 1
18 F 25 SP, CP NC s No surgery 5 25 1
19 F 28 SP, CP, GTC NC s I 4 24 3
20 M 33 SP, CP, GTC NC d, s I 5 26 1
21 M 13 SP, CP NC s I 5 24 2

Sum 58 315
Mean 4.5 24.2

Resection outcome according to Engel classi®cation. M = male; F = female. Seizure types: SP = simple partial; CP = complex partial;
GTC = generalized tonic±clonic. Origin: H = hippocampal; NC = neocortical. Electrodes: g = grid; s = strip; d = depth.
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128 channels, 256 or 512 Hz sampling rate, and a 16 bit

analogue-to-digital converter. Data were bandpass ®ltered

between 0.53 and 80 Hz. Filtering at 0.53 Hz was necessary to

improve the stationarity of the data and to remove trends (van

der Heyden et al., 1999). A 50 Hz notch ®lter was applied to

remove line noise. The data were continuously recorded from

implantation to explantation of the electrodes. All EEG and

video data were visually inspected by board-certi®ed

epileptologists. Major events, both clinical and electroence-

phalographic, were marked in the EEG data ®les. Preictal data

sets from 88 clinically manifest seizures (30 seizures with

hippocampal origin, mean of 3.8 seizures per patient; 58

seizures with neocortical origin, mean of 4.5 seizures per

patient) were analysed. For a given patient, either all

available or ®ve consecutive seizures were used. Each

preictal data set contained at least 50 min of preictal data.

At least 24 h of interictal data per patient (total 509 h) was

used, comprising circadian rhythms including a complete

sleep±wake cycle. The median of the time periods between

the last seizure preceding the interictal data set was 5 h 18

min, the median of the time periods between the interictal

data set and the ®rst following seizure was 9 h 36 min. For

each patient, three intracranial electrodes located in or in

close proximity to the seizure onset zone were evaluated

(Fig. 1). These electrodes were referenced to an electrode

displaying only a minimal amount of epileptic activity.

Calculation of the correlation dimension
The effective correlation dimension D2

eff is a nonlinear

feature that is motivated by the correlation dimension D2

(Grassberger and Procaccia, 1983a, b). D2 is a measure for the

fractality of the attractor of a low-dimensional, deterministic,

stationary, dynamical system. The correlation dimension is

obtained by ®rst calculating a correlation sum Cm(r) for a

collection of K points embedded in a reconstructed

m-dimensional phase space (Takens, 1981). This sum counts

the fraction of all pairs of points yi, yj that are closer than a

given distance r (Theiler, 1986; Kantz and Schreiber, 1997)

Cm�r� � 1

Np

XKÿW

i�1

XK

j�i�w

��r ÿ kyi ÿ yjk�; �1�

where q is the Heaviside step function (q (x) = 0 if x < 0,

q (x) = 1 if x > 0) and Np = (K ± W + 1)(K ± W)/2 is a normal-

ization factor (with a Theiler correction of W points). In the

limit of an in®nite amount of data and for large enough m and

for small r, Cm(r) is expected to scale with a power law, Cm(r)

µ rD2, and the correlation dimension D2 is de®ned by:

D2 � lim
r!0

d logCm�r�
d logr

If applied to measured data, existence of a proper scaling is

not necessarily given. To establish a scaling behaviour, local

slopes C¢m(r) = dlogCm(r)/dlogr of the correlation sum should

be calculated (Kantz and Schreiber, 1997).

We followed the operational method of Lehnertz and Elger

(1998) to obtain an effective scaling region from the local

slopes C¢m(r) of the correlation sums. An average D* over the

number of points Nr of r values in the interval [rl, ru] of

C¢m(r) between a lower bound of the hypersphere radius rl and

an upper bound ru de®nes the effective correlation dimension

D �m �
1

Nr

Xru

r�rl

C 0m�r�:

The upper bound ru is attributed to the largest r where

C¢m(ru, m = 1) > 0.975. The lower bound rl is de®ned as:

Fig. 1 Implantation scheme with electrode con®guration from a non-lesional patient with right hippocampal seizure onset zone. Left: Ten-
contact depth electrode (HR) implanted from an occipital approach into the right hippocampus with the most anterior contact situated in
the amygdala. Middle: Subdural strip electrodes (temporo-basal on right side), TBa and TBb (four contacts each) in rostral and mesial
direction, TBc (six contacts) in occipital direction. Right: Subdural grid electrode covering the lateral temporal and parietal right
convexity. The three contacts selected for this study are marked with ®lled circles.
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rl = min{r < ru||C¢mmax
(ru) ± C¢mmax

(r)| < d},

with d = 0.05 C¢mmax
(ru), mmax = 25.

Finally, D2
eff is given as:

D
eff
2 �

D�

10

if Nr � 5

else:

�

If no scaling region could be determined, D2
eff was set to the

default value of 10. D2
eff was calculated for the interictal and

the preictal data sets of patient data. For each electrode,

channel sample correlation integrals according to Equation 1

were calculated for moving data window epochs of 4096 data

points. These epochs were shifted along the EEG sequence

with 2048 points overlap. The time series was embedded into

m-dimensional phase space (m = 25) with a delay t = 2

sampling points, and W = 8 sampling points. To smoothen the

output curve of the D2
eff data, a median ®lter over three data

points was applied.

De®nition of predictive dimension drops
According to Lehnertz et al. (2001), a preictal dimension drop

is considered predictive: (i) if it is con®ned to the

epileptogenic area; (ii) if it directly precedes a seizure; and

(iii) if preictal dimension drop parameters, duration and

amplitude, exceed the maximum values of interictal dimen-

sion drops (determined per electrode). Figure 2 depicts the

de®nition of the parameters of an interictal and of a preictal

dimension drop, the latter of which directly precedes a

seizure. For each recording site from all interictal data sets for

each patient, the mean interictal level Davg is determined. For

interictal data sets, ti is de®ned as the longest time interval

with D2
eff below Davg. For preictal data, tp is the time interval

between seizure onset and the previous downward crossing of

D2
eff with Davg. At seizure onset, D2

eff has to be smaller than

Davg. The maximum de¯ections di and dp are de®ned as the

maximum differences between D2
eff and Davg during ti and

tp, respectively. As there is no natural order relation in the 2D

parameter space, we ®rst determined ti for each interictal data

set and then measured di within this drop.

Evaluation
To evaluate the dimension drops obtained from the effective

correlation dimension method, two kinds of analyses were

performed. First, it was investigated for each electrode

whether dimension drops were predictive according to the

three requirements of the above de®nition. Preictal dimension

drops which directly precede a seizure were identi®ed and the

parameters tp and dp were compared with the maximal

parameters from the interictal data sets. Secondly, in order to

evaluate speci®city and sensitivity of the method in consid-

eration of clinical demands, the drops were analysed under

less strict requirements. Instead of requirement (ii), that

predictive preictal dimension drops had to precede seizures,

they were evaluated within a prede®ned time window before

seizure onset. This conforms to analogous analyses done by

other groups (Martinerie et al., 1998; Le Van Quyen et al.,

1999; Litt et al., 2001). The mean values tp,avg, dp,avg, ti,avg

and di,avg, and the medians tp,med, dp,med, ti,med and di,med of the

parameters of the dimension drops, and of all drops with tp, ti
> 80 s, corresponding to 10 data points of D2

eff, were

Fig. 2 Schematic illustration of interictal (left) and preictal (right) dimension drops of the D2
eff feature over time. The dashed line

represents the average Davg of all interictal data for each patient and recording site. For interictal data, the time interval ti is de®ned as the
interval between two crossings of D2

eff with Davg. For a dimension drop that directly precedes a seizure (shaded area), the D2
eff feature

must be below Davg at seizure onset (marked in preictal data set by upward arrow). The time interval tp is de®ned as the interval between
seizure onset and the last crossing of D2

eff with Davg. The amplitude de¯ections di and dp are de®ned as the difference between the
minimum of D2

eff and Davg during ti and tp, respectively.
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calculated for the preictal and the interictal period, respect-

ively. Requirement (iii) was loosened, in that dimension drop

parameters regarded as predictive did not have to exceed

maximum values of interictal parameters. This led to an

optimization method for an alarm system suitable for online

analysis as explained below.

The prediction of a seizure corresponds to the classi®cation

of all possible observations into the two disjoint subsets: (i) `a

seizure will occur' or (ii) `no seizure will occur', which leads

to the classi®cation of each data set into `preictal' or `not

preictal', respectively. To quantify prediction performance,

we use the notion of sensitivity and false-prediction rate

(FPR). The sensitivity is the number of correct predictions in

relation to the total number of predictions. Speci®city is

quanti®ed by the FPR, given as the number of falsely

predicted seizures per hour of interictal data. For a given FPR,

the associated threshold values for the parameters specifying

the dimension drops are calculated. Minimal durations of

dimension drops were evaluated for up to half the prediction

window length in increments of 1 min. Sensitivity is derived

by applying these thresholds to the preictal dimension drops.

The results are displayed as sensitivity/FPR curves. Lower

threshold values give a higher probability of correct predic-

tions at the expense of higher FPR. By proper adjustment of

the threshold, one can trade off sensitivity for FPR. The

calculation of sensitivity was based on three prediction

windows of 10, 20 and 50 min duration, ending 5 s before the

electrographic seizure onset. After a false prediction in the

Fig. 3 Examples of D2
eff data from interictal (a, b) and preictal (c, d) data sets each of 60 min length from one patient. The mean

interictal level Davg is shown by the dotted horizontal line. The dimension drop in d directly precedes the seizure onset (marked by
vertical bold line). Maximal dimension drop lengths in this example are labelled with ti and tp, respectively. The duration tp exceeds ti, but
the maximum interictal de¯ection exceeds the preictal one. Hence, the dimension drop is not predictive according to the de®nition. For the
evaluation with allowed false-predictions, the 10, 20 and 50 min alarm windows in c and d are marked with vertical lines and labelled
with arrows. Threshold values T1 and T2 resulting from given maximum FPR are denoted with horizontal lines. Alarms are given by
downward crossings. For the threshold value T1 = 5.5 and for a small minimal dimension drop duration, alarms are given in c in the 10
and 20 min windows. No false alarms are raised in a and b and no alarm is given in d. For a higher FPR and for a minimal drop duration
> ti, the threshold value increases to T2 = 6.8. One false alarm is given in b. No alarms are given in a and c, since the dimension drops
are too short. No alarm is given in d.
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analysis of the interictal data sets, the alarm mechanism was

deactivated for the duration of the respective alarm window

of the preictal analysis.

Figure 3 gives an example with interictal (Fig. 3a and b)

and preictal (Fig. 3c and d) data sets of one patient. A

dimension drop directly precedes a seizure in Fig. 3d.

However, the dimension drop parameters do not exceed the

maximal interictal values in Fig. 3b. Hence, the drop is not

predictive according to the above de®nition. The evaluation

with allowed false alarms in the 10, 20 and 50 min alarm

windows depends on the derived thresholds T and the

minimal dimension drop durations.

Random alert system
A minimum requirement for a useful prediction method is its

superiority to a random alert system. Within a small time

interval u a maximum FPR FPRmax can be expressed as the

probability P = FPRmax´u to produce one false alarm. The

probability P for exactly one false alarm within a time

interval W = n´u, with an integer n, is hence:

P = 1 ± (1 ± FPRmaxu)W/u

If u is small compared with W, P can be approximated as:

P » 1 ± e±FPRmaxW (2)

P describes the sensitivity of a random alert system. For a

large window length W, P converges to 1, e.g. if FPRmax =

0.1/h and W = 50 h, Equation 2 yields P = 0.9933.

Results
Predictive dimension drops directly preceding
seizures
The results of the dimension drop analysis for interictal and

preictal data sets of the hippocampal and neocortical groups

according to the de®nition from Lehnertz et al. (2001) are

given in Table 2. Mean values and medians of the maximum

interictal dimension drop parameters were: ti,avg = 10.9 min,

di,avg = 3.7, ti,med = 8 min, di,med = 3.6 for the hippocampal

group, and ti,avg = 12.4 min, di,avg = 3.7, ti,med = 5.3 min, di,med

= 3.8 for the neocortical group. Dimension drops directly

preceded seizures in ®ve out of 30 (17%) seizures of

hippocampal origin, and in nine out of 58 (16%) seizures of

neocortical origin. The mean time intervals tp,avg of all

dimension drops directly preceding seizures were 0.4 and 1.7

min for the hippocampal and neocortical group, respectively.

For only one dimension drop from the neocortical group, the

parameters (tp = 8 min and dp = 3.8) exceeded the maximum

values of the interictal dimension drops. Following the

criteria of Lehnertz et al. (2001), this was the only correct

Table 2 Results of the dimension drop analysis

Hippocampal origin: 8
patients, 30 seizures (3.8
seizures/patient)

Neocortical origin: 13
patients, 58 seizures
(4.5 seizures/patient)

21 interictal recordings (duration = 24 h)

Mean values of maximal interictal
dimension drops within the seizure focus

ti,avg

ti,med

10.9 min
8.0 min

12.4 min
5.3 min

di,avg 3.7 3.7
di,med 3.6 3.8

Mean values of interictal dimension drops
>80 s within the seizure focus

ti,avg

ti,med

2.7 min
1.9 min

3.4 min
2.1 min

di,avg 2.4 2.2
di,med 2.4 2.0

88 preictal recordings (duration = 50 min)

Dimension drops directly preceding
seizures within the seizure focus

17% (5 seizures) 16% (9 seizures)

Predictive dimension drops 0% (0 seizures) 1.7% (1 seizure)
Mean values of non-predictive dimension
drops, ful®lling requirements: (i) being
within the seizure focus and (ii) directly
preceding the seizures

tp,avg

tp,med

dp,avg

dp,med

0.4 min
0.3 min
2.3
2.7

1.7 min
0.8 min
2.8
2.8

Mean values of preictal non-predictive
dimension drops >80 s ful®lling only
requirement (i)

tp,avg

tp,med

dp,avg

dp,med

2.9 min
1.9 min
2.6
2.5

3.4 min
2.1 min
2.5
2.2

Results of the dimension drop analysis of the D2
eff feature for interictal and preictal data for eight patients with hippocampal seizure origin

and 13 patients with neocortical seizure origin. Mean values and medians of the drop parameters time interval ti and tp and amplitude
difference di and dp, respectively, were determined for all dimension drops and for dimension drops exceeding a duration of 80 s. Only
one dimension drop ful®lled all three requirements of the de®nition for predictive dimension drops according to Lehnertz et al. (2001).
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seizure prediction. No dimension drop from the hippocampal

group was predictive.

Predictive dimension drops within preictal time
windows
Hippocampal group
The mean values and medians of all interictal and preictal

dimension drops with ti, tp > 80 s were: ti,avg = 2.7 min,

ti,med = 1.9 min, tp,avg = 2.9 min, tp,med = 1.9 min, and

di,avg = 2.4, di,med = 2.4, dp,avg = 2.6, dp,med = 2.5. The means

and medians differ due to the skewed distribution with many

short drops compared with few long drops. There were no

signi®cant differences between the interictal and preictal

data. The maximum duration of the individual dimension

drops was 1504 s interictally and 1952 s preictally.

For seven given FPR between 0/h and 1/h based on

thresholds derived from the interictal data, the sensitivities for

each patient for the 10, 20 and 50 min windows are given in

Table 3. The values of the averaged sensitivities Savg for all

patients are displayed for the 10, 20 and 50 min alarm

windows in Fig. 4 for optimized minimal durations of

dimension drops. For FPRmax = 0/h the averaged sensitivities

were 4.2, 9.2 and 14.2% for the 10, 20 and 50 min windows,

respectively. For FPRmax = 0.1/h the averaged sensitivities

were 8.3, 13.3 and 38.3% for the 10, 20 and 50 min windows,

respectively. For increasing FPRmax, sensitivities rise up to

95% for a 50 min alarm window and FPR of 1/h.

The sensitivities from the corresponding random alert

systems according to Equation 2 are displayed in Fig. 4.

Under most conditions, these are signi®cantly lower than the

sensitivities of the prediction algorithm.

Neocortical group
The mean values and medians of all interictal and preictal

dimension drops with ti, tp > 80 s were: ti,avg = 3.4 min, ti,med

= 2.1 min, tp,avg = 3.4 min, tp,med = 2.1 min, and di,avg = 2.2,

di,med = 2.0, dp,avg = 2.5, dp,med = 2.2. Again, there were no

signi®cant differences between the interictal and preictal

data. The maximum duration of the individual dimension

drops was 3136 s interictally and 3360 s preictally.

For seven given FPR between 0/h and 1/h based on

thresholds derived from the interictal data, the sensitivities

for each patient for the 10, 20 and 50 min windows are

given in Table 3. The values of the averaged sensitivities

Savg for all patients are displayed for the 10, 20 and 50 min

alarm windows in Fig. 5 for optimized minimal dimension

drop durations. For FPRmax = 0/h the averaged sensitivities

were 10.4, 11.9 and 18.5% for the 10, 20 and 50 min

windows, respectively. For FPRmax = 0.1/h the averaged

sensitivities were 13.9, 18.5 and 33.5% for the 10, 20 and

50 min windows, respectively. For increasing FPRmax,

sensitivities rise up to 84% for a 50 min alarm window and

FPR of 1/h.

The sensitivities from the corresponding random alert

systems according to Equation 2 are displayed in Fig. 5.

These are signi®cantly lower than the sensitivities of the

prediction algorithm.

There was no consistent difference in the performance of

seizure prediction between patients who became seizure-free

after surgery and those who did not.

Discussion
Importance of interictal data for the evaluation
of seizure prediction algorithms
The successful identi®cation of preictal periods by extracting

features from EEG data critically depends on the comparison

with the behaviour of the feature during interictal periods.

Both speci®city and sensitivity of a prediction method can be

quanti®ed, but only based on long-term EEG recordings

comprising a suf®cient number of preictal periods, ictal

events and interictal data representing the natural variability,

e.g. including the effects of circadian rhythms (Litt and

Lehnertz, 2002; Litt and Echauz, 2002). In other words,

whether an algorithm that detects preictal changes in the EEG

is of clinical value depends on the number of false predictions

for interictal data. To determine this relation quantitatively,

our evaluation of a nonlinear method to predict epileptic

seizures was based on a representative long-term EEG data

set, comprising 50 min of preictal and 24 h of interictal

periods.

Predictive dimension drops
Using an algorithm based on drops in the effective correlation

dimension D2
eff, Lehnertz and Elger (1998) reported that a

reduced dimensional complexity of brain activity, as soon as

it is of suf®cient size and duration, can be regarded as a

speci®c feature de®ning states that precede a seizure.

Analysing data from the epileptogenic area, they reported

seizure preceding predictive dimension drops in 67% of

hippocampal and 29% of neocortical epilepsy (Lehnertz et al.,

2001). Predictive dimension drops were de®ned as being

more pronounced than during interictal periods. This is where

the amount and representativity of interictal data come into

play. Our analysis resulted in only one successful prediction

out of 88 preictal periods. The natural explanation for this

dramatic loss of performance is the greater and more

representative variability of the dimension drops within

interictal periods of longer duration (24 h) compared with the

30±50 min blocks in the former study.

Permitting false predictions
In their study, Lehnertz et al. (2001) considered only

dimension drops that exceeded interictal ones and directly

preceded the seizure. Our analysis suggests that these criteria

are too stringent to be successfully applied to long-term data.
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T
a
b

le
3

D
et

a
il

ed
re

su
lt

s
w

it
h

se
n
si

ti
vi

ti
es

a
n
d

m
a
xi

m
u
m

F
P

R

P
at

ie
n
t

n
o

.
S

en
si

ti
v

it
y

S
m

a
x
/%

1
0

m
in

al
ar

m
w

in
d
o

w
(F

P
R

m
a
x
)

2
0

m
in

al
ar

m
w

in
d
o
w

(F
P

R
m

a
x
)

5
0

m
in

al
ar

m
w

in
d
o
w

(F
P

R
m

a
x
)

0
0

.0
5

0
.1

0
.2

5
0

.4
0

.6
1
.0

0
0
.0

5
0
.1

0
.2

5
0
.4

0
.6

1
.0

0
0
.0

5
0
.1

0
.2

5
0
.4

0
.6

1
.0

1
0

0
0

3
3

3
3

3
3

1
0
0

0
0

0
3
3

3
3

3
3

1
0
0

0
0

6
7

6
7

1
0
0

1
0
0

1
0
0

2
0

0
0

0
0

0
0

0
0

0
0

0
0

2
0

2
0

4
0

4
0

4
0

4
0

6
0

6
0

3
3

3
3

3
3

3
3

3
3

3
3

3
6
7

3
3

3
3

3
3

3
3

3
3

3
3

1
0
0

3
3

6
7

6
7

6
7

1
0
0

1
0
0

1
0
0

4
0

0
3

3
3

3
3

3
3

3
3
3

0
3
3

3
3

3
3

3
3

3
3

6
7

0
3
3

3
3

1
0
0

1
0
0

1
0
0

1
0
0

5
0

0
0

0
0

2
0

6
0

2
0

2
0

2
0

2
0

2
0

6
0

6
0

2
0

6
0

6
0

6
0

8
0

8
0

1
0
0

6
0

0
0

5
0

5
0

5
0

5
0

0
0

0
7
5

7
5

7
5

7
5

0
0

0
1
0
0

1
0
0

1
0
0

1
0
0

7
0

0
0

5
0

5
0

5
0

5
0

0
0

0
5
0

5
0

5
0

5
0

0
0

0
5
0

5
0

1
0
0

1
0
0

8
0

0
0

2
0

2
0

4
0

4
0

2
0

2
0

2
0

4
0

6
0

6
0

8
0

4
0

4
0

4
0

8
0

8
0

8
0

1
0
0

S
a
v
g

4
.1

7
4

.1
7

8
.3

3
2

7
.5

0
2

7
.5

0
3

2
.5

0
5
0
.0

0
9
.1

7
1
3
.3

3
1
3
.3

3
3
5
.6

2
3
8
.1

2
4
3
.1

2
6
8
.9

6
1
4
.1

7
3
0
.0

0
3
8
.3

3
7
0
.4

2
8
1
.2

5
9
0
.0

0
9
5
.0

0
S

E
3

.9
0

3
.9

0
5

.1
0

6
.4

7
6

.4
7

5
.4

2
9
.4

8
4
.4

0
5
.0

0
5
.0

0
7
.1

9
7
.7

4
7
.6

9
8
.7

7
5
.4

6
8
.9

8
8
.8

8
7
.2

0
7
.9

9
5
.0

0
4
.6

8
9

0
0

2
0

2
0

2
0

2
0

2
0

0
2
0

2
0

2
0

2
0

2
0

2
0

0
2
0

2
0

2
0

2
0

4
0

1
0
0

1
0

2
0

2
0

2
0

2
0

2
0

2
0

4
0

2
0

2
0

2
0

4
0

4
0

4
0

4
0

2
0

4
0

4
0

6
0

6
0

6
0

1
0
0

1
1

0
0

0
0

0
0

0
2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

4
0

4
0

4
0

4
0

4
0

1
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

5
0

5
0

5
0

5
0

5
0

1
3

2
0

2
0

2
0

4
0

4
0

4
0

4
0

2
0

4
0

4
0

6
0

6
0

6
0

6
0

2
0

4
0

4
0

8
0

8
0

8
0

8
0

1
4

2
5

2
5

5
0

5
0

5
0

5
0

7
5

2
5

5
0

5
0

5
0

5
0

5
0

7
5

2
5

5
0

5
0

7
5

7
5

7
5

1
0
0

1
5

5
0

5
0

5
0

5
0

5
0

5
0

7
5

5
0

5
0

5
0

5
0

5
0

7
5

7
5

5
0

5
0

5
0

5
0

7
5

7
5

1
0
0

1
6

0
0

0
2

5
2

5
5

0
7
5

0
0

0
2
5

2
5

7
5

7
5

0
0

0
5
0

7
5

7
5

1
0
0

1
7

0
0

0
0

2
0

2
0

6
0

0
0

0
2
0

4
0

4
0

8
0

2
0

4
0

4
0

8
0

8
0

1
0
0

1
0
0

1
8

2
0

2
0

2
0

4
0

4
0

4
0

4
0

2
0

4
0

4
0

6
0

6
0

6
0

8
0

4
0

6
0

6
0

8
0

8
0

1
0
0

1
0
0

1
9

0
0

0
0

0
0

2
5

0
0

0
0

0
2
5

2
5

2
5

2
5

2
5

2
5

2
5

2
5

2
5

2
0

0
0

0
0

0
0

2
0

0
0

0
2
0

2
0

2
0

4
0

2
0

2
0

2
0

4
0

6
0

6
0

1
0
0

2
1

0
0

0
0

2
0

2
0

2
0

0
0

0
0

2
0

2
0

6
0

0
0

0
2
0

4
0

8
0

1
0
0

S
a
v
g

1
0

.3
8

1
0

.3
8

1
3

.8
5

1
8

.8
5

2
1

.9
2

2
3

.8
5

3
7
.6

9
1
1
.9

2
1
8
.4

6
1
8
.4

6
2
8
.0

8
3
1
.1

5
3
8
.8

5
5
0
.0

0
1
8
.4

6
2
8
.0

8
3
3
.4

6
5
1
.5

4
5
8
.4

6
6
6
.1

5
8
4
.2

3
S

E
4

.3
3

4
.3

3
5

.1
3

5
.6

7
5

.1
7

5
.6

1
7
.4

4
4
.2

9
5
.6

4
5
.6

4
6
.0

9
5
.6

7
6
.5

8
7
.6

0
4
.3

3
5
.6

5
5
.2

9
6
.2

1
5
.9

7
6
.3

6
7
.5

5

D
et

ai
le

d
re

su
lt

s
w

it
h

th
e

se
n

si
ti

v
it

y
S

m
a
x

(i
n

%
)

an
d

m
ax

im
u

m
F

P
R

,
F

P
R

m
a
x

(p
er

h
o

u
r)

,
o

f
th

e
ef

fe
ct

iv
e

co
rr

el
at

io
n

d
im

en
si

o
n

an
al

y
si

s
o
b
ta

in
ed

w
it

h
th

e
o
p
ti

m
iz

ed
m

in
im

al
d

im
en

si
o

n
d

ro
p

d
u

ra
ti

o
n

s.
T

h
e

m
ax

im
u

m
F

P
R

co
n

st
ra

in
ts

ar
e

0
/h

,
0

.0
5

/h
,

0
.1

/h
,

0
.2

5
/h

,
0

.4
/h

,
0

.6
/h

an
d

1
/h

.
T

h
re

e
al

ar
m

w
in

d
o

w
s

o
f

1
0
,

2
0

an
d

5
0

m
in

le
n

g
th

w
er

e
ap

p
li

ed
.

M
ea

n
v

al
u
es

S
a
v
g

fo
r

th
e

p
at

ie
n

ts
w

it
h

h
ip

p
o

ca
m

p
al

(p
at

ie
n

ts
1

±
8

)
an

d
n

eo
co

rt
ic

al
(p

at
ie

n
ts

9
±

2
1

)
se

iz
u

re
o

ri
g

in
ar

e
li

st
ed

.
S

E
=

st
an

d
ar

d
er

ro
r

o
f

th
e

m
ea

n
.

Evaluation of nonlinear seizure prediction 2623



We have thus loosened both restrictions in order to investi-

gate whether dimension drops of suf®cient size are indicative

of an imminent seizure: (i) an acceptable FPR is allowed for;

and (ii) the prediction is based on dimension drops occurring

within certain time windows before the onset of the seizure.

Regarding (i), a range of maximum FPR was speci®ed and

Fig. 4 Averaged sensitivities (62 SE) of the analysis of the data
with hippocampal seizure origin with optimized minimal
dimension drop durations for the maximum FPR 0/h, 0.05/h, 0.1/h,
0.25/h, 0.4/h, 0.6/h and 1/h for the 10 (top), 20 (middle) and 50
min (bottom) alarm windows. For comparison, the probability of
the corresponding random alert system is given (solid line).

Fig. 5 Averaged sensitivities (62 SE) of the analysis of the data
with neocortical seizure origin with optimized minimal dimension
drop durations for the maximum FPR 0/h, 0.05/h, 0.1/h, 0.25/h,
0.4/h, 0.6/h and 1/h for the 10 (top), 20 (middle) and 50 min
(bottom) alarm windows. For comparison, the probability of the
corresponding random alert system is plotted (solid line).
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corresponding thresholds of the extracted features were

determined based on the interictal data. With respect to (ii),

dimension drops occurring at any time within windows of

length 10±50 min before the seizure's onset were considered.

Under these conditions, the prediction methods result in a

sensitivity of 38% in hippocampal seizures and 33% in

neocortical seizures if a FPR of 0.1/h is permitted for interictal

data and a 50 min time window is considered preictally. The

algorithm outperforms a random alert system signi®cantly.

This shows that the preictal EEG carries information about the

forthcoming seizure, and that the extracted feature indeed

captures this information to some degree. This is remarkable,

as there is an ongoing debate with respect to the applicability

of methods from nonlinear dynamics to biological data (Rapp

et al., 1993; Jedynak et al., 1994; Kantz and Schreiber, 1997;

Schreiber, 1999; Timmer et al., 2000).

Clinical applicability
Apart from the statistical superiority of a prediction algorithm

to a random alert system, clinical applicability depends on a

number of additional factors. To determine the sensitivity of a

method, three steps have to be applied: (i) the choice of a

maximum FPR; (ii) the derivation of a threshold based on

representative long-term interictal data; and (iii) the deter-

mination of the sensitivity based on preictal data. The allowed

FPR depends on clinical and technical requirements as well as

on individual factors of the patient. In this study, we regarded

a range of maximum FPR between 0/h and 1/h. Reasonable

FPR should be at most on the order of the patient's seizure

frequency. On average, patients suffering from pharmacor-

efractory epilepsy have a seizure frequency of three seizures

per month, corresponding to a rate of 0.0042 seizures per hour

(Bauer and Burr, 2001), which may increase up to 0.15

seizures per hour if medication is discontinued (Haut et al.,

2002). Applying the results for hippocampal prediction

performance to such a patient, one out of three seizures

would be predicted correctly within 1 month, while about 70

false predictions have to be accepted. This would mean that

<2% of the predictions are correct, whereas more than 60% of

the seizures would occur unpredicted. Used as a pure warning

system, a prediction method of this quality would probably be

ignored after a short time. If used as an automatic therapeutic

device, most interventions would be obsolete and potentially

harmful to the patient.

Conclusions
An analysis of 88 seizures from 21 patients with pharmacor-

efractoral focal epilepsy showed that dimension drops

(Lehnertz and Elger, 1998; Lehnertz et al., 2001) are not

sensitive indicators of upcoming seizures. Basing speci®city

on long-term interictal EEG recordings, only one out of 88

seizures could be predicted successfully. An analysis of

dimension drops occurring within certain time windows

preceding seizures showed that dimension drops predict

seizures with a better performance than a random alert

system. Considering clinical applicability, however, sensitiv-

ity and speci®city of the method are not suf®cient. A gain in

speci®city can only be achieved at the expense of sensitivity

and vice versa.

Our analysis showed that dimension drops in the epileptic

focus in interictal data can be observed to an extent

comparable to preictal data. Lehnertz and Elger (1995)

reported that drops in the effective correlation dimension

method correctly lateralize the seizure onset zone based on an

analysis of even interictal data alone. That is, at times far

from seizure onset, dimension drops take place that typically

occur in the focal area. The duration and amplitude of these

interictal dimension drops have a wide overlap with preictal

drops if suf®ciently long interictal periods are considered.

The limited performance of the dimension drops with regard

to the preictal period may thus be related to the very fact that

dimension drops occurring during interictal periods are a

hallmark of the epileptogenic area, as has been shown by

Lehnertz and Elger (1995). Thus, the sensitivity of the

method to detect changes during interictal periods may pose a

fundamental limitation to its ability to predict seizures with

suf®cient speci®city.
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