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Abstract

We propose a method for the estimation of parameters of nonlinear delayed feedback systems from a time series. Being
based on the multiple shooting approach it is fairly robust against high levels of observation noise and yields precise parameter
estimates. We evaluate its performance using simulated data of the Mackey–Glass equation and present an application to
observed time series of an electronic circuit with time delay. 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Systems with time-delayed feedback are of practi-
cal importance in many different fields ranging from
physiology [1,2] to infectious disease models [3,4],
cell growth patterns [5] and ring cavity lasers [6–8].
A recent review can be found in [9].

Systems with discrete (as opposed to continuously
distributed) delays are in general modelled by delay-
differential equations (DDEs). In this Letter we con-
sider deterministic scalar DDEs of the form

(1)ẋ = f (x, xτ ), with x ∈ R, xτ (t) := x(t − τ ),
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where the structure of the right-hand side functionf

is known but depends on a set of unknown parameters.
The aim is to estimate these parameters from measured
data.

Various nonparametric methods estimate the time
derivativeẋ from the data and relate it tox andxτ .
The extremal points of the time series were exploited
in [10]. In [11] optimal transformations and the con-
cept of maximal correlation were used. Whilst useful
for the estimation of unknown model functions, both
methods neglect valuable information about the data,
namely that all data points stem from a single contin-
uous trajectory. As a consequence, these methods may
be prone to observational noise.

Here we describe a parametric approach, based on
maximum likelihood estimation, that can be used for
estimation of coefficients in known models. In this
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method an objective function, quantifying the residu-
als between the model trajectory and the data, is min-
imised. In this way observational noise is explicitly in-
cluded in the model and the entire information about
the deterministic nature of the underlying true trajec-
tory is taken into account. However, the cost function
usually contains many local minima in the parame-
ter space, apart from the global minimum. Sophisti-
cated strategies have been developed to prevent the
optimisation algorithm from stopping in a local mini-
mum [4].

For ordinary differential equations (ODEs) the so-
called multiple shooting approach [12] proved to be an
important tool to reduce the problem of local minima
[13,14]. The pivotal idea in this technique is the
formulation of continuity constraints at intermediate
points of the fitting interval. An extension of the
multiple shooting concept to DDEs requires the notion
of continuity to be used in an approximate sense since
the state of a DDE includes an infinite number of
degrees of freedom.

This Letter proposes such an extension in which
the approximation is done via cubic splines. In the fol-
lowing section the formalism of the multiple shooting
approach for ODEs is briefly reviewed and the new
method for DDEs is described. Its performance is eval-
uated with simulated data from the Mackey–Glass sys-
tem in Section 3. Finally the method is applied to mea-
sured data from an electronic circuit.

2. Methods

This section provides the methods for the estima-
tion of parameters in DDEs. Before describing the
specific DDE extensions, the methods for ODEs are
briefly outlined.

2.1. Parameter estimation in ordinary differential
equations

Consider a dynamical process described by a non-
linear ODE. To keep notation simple, we restrict our-
selves to scalar ODEs, though the method described
here was also applied to multivariate data [12–15].
The model trajectoryx(t, x0, �p ) depends on the ini-
tial valuex0 and thedynamical parameters�p through

the initial value problem

(2a)ẋ = f
(
t, x, �p )

, with x ∈ R, t ∈ [t0, tN ],
(2b)x(T0)= x0.

An experiment gives access to measurementsyi ∈ R

of the system state at discrete timesti , i.e.,

(3)yi = x
(
ti , x0, �p ) + ηi, i = 0, . . . ,N.

Here, ηi denotes independent normally distributed
random numbers with zero mean and varianceσ 2

i ,
accounting for measurement noise.

We aim at estimating the unknown initial valuex0
and the dynamical parameters�p from the time series
{yi}. A first approach to accomplish this without the
need to estimate derivatives from the data is theinitial
value approach. In this method, initial guesses for
x0 and �p are chosen. Then, the dynamical equation
is solved numerically, and the objective functional
χ2(x0, �p ) is calculated as the sum of squared residues
between the data and the model trajectory, weighted
with the inverse variances of the data:

(4)χ2(x0, �p ) =
N∑
i=0

1

σ 2
i

(
yi − x

(
ti , x0, �p ))2

.

The sought parameters are identified as those minimis-
ing χ2(x0, �p ). Under the given assumptions they are
the maximum likelihood estimates of the true parame-
ters. For the optimisation task, a generalised Gauss–
Newton algorithm [12,16] is used which effectively
uses a second order approximation toχ2 even though
only first derivatives have to be supplied.

Simulation studies have shown that for many types
of dynamics this approach is numerically unstable by
yielding a diverging trajectory or stopping in a local
minimum [15,17]. This problem can be circumvented
by the multiple shooting algorithm. The basic idea of
this technique is to consider the task as a multipoint
boundary value problem. The fitting interval[t0, tN ] is
partitioned intoM subintervals, i.e.,

(5)t0 = T0 < T1 < · · ·< TM = tN .

For each subinterval[Tj , Tj+1], local initial values
xj = x(Tj ) are introduced as additional parameters.
The dynamical equation is integrated piecewise and
the objective functionalχ2(x0, . . . , xM−1, �p ) is eval-
uated and minimised as in the initial value approach.
While the dynamical parameters�p are unique over
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the entire interval, the local initial values are opti-
mised separately in each subinterval. Starting guesses
for them are suitably chosen to match with the obser-
vations. This approach leads to an initially discontin-
uous trajectory, which is, however, close to the mea-
surements. The final trajectory must of course be con-
tinuous, i.e., the computed solution at the end of one
subinterval must finally equal the local initial values
of the next one:

(6)
x(Tj − 0)= x(Tj + 0)= xj , j = 1, . . . ,M − 1.

TheseM − 1 equations are taken into account as
equality constraints in the optimisation procedure.
They counterbalance the newly introduced degrees
of freedom which thus do not lead to over-fitting.
Since only their linearisations are imposed on the
update step in the iterative optimisation procedure, the
iteration is allowed to proceed to the final continuous
solution through “forbidden ground”: the iterates will
generally be discontinuous trajectories. This freedom
allows the method to stay close to the observed data,
prevents divergence of the numerical solution and
reduces the problem of local minima. More details of
the mathematical and implementational aspects of the
method are given in [12,17]. Some applications are
given in [13,14].

2.2. Extension to delay differential equations

In this subsection the multiple shooting approach
is generalised to DDEs. For simplicity only scalar
equations with a single time lagτ are considered here.
As in the case of ODEs, this method also works for
systems of DDEs. The uniqueness of the solution of a
DDE with time lagτ requires the specification of an
initial curveh0(t) within an interval of lengthτ . In this
way aninitial curve problemis posed, analogously to
Eqs. (2):

(7a)ẋ = f
(
t, x, xτ , �p )

, for t > T0,

(7b)x(t) = h0(t), for t ∈ [T0 − τ, T0].
We consider DDEs with an arbitrary continuous initial
function. As a consequence the state space is infinite-
dimensional. If the initial curve is unknown, the ques-
tion of identifiability arises. Only a finite number of
degrees of freedom can be assigned to fit variables.

Fig. 1. Schematic diagram of the multiple shooting intervals and
their spline and data segments. Bold lines: spline segments. Thin
lines: data segments. Open circles: spline knots.

If the multiple shooting technique is used, this prob-
lem is multiplied: each subintervalj has its own initial
curvehj of lengthτ , involving infinitely many degrees
of freedom. The purpose of the continuity constraints
is to ensure that the final trajectory is a solution of the
DDE, i.e., the initial curves of subsequent subintervals
must each be consistent with the trajectory on the pre-
ceding intervals. Therefore, the subintervals must have
an overlap of lengthτ or more with each other. Let
gj denote the rear segment of thej th subtrajectory
that overlaps with the(j + 1)st. Continuity would re-
quiregj andhj+1 to be exactly equal. This cannot be
achieved sincehj+1 must somehow be represented by
a finite numberns of parameters andgj will in gen-
eral not be a member of the corresponding family of
functions. In other words, whilegj is an arbitrary vec-
tor in a function space,hj+1 lies on anns -dimensional
submanifold of that function space.

Concerning the parameter estimation problem, an
additional pitfall for DDEs is described in [18]: a dis-
continuity of the trajectoryx at a timet is echoed as
a jump of its first derivative at the later timet + τ .
Furthermore, it propagates into the objective function
if the delay parameter is to be estimated.

For an efficient albeit practical implementation of
the parameter estimation problem we propose the fol-
lowing procedure. The initial curves are parameterised
via cubic splines[19]. The multiple shooting parti-
tioning Eq. (5) is still used, but thej th subinterval
(j = 1, . . . ,M − 1) is composed of aspline segment
[Tj−1, Tj ] and a data segment[Tj , Tj+1]. Fig. 1 shows
a schematic diagram of this setup. The configuration of
the multiple shooting partitioning is chosen such that
the spline segments are longer then the maximum ex-
pected time lagτ . In each spline segment a mesh of
spline knots{Tj−1 + k

K
(Tj − Tj−1), k = 0, . . . ,K} is

chosen. The spline knots do not necessarily coincide
with the data points. The spline functionhj is defined
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as the piecewise cubic, twice continuously differen-
tiable function that satisfies

(8)hj (Tj−1 + kd)= sjk, k = 0, . . . ,K,

(9)ḣj (Tj−1 + kd)= ṡjk, k = 0,K,

where�sj = (ṡj0, sj0, sj1, . . . , sjK, ṡjK ) are newly in-
troducedspline variables. The number of spline knots
(K + 1) is chosen such that the splines are a good ap-
proximation of the true trajectory.

The initial curve is the spline functionhj , restricted
to the interval[Tj − τ, Tj ], where τ is the actual
estimate of the delay parameter. Note that the end
of the initial curve is independent ofτ . In this way
it does not cross any data points whenτ is varied
and the jump of the trajectory’s first derivative at

Tj is not reflected in a discontinuity of∂χ
2

∂τ
. On the

other hand, the trajectory’s second derivative jumps

at Tj + τ , resulting in a discontinuous∂
2χ2

∂τ2 when
Tj + τ crosses a data point. Quasi-Newton methods
or other methods relying on second derivatives ofχ2

could be spoiled by these second order discontinuities,
while the Gauss–Newton method that requires only
first derivatives is robust against them.

The trajectory is computed in the data segment
by integrating Eq. (7b) using the code RETARD [20].
The sensitivities of the trajectory with respect to
the parameters, needed in the optimisation process,
are obtained by solving thevariational equations
along with Eq. (7b) [17,20]. The cost function is
computed by Eq. (4). Thenx(t) is projected onto the
spline manifold{hj+1} of the following subinterval by
simply reading out the function values and derivatives,
i.e.,

(10a)rjk = x(Tj + kd), k = 0, . . . ,K,

(10b)ṙjk = ẋ(Tj + kd), k = 0,K.

Now the continuity constraints read

�rj = (ṙj0, rj0, . . . , rjK , ṙjK)= �sj+1,

(11)j = 1, . . . ,M − 2.

As in the case of ODEs, the number of continuity con-
straints is equal to the number of variables newly in-
troduced in each subinterval. Therefore,K can be cho-
sen large enough to ensure a sufficiently accurate pa-
rameterisation of the initial functions, without causing
over-fitting problems.

When the starting guesses for the dynamical para-
meters are far from the true values, atwo-phase proce-
dure is used. During the first iterations of the optimi-
sation, the spline variables are held fixed because they
are expected to be estimated well from the data. Af-
ter the algorithm has converged for the first time, they
are released and fitted together with the other variables
until the final convergence is achieved.

This method will be used for estimating parameters
in simulated and measured time series in the following
two sections. A comprehensive description of the
details of the algorithm can be found in [17].

3. Application to simulated data

In this section, the algorithm for estimating para-
meters in DDEs is applied to the Mackey–Glass equa-
tion [1],

(12)ẋ = axτ

1+ xcτ
− bx.

3.1. Demonstration of the procedure

A time series of length 1000 was simulated using
Eq. (12) with the standard parametersa = 0.2,b = 0.1
andc = 10. The sampling interval was∆t = 1 and the
time lagτ was set to 29.2146, in order to demonstrate
that it is not required to be a multiple of the sampling
interval. The dynamics was initialised with a constant
initial curveh0(t) = 0.8. A transient period of length
10 000 at the beginning was skipped. White Gaussian
noise with standard deviationσ = 0.15 was added
to the data, corresponding to a noise level of 50%
of the standard deviation of the true trajectory. Then
the four parameters (and the spline variables) were
estimated using the method described above. The
starting guesses for the parametersa, b and c were
set to ten-times the true values. The dynamics is much
more sensitive toτ than to the other parameters. The
intrinsic oscillations of the time series translate into
fluctuations of the cost function with respect toτ .
Therefore, it is clear that the starting guess forτ

should not be too far away from the true value and
it was set to 60. The multiple shooting method was
applied with 16 subintervals. The spline knots were
placed at every third data point. The constants defined
above ared = 3,K = 20 andM = 16.



W. Horbelt et al. / Physics Letters A 299 (2002) 513–521 517

Fig. 2. Estimating the parameters of the Mackey–Glass equation from noisy time series. Points: simulated data. True parameters:a = 0.2,
b = 0.1, c = 10, τ = 29.2146, noise level: 50%, sampling interval:∆t = 1. Lines: model trajectories. At each time two trajectories are
overlapping. A: initial situation. Starting guesses of the parameters:a = 2, b = 1, c = 100, τ = 60. B: end of the first phase, in which the
spline variables were fixed, after 10 iterations. C: final solution after 6 additional iterations. Estimated parameters:a = 0.202, b = 0.0991,
c = 9.99,τ = 29.17. D: true trajectory (thin solid line) and final model trajectory (bold broken line).

Fig. 2A–C show three stages of the iterative opti-
misation procedure. The initial situation is plotted in
Fig. 2A. The trajectories of the individual multiple
shooting intervals are overlapping, so that at each in-
terior point, two trajectories can be seen. The spline
variables defining the cubic splines were initialised us-

ing the data. Then the DDE was integrated over each
data segment. In the first phase of the two-phase pro-
cedure, the spline variables were held fixed and the pa-
rameters were optimised. Panel B shows the situation
when the algorithm had converged after 10 iterations.
The true trajectory is already imitated well. At this
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point the estimates for the parameters area = 0.154,
b = 0.0748, c = 10.6 and τ = 28.2. In the second
phase the spline variables were freed and fitted to-
gether with the parameters. After six additional iter-
ations the algorithm converged finally (panel C). Now
the model trajectories are virtually continuous. That
means that the spline knots are dense enough to give
a reasonable representation of the rear segments of the
preceding trajectories. The final value of the objective
function is 1065, which is consistent with the number
of data points. The final estimates of the parameters
area = 0.202,b = 0.0991,c = 9.99 andτ = 29.17.
The fact thatτ is a delicate parameter is reflected in its
extraordinarily high accuracy: its relative error is only
0.15%.

In Fig. 2D the fit trajectory is compared with the
true trajectory. Both are identical to within the line
width over the entire interval, except for the beginning.
The reason for the small discrepancies in the first
oscillation is that some directions in the space of the
spline variables represent high-frequency portions that
decay rapidly due to the intrinsic low-pass property of
differential equations. Thus these spline variables are
delicate with respect to noise and their estimates have
large confidence intervals. This sign ofover-fitting
would render the result arguable if the construction of
the beginning of the model trajectory was a major aim.
Here, the principal interest is the accurate estimation
of the model parameters, and this aim is achieved by
means of the remaining part of the trajectory.

3.2. Systematic test with random starting guesses

In this section we evaluate the performance and
the reliability of the method in a simulation study.
One thousand time series of length 500 were gener-
ated with the parametersa0 = 0.2, b0 = 0.1, c0 = 10,

τ0 = 29.2146 and a noise level of 10%. For the simu-
lation, a constant initial curveh0(t)= x0 was used and
a transient period of length 10 000 was skipped as be-
fore, but nowx0 was a random number, uniformly dis-
tributed in [0,1]. Thereby not only the noisy time series
but also the true trajectory was different in each pass.
To each simulated time series the algorithm for esti-
mating the parameters was applied as demonstrated
above. The starting guesses for the parameters were
drawn randomly from the following probability densi-
ties:

(13a)ρa(a)= 1

a0
exp

(
− a

a0

)
, for a > 0,

(13b)ρb(b)= 1

b0
exp

(
− b

b0

)
, for b > 0,

(13c)ρc(c)= 1

c0 − 1
exp

(
− c − 1

c0 − 1

)
, for c > 1,

(13d)
ρτ (τ )= 0.1, for 25� τ < 35.

The exponential distributions ofa and b allowed
large deviations from the true values. The parame-
terc must be greater than one, otherwise the dynamics
would reduce to a fixed point. Therefore, the exponen-
tial distribution was shifted to satisfy this constraint.
The expectation values for these three distributions are
the respective true parameters. The starting guess for
τ was uniformly distributed in the interval[25,35].

The method succeeded in estimating the parame-
ters within 50 iterations in 997 of the 1000 trials. It
should be noted that a failed trial does not represent a
misleading result, but indicates that the procedure has
to be repeated with another portion of data or other
starting guesses. Table 1 (middle column) shows the
mean estimated parameters and their standard devia-
tion. All parameters were estimated with a relative ac-

Table 1
Mean estimated parameters and standard deviations for two different noise levels, calculated from all respective successful applications of the
method. The relative standard deviations are given in parentheses

Parameter True value Mean estimate± standard deviation (relative error)

10% noise 50% noise
997 of 1000 trials successful 852 of 1000 trials successful

a 0.2 0.2001± 0.002 (1%) 0.2009± 0.010 (5%)
b 0.1 0.1001± 0.001 (1%) 0.1004± 0.0054 (5%)
c 10 10.005± 0.07 (0.7%) 10.09± 0.52 (5%)
τ 29.2146 29.2146± 0.025 (0.09%) 29.22± 0.16 (0.5%)
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curacy better than 1%, exceptτ which was determined
with a ten-times better precision due to the high sensi-
tivity of the dynamics to changes inτ .

If the time lag had a large uncertainty in a realistic
setting, one would apply the method for several
different starting guesses. There is a rather large radius
of convergence around the true time lag. Therefore,
a rather small number of different delays need to be
tried, compared with methods that have to scan the
entire range of possible values [10,11]. Alternatively
one could obtain a good starting guess forτ by using
one of the simpler methods described in [10,11,21].

When the simulation study was repeated with the
initial value approach rather than multiple shooting,
it failed to converge for 945 trials and for only 15
trials the estimated parameters deviated from the true
ones by less than 10%. Finally the procedure was
repeated again with multiple shooting and with a noise
level of 50% (right column of Table 1). In this case
the procedure failed for 148 of 1000 realisations. The
relative standard errors of the estimateda, b andc are
5% and the standard error ofτ is 0.5%. As expected,
the errors are five times higher than the respective
values for 10% noise.

4. Application to experimental data

In this section the method is applied to a time
series from a chaotic electronic oscillator [22]. The
experimental setup is drawn in Fig. 3. A transistor and
an amplifier form a nonlinear response functionf .
The low-pass filtered outputx is fed into a delay
element and coupled back into the inputxτ . The
dynamical model reads

(14)ẋ = −αx + f (xτ ).

The nonlinear response functionf is parameterised by
the third order polynomial

(15)f (x)= a0 + a1x + a2x
2 + a3x

3.

For the analysis, we use a time series of length 100 ms
with a sampling interval of 0.1 ms.

The dynamical parameters are the time lagτ , the
damping factorα and the coefficientsai . The time se-
ries shows oscillations with a period of about 4 ms,
indicating a time lag in the millisecond range. There-
fore, the delay parameter was scanned from 1 to 20 ms

Fig. 3. Schematic diagram of the electronic circuit used in [22],
inspired by [23]. The nonlinearity is built up of the transistor T1,
the adjustable amplifier OA1 and the resistors R2–R7. Electronic
components: delay line: bucket brigade line MN 3011 with 3328
stages, triggered by MN 3101 (both National Panasonic); OA1: LM
324N; C= 660 pF; R1 = 470 k$, R2 = 100 k$ lin., R3 = 22 k$,
R4 = 4.7 k$, R5 = 10 k$, R6 = 1 k$, R7 = 47 k$; T1 BC 238C.

in steps of 1 ms. Each value was used as a starting
guessτ0 and the estimation procedure was carried out
as described earlier. The starting guesses for the other
parameters were set to zero. The length of the spline
segments was chosen 5 ms longer thanτ0 in order to
allow for some variation ofτ .

For τ0 = 12 and 13 ms the method converged
within 20 iterations to the valuesτ = 13.3 ms,α =
3.7 ms−1, a0 = 0.8864 V ms−1, a1 = −3.982 ms−1,
a2 = −15.26 V−1 ms−1 anda3 = −11.54 V−2 ms−1.
For other starting guesses no convergence was achiev-
ed or the final value of the objective function was
more than 100 times higher than for the successful
fits. Having found good estimates for the parameters,
the procedure was started again with the length of
the spline segment adjusted toτ and without the
multiple shooting technique, in order to ensure that
the finite representation of the initial curves does
not distort the result. The final estimates areτ =
13.2968±0.00089 ms,α = 3.689±0.015 ms−1, a0 =
0.8843±0.0046 V ms−1, a1 = −3.973±0.018 ms−1,
a2 = −15.209± 0.076 V−1 ms−1 anda3 = −11.49±
0.13 V−2 ms−1. The confidence limits were calculated
from the covariance matrix at the solution point. The
variance of the data points was estimated from the
residuals of the fit. These have a slightly skewed,
but otherwise bell-shaped distribution. To test for the
validity of the fit, we calculated the autocorrelation
function of the residuals, which should decay rapidly,
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Fig. 4. Comparison of best fit trajectory (solid line) and observed time series (points).

Fig. 5. Phase space reconstruction of the attractor of the system. A: from observed time series. B: from model trajectory.

and indeed, it vanishes already at a time lag of four
sampling steps.

The model trajectory is shown together with the
time series in Fig. 4. Hardly any difference can be seen
in the entire interval. In order to facilitate a compari-
son, the attractor of the system is reconstructed by a
delay embedding, both for the measured time series
and for the model trajectory (Fig. 5). The model at-
tractor resembles well the attractor reconstructed from
the data, except for some features that are visible in
the model, but hidden by noise in the data. Thus apart
from yielding the parameters, the modelling procedure
performs noise reduction.

5. Conclusion

An advanced method for estimating parameters in
delay differential equations is presented. The multiple
shooting approach, circumventing the problem of local
minima of the cost function, is extended to delay
differential equations. The problem of the matching
conditions necessary in this context is solved by using
cubic splines to parameterise the initial curves and by
formulating the continuity of the trajectory in terms of
these spline variables.

Using this procedure, parameters of the Mackey–
Glass system are estimated accurately for fairly high
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levels of observation noise and the underlying true
trajectory is reconstructed well. A simulation study
provides objective performance measures that can be
compared with other methods. The time lag can be
estimated with an accuracy of 0.5% from only 500
data points with 50% measurement noise. The method
has a relatively large radius of convergence and the
time lag is not required to be a multiple of the sampling
interval.

Finally, the application of the method to measured
data from an electronic circuit demonstrates that it is
well suited to yield accurate estimates of the parame-
ters of an experimental delayed-feedback system. The
obvious next step is to investigate to which extent the
robustness of the method and the precision of the es-
timates are pertained for multivariate systems and for
real world systems with large observation error. This
is subject of ongoing research.
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