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Abstract Single ion channel currents can be analysed by
hidden or aggregated Markov models. A classical result
from Fredkin et al. (Proceedings of the Berkeley con-
ference in honor of Jerzy Neyman and Jack Kiefer, vol I,
pp 269–289, 1985) states that the maximum number of
identifiable parameters is bounded by 2nonc, where no
and nc denote the number of open and closed states,
respectively. We show that this bound can be overcome
when the probabilities of the initial distribution are
known and the data consist of several sweeps.

Keywords Hidden Markov models Æ Aggregated
Markov models Æ Identifiability Æ Maximum likelihood
estimation Æ Sodium channel

Introduction

Ion channels are large proteins in the cell membrane
regulating the ion concentration in the cell. The proteins
can switch between different configurations called states,
some of which conduct ions, while others do not. From
the gating scheme, i.e. the number of closed and open
states and the allowed transitions between these states, it
is possible to gain insight into the functioning of the
channel.

With the development of the patch clamp technique it
has become possible to measure the current through
single ion channels. Owing to the aggregation of states
into closed and open conformations, the transitions
between the various states cannot be directly observed.
But information about these transitions can be accessed
from the dynamical features of the measured current.
Therefore, aggregated or hidden Markov models are
widely used to analyse single channel data (Fredkin and
Rice 1992; Chung et al. 1990). Generalisations of hidden
Markov models to cope with coloured noise and filtered
data have been developed (Venkataramanan and
coworkers 1998a, 1998b, 2000; Qin et al. 2000; Michalek
et al. 2000; Fredkin and Rice 2001).

The aggregation of states into closed and open con-
formations leads to the issues of model equivalence and
parameter identifiability. Kienker (1989) gave the nec-
essary and sufficient conditions for two gating schemes
to be equivalent. Ito et al. (1992) obtained similar results
in a more general context. In the seminal work of
Fredkin et al. (1985) it was proven that the number of
identifiable parameters cannot exceed 2nonc, where no
and nc denote the number of open and closed states,
respectively. When deriving this result, it was assumed
that the measurements are performed under stationary
conditions so that the initial distribution is not explicitly
incorporated into the model but follows directly from
the rate constants.

Often the data are measured in several sweeps under
the same, non-stationary conditions (Colquhoun et al.
1997), e.g. for voltage-gated channels where every sweep
starts with a depolarising voltage pulse (Horn and Lange
1983; Horn et al. 1984; Vandenberg and Horn 1984;
Vandenberg and Bezanilla 1991; Böhle and Benndorf
1995a, 1995b; Michalek et al. 1999). In this case the
initial distribution does not follow from the rate con-
stants but it can be estimated from the data.

The aim of this paper is to show that it is possible to
estimate the parameters of models with more than 2nonc
rate constants consistently if some elements of the initial
probability distribution are fixed to their true value and
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the data are measured in several sweeps. Thus, models
that otherwise are non-identifiable can be studied. In
general, the initial distribution is not known. But in the
context of single channel measurements the biological
knowledge that certain states are inaccessible at the start
of the measurements can be incorporated into a model.
In these cases our result applies. After an introduction to
the modelling of ion channels and a proof of our result
in the ‘‘Theory’’ section, we demonstrate it by a simu-
lation study in the section ‘‘Simulation study’’. In the
section ‘‘Application’’ the method is applied to mea-
sured data.

Single channel measurements and data analysis

Single channel data were recorded from human embry-
onic kidney cells (tsA201) transfected with a mutant
a-subunit of the adult human skeletal muscle Na+

channel (NaV1.4). Depolarising pulses were applied
from �120 to �20 mV for a duration of 40 ms. The data
were low-pass filtered at a frequency of 10 kHz with a
four-pole Bessel filter. Seven hundred and fifty sweeps
were recorded at a sampling rate of 50 kHz using an
Axopatch 200B amplifier and pClamp 8.02 data
acquisition. When no overlapping openings were
observed, we concluded that there was a single channel
in the patch (see also the section ‘‘Application’’ and
Horn 1991).

We fitted different gating schemes to the data. To cope
with the correlations in the data owing to the anti-ali-
asing filter the parameters were estimated by an
approximate likelihood estimator for autoregressive-
moving average (ARMA) filtered hiddenMarkov models
(see Michalek et al. 2000 for details). The standard errors
were estimated by the inverse of a numerical approxi-
mation to the Hessian matrix of the likelihood (subrou-
tine e04xaf of The Numerical Algorithms Group 1999).

Theory

Modelling of ion channels by hidden Markov models

Background process

Hidden Markov models consist of two stochastic pro-
cesses. When modelling ion channels the unobserved
switching between the different states is described by a
finite-state, continuous-time Markov chain Xt. The so-
called generator matrix Q determines the time evolution
of this Markov process

_Pi tð Þ ¼
X

j

Pj tð ÞQji;

where Pi(t) denotes the probability of being in state i at
time t. The rows of the generator matrix sum to zero and
if a transition from state i to state j is not allowed the

corresponding entry Qij of the generator matrix equals
zero. The transition probability matrix A for a time
interval Dt is related to the generator matrix Q by

A ¼ exp QDtð Þ:

Observation process

The measured current is described by the measurement
or observation process Yt. For a given realisation xt of
the Markov chain the measured current Yt is deter-
mined by a conditional distribution f(yt|xt). This dis-
tribution is the same for all closed and open states,
respectively.

In the case of aggregated Markov models the obser-
vation process Yt is taken to be discrete with outcomes
of open and closed. If the channel is in an open con-
figuration the measurement process Yt equals 1, with
probability 1 indicating that a current is flowing. If the
channel is in a closed state Yt=0 with probability 1.

Compared with aggregated Markov models, hidden
Markov models additionally take measurement noise
into account which is usually assumed to be white and
Gaussian. Thus, f(yt|xt) is a Gaussian density with mean
value and variance depending on whether xt is in an
open or a closed aggregate.

In the following we will not distinguish between
hidden and aggregated Markov models and generally
use the term hidden Markov model.

The likelihood L is calculated by

L ¼
Xm

x1;...;xN¼1
px1f y1 x1jð Þ

YN

t¼2
Axt�1xt f yt xtjð Þ;

where m denotes the number of states and N the number
of data points. The vector p describes the initial prob-
ability of being in one of the background states. If the
measurements are performed with several sweeps such
expressions have to be calculated for every sweep. The
complete likelihood results by summing up all these
terms. Efficient methods for calculating and optimising
the likelihood are described, for example, by Rabiner
(1989).

Fixing the initial distribution

In this section we sketch why it is possible to use
information known about the initial distribution to gain
information on the rate constants. A detailed mathe-
matical description is given in the ‘‘Appendix’’.

Our result is based mainly on the equivalence of
models worked out by Kienker (1989). In that paper it is
proven that two hidden Markov models (Q,p) and
(Q,p¢) are equivalent if and only if there exists a Matrix
S such that Q0 ¼ S�1QS and p0 ¼ pS. Two models are
called equivalent if they generate the same observable
distributions.
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Consider the case of a continuous-time hidden Mar-
kov model with generator matrix Q that has one
parameter too many to be identifiable. The generator
matrix Q and the initial distribution p are parameterised
by two vectors hQ and hp, respectively. The non-identi-
fiability of the generator matrix implies that for every
parameter vector of rate constants hQ there is another
parameter hQ

¢ such that the two generator matrices ob-
tained from hQ and hQ

¢ yield two equivalent hidden
Markov models. If the generator matrix has only one
parameter too many to be identifiable there exists a one-
dimensional curve in the space of the parameter hQ
along which all corresponding models are equivalent.
Such a curve is related to a family of similarity trans-
formations S as introduced earlier which also acts on the
initial distribution. Thus, there exists a corresponding
curve in the space of the parameter of the initial distri-
bution hp. Fixing one component of the initial distri-
bution constrains these two curves and the hidden
Markov model becomes identifiable.

Results

Simulation study

To illustrate our result numerically we examined the
three-state model sketched in Fig. 1. The rate constants
are given in Hertz and the sampling frequency was
chosen as 25 kHz. The model has more than 2nonc
parameters even if one rate constant is determined by the
principle of detailed balance. For gating schemes con-
taining loops detailed balance is preserved if the product
of the rate constants in a clockwise direction around the
loop equals the product of the rate constants counter-
clockwise (Colquhorn and Hawkes 1982).

It can be shown that the assumptions from the
‘‘Theory’’ section are fulfilled and the dimension of the
vector e is 1.

We simulated data sets consisting of 256, 512, 1024
and 2048 sweeps. The initial distribution for every sweep
was chosen as p=(0.8, 0.0, 0.2). The equilibrium dis-
tribution p of this model can be calculated from the Q

matrix by pQ=0. This yields p=(0.35354, 0.40404,
0.24242).

For the data set with 256 sweeps each sweep had a
length of 8,192 data points. For each of the 512 sweeps
we generated 4,096 data points. The 1,024 and 2,048
sweeps consisted of 2,048 and 1,024 data points,
respectively. Thus, every data set had a total number of
221 data points.

From these data we calculated the maximum likeli-
hood estimators of the parameters of the generator
matrix under the constraint that detailed balance is
fulfilled. The first component of the initial distribution
was also estimated from the data by maximising the
likelihood, the second component was set to zero and
the third component was determined by normalisation
to 1. Note that Eq. 2 from the theorem is not fulfilled if
the last component of the initial distribution is fixed (see
the ‘‘Discussion’’). The maximisation of the likelihood
was performed directly by a quasi-Newton method
(subroutine e04ucf of The Numerical Algorithms Group
1999).

From 500 replications we calculated the mean values
and estimated the standard deviation of the maximum
likelihood estimator of the rate constants. The results
are summarised in Table 1. As confidence intervals of
the mean values the estimated standard deviations di-
vided by

ffiffiffiffiffiffiffiffi
500
p

are given. Histograms of the estimated
rate constants for 256 and 2,048 sweeps are shown in
Fig. 2.

The standard deviation decreases when the number of
sweeps increases, although the total number of data
points remains constant. For the data set consisting of
2,048 sweeps all parameters are estimated without bias.
The second parameter is upwardly biased in the case of
256, 512 and 1,024 sweeps, whereas the third parameter
is underestimated. In the case of 256 and 512 sweeps the
first parameter shows a bias downwards. The magnitude
of all biases decreases as the number of sweeps increases.

In Fig. 3 we plot the 500 estimated values of the rate
constants Q12 and Q13 for 256 and 2,048 sweeps. The
estimates for the 2,048 sweeps are less scattered around
the true value than the values for the 256 sweeps.
Moreover, the distribution of the estimates in the lower
plot looks approximately Gaussian, while the other does
not.

In Fig. 4 we investigate the estimated condition
number of the Hessian matrix of the maximum likeli-
hood point. The condition number of the Hessian matrix
is a measure for the non-identifiability of the parameters
(Wagner et al. 1999). It decreases as the number of
sweeps increases. The plot with logarithmic axes shows
evidence that the decrease is inversely proportional to
the number of sweeps used.

Application

In this section we apply our method to real Na+-channel
data. The sodium channel is a protein that consists of
four domains (I–IV), each of which contains six trans-
membrane segments (S1–S6). The S4 segments contain

Fig. 1 The simulated model. We denote an open and a closed state
by O and C, respectively. The model obeys the law of detailed
balance. The rate constants are given in Hertz
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positively charged amino acids constituting the so-called
voltage sensors that can move when a voltage is applied.
The movement of the voltage sensors causes the channel
to open (Catterall 2000).

Single channel records show that during a maintained
depolarisation the wild-type sodium channel after some
brief initial openings eventually closes and remains
closed. A part of the protein located between domains
III and IV on the intracellular side of the membrane is
responsible for this so-called inactivation. It is believed

that there is a hydrophobic particle (IFM) blocking the
pore (West et al. 1992). This particle contains the amino
acid sequence isoleucine–phenylalanine–methionine,
which is commonly abbreviated by IFM.

A simple gating scheme for the wild-type sodium
channel derived from these considerations is sketched in
Fig. 5. It is believed that at the start of the depolarisa-
tion the channel is in the left-most state and all four
voltage sensors are in their resting position. The transi-
tion between two closed states corresponds to the

Table 1 Mean values and estimated standard deviations (SD) of the maximum likelihood estimators of the rate constants

True values 256 sweeps 512 sweeps 1,024 sweeps 2,048 sweeps

Mean SD Mean SD Mean SD Mean SD

Q12=400 388.5±5.1 113.5 393.2±4.5 100.0 396.0±4.1 90.6 403.8±3.7 83.8
Q21=350 376.4±7.2 161.0 369.0±6.0 133.7 362.8±4.6 103.4 353.7±3.2 71.5
Q23=75 66.8±1.7 37.2 68.9±1.4 30.2 71.3±1.0 22.0 73.8±0.7 15.3
Q32=125 125.8±3.8 86.9 123.7±3.2 71.2 123.8±2.4 54.1 125.9±1.8 39.7
Q13=300 303.2±1.8 39.3 302.3±1.4 31.8 299.9±1.0 23.2 300.9±0.8 18.2

The parameter Q31 is determined by the principle of detailed balance. The confidence intervals for the mean values are given by the SD

divided by
ffiffiffiffiffiffiffiffi
500
p
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Fig. 2 The histograms of the
estimated rate constants for 256
sweeps (top) and 2,048 sweeps
(bottom). The arrows mark the
true values
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movement of one of the voltage sensors. When all
voltage sensors have moved, the channel is open.
Transitions from both the closed and the open confor-
mations to the inactivated state are possible owing to the
hydrophobic particle (IFM) blocking the pore from in-
side the cell. Similar models have been found by Horn
and Vandenberg (1984) and Michalek et al. (1999).

Since the four closed states cannot be distinguished
from the magnitude of the current and are mainly
occupied at the beginning of the voltage pulse, it cannot
be expected that, in practice, all four states can be re-
solved from measurements. Most published models for
the sodium channel fitted to real data had fewer than
four closed states that are related to the movement of the
voltage sensor.

The mutant we used in this study contains two dif-
ferent amino acids in segments S4–S5 of III and IV than
the wild-type channel. We replaced isoleucine with cys-
teine in position 1160 and leucine with alanine in posi-
tion 1482. This mutation causes the channel not to
inactivate properly (Popa et al. 2002). One typical trace
of raw data is shown in Fig. 6. A preliminary analysis of
the amplitude histogram (not shown) shows that the
probability of an opening is approximately Popen�0.44.
If these openings were due to two independent, identical
channels a lower bound for the probability that both
channels open simultaneously can be estimated as 0.04.
This should be observable in the data and we concluded
that the patch contained only one channel.

Different physiologically plausible models with at
most 2nonc parameters have been fitted to the data. A
detailed discussion of the models and the model selec-
tion process will be presented elsewhere. The resulting
model was

C1 �

9119:5�452:2

154:0�7:5
O4 �

614:5�8:0

528:9�9:7
C2 �

17:6�4:4

182:3�29:3
C3:

The vector of the initial probability distribution was
estimated as follows:

p ¼ pc; poð Þ ¼ 0:709; 0:255; 0:0; 0:036ð Þ:

The high initial probability of state C1 suggests that
this state corresponds to the four closed states of the
wild-type sodium channel in Fig. 5. The inactivated state
of the wild-type channel transforms into the closed states
C2 and C3. If this was true, one would expect direct
transitions between states C1 and C2 corresponding to
the transition from the closed aggregate to the inacti-
vated state of the wild-type channel. Such a model is not
identifiable. But since in this case the channel should
occupy state C1 at the start of the pulse the initial
probabilities of states C2 and C3 can be constrained to
zero and the estimation of the generator matrix is pos-
sible. The results are summarised in Fig. 7.

The comparison of this result with the estimation of
the C–O–C–C model discussed earlier shows that the
estimated standard deviations are of the same order of

Fig. 5 A simple model for the wild-type channel. Closed, open and
inactivated states are denoted by C, O and I, respectively
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magnitude for both models. Also, the rate constants Q23

and Q32 are equal to the corresponding constants in the
C–O–C–C model. The other rate constants are of the
same order of magnitude as their respective counter-
parts.

We also fitted a model without the constraint of de-
tailed balance but omitted it here since a likelihood ratio
test does not reject the null hypothesis that the principle
of detailed balance is fulfilled. Again, the standard errors
of the parameter estimates are similar to the errors of the
C–O–C–C model, which indicates that the parameter is
identifiable.

Discussion

Parameter identifiability is a major issue when analysing
ion channel currents by hidden Markov models. For this
task Fredkin et al. (1985) gave an easily checkable upper
bound on the number of identifiable parameters and a
more refined one was given by Fredkin and Rice (1986).
Generally, the exact number of identifiable parameters is
not yet known and there are models with non-identifi-
able parameters where this bound is not achieved
(Wagner et al. 1999).

In this paper we show under which conditions it is
possible to estimate parameters of a hidden Markov
model even though the number of parameters exceeds
the bound 2nonc. To this end, biological knowledge
about the initial distribution of the channel has to be
available.

The estimation procedure is based on the fact that
equivalent models are related by a similarity transfor-
mation. For a parameter that is not identifiable there
exists a connected subset of the parameter space on

which the likelihood is constant. A family of similarity
transformations generates this subset. Constraining the
initial distribution also fixes this family of transforma-
tions if Eqs. 1 and 2 are fulfilled.

If in our simulation study we had fixed the last entry
of the initial distribution, the family of similarity
transformations would not have been fixed and Eq. 2
would not have been fulfilled. This can be seen directly if
one considers the form of the similarity transformations.
Since the model has only one open state, the sub-matrix
So of a valid similarity transformation also has only one
entry. Owing to row normalisation this entry has to be 1.
Thus, constraining the initial distribution of the open
state does not fix the family of similarity transforma-
tions.

The simulation study shows that the error bounds
of the parameter estimates become smaller as the
number of sweeps is increased (Table 1, Figs. 2, 3).
Furthermore, the parameter estimates are biased if the
number of sweeps does not suffice. When the data are
measured under non-stationary conditions, the tran-
sient decays exponentially and the channel reaches its
steady state, which contains no more information
about the initial distribution. Since the rate constants
are related to the initial distribution via a similarity
transformation, the accuracy of the parameter esti-
mates increases with the number of sweeps measured
even if the total number of data points remains the
same. This dependence is illustrated by Fig. 4, which
suggests that the condition number of the correlation
matrix is inversely proportional to the number of
sweeps measured.

Note that the information about the rate constants is
entirely due to the fact that the initial distribution is
known and not to the fact that the data are measured
under non-stationary conditions. The estimation also
works when the data are generated under stationary
conditions, but in this case it is not to be expected that
the initial distribution is known.

Our application indicates that it can be helpful to
incorporate biological knowledge into a model and to
constrain the initial distribution to fixed values. The
comparison of both fitted models presented in the
‘‘Simulation study’’ section shows that all respective rate
constants do not differ much, providing evidence that
the model in Fig. 7 fits the data well. Moreover, the
standard errors are moderate, which demonstrates that
the parameters are identifiable.

Thus, when single channel measurements are per-
formed in several sweeps it is possible to fit models to the
data that otherwise are not identifiable.

Fig. 7 The estimated rate constants when the initial probabilities of
C2 and C3 are constrained to zero. One of the missing rate
constants is estimated as Q24=483.5±10.7. The other parameter,
Q21=61.5±8.6, is determined by the principle of detailed balance
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Appendix: proof of the main theorem

Consider a continuous-time hidden Markov model
(Q,p) with nc closed and no open states. The states are
numbered such that states 1, ..., nc are the closed states
and nc+1, ..., nc+no=m are the open states. Let Q, the
generator matrix of the hidden Markov model, be par-
titioned into

Q ¼ Qcc Qco

Qoc Qoo

� �
:

The initial distribution is denoted by the row vector
p ¼ pc; poð Þ.

The generator matrix Q and the initial distribution p
are parameterised by vectors hQ and hp, respectively, and

h ¼ hQ; hp
� �

2 H � Rk
þ � 0; 1½ �n�1. Let the mapping

F : hQ ! Q hQ
� �

denote the parameterisation of the
generator matrix Q. We require F to be injective; thus,
the parameter vector hQ can be determined from the rate
constant. The parameter h p contains n�1 elements of
the initial distribution itself.

Now we give some technical conditions for the kind
of non-identifiability we investigate. Consider an arbi-
trary but fixed parameter h. We assume that there exists
a continuous family of similarity transformations as
introduced by Kienker (1989), S : e! S eð Þ 2 Rn�n;
e 2 U � RM . Here U is a neighbourhood around zero
that is sufficiently small. The similarity transformations
fulfil the following conditions:

1. S(0)=1.
2. S has the form

S ¼ Sc j0
0 jSo

� �
:

3. The rows of S sum to 1.
4. For all h¢ in a neighbourhood of h such that the

hidden Markov model [Q(hQ
¢ ), p(hp

¢ )] is equivalent to

[Q(hQ), p(hp)] there exists an �2U such that

Q h0Q
� �

¼ S�1 eð ÞQ hQ
� �

S eð Þ and p h0pð Þ ¼ p hpð ÞS eð Þ.

Conditions 1–3 ensure that the matrices
Q0 ¼ S�1 eð ÞQS eð Þ are equivalent to the matrix Q. The
corresponding initial distributions are given by p0 ¼ pS.
If the parameter point h is locally non-identifiable, there
exists a parameter h¢ in every neighbourhood of h such
that the hidden Markov model [Q(hQ

¢ ),p(hp
¢ )] is equiva-

lent to [Q(hQ),p(hp)]. Condition 4 ensures that all
equivalent parameters in a neighbourhood of h are
covered by the family of similarity transformations.

Loosely speaking, the hidden Markov model [Q(h),p(h)]
has at most M parameters too many to be identifiable.
This is, for example, the case when the dimension of the
parameter vector hQ is greater than 2nonc.

Now, consider the sub-model that results from fixing
M components of the vector hp. We investigate the
conditions under which such a sub-model is identifiable.
Let a ¼ ac; aoð Þ 2 RMc �RMo ¼ RM denote the vector of
the fixed values of the initial distribution. Without loss
of generality the initial distribution of the sub-model can
be written as p ¼ ac; ~pc; ao; ~poð Þ. With J eð Þ ¼ S eð Þ � 1
and a natural partitioning of J into Jc and Jo we are able
to state our main result.

Theorem 1 Let [Q(h),p(h)] be a parameterised hidden
Markov model with parameter vector h that fulfils con-
ditions 1–4. It holds for all e 2 U n 0f g that
Xn

i¼1
pcð Þi Jc eð Þ½ �ij 6¼ 0 ð1Þ

for all j=1, ..., Mc and

Xn

i¼1
poð Þi Jo eð Þ½ �ij 6¼ 0 ð2Þ

for all j=1, ..., Mo.
Then the parameter vector ~h ¼ h0Q; ~p

0
c; ~p
0
c

� �
of the

sub-model with p ¼ ac; ~pc; ao; ~poð Þ is identifiable.
Proof Assume that there exists a parameter

~h
0 ¼ h0Q; ~p

0
c; ~p
0
o

� �
for the sub-model that is equivalent to

the parameter ~h. Following condition 4, there exists an
�2U with Q0 ¼ Q h0Q

� �
¼ S�1Q hQ

� �
S. The correspond-

ing initial probability is given by p0 ¼ pcSc; poSoð Þ. But
this initial probability has to satisfy the constraint
p0 ¼ ac; ~p

0
c; ao; ~p

0
oð Þ. This can be rewritten as

Xn

i¼1
pcð Þi Jc eð Þ½ �ij ¼ 0

for all j=1,..., Mc and

Xn

i¼1
poð Þi Jo eð Þ½ �ij ¼ 0

for all j=1,..., Mo, which is a contradiction to the
assumptions. h
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