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Abstract

The bootstrap is a tool that allows for efficient evaluation of prediction perfor-

mance of statistical techniques without having to set aside data for validation. This

is especially important for high-dimensional data, e.g. arising from microarrays,

because there the number of observations is often limited. The statistical technique

to be evaluated has to be applied to every bootstrap sample in the same manner it

would be used on new data. This includes selection of complexity, e.g. the number

of boosting steps for gradient boosting algorithms. Using the latter, we demonstrate

in a simulation study that complexity selection in conventional bootstrap samples,

drawn with replacement, is biased in many scenarios. This results in models that

are much more complex compared to models selected in the original data. Potential

remedies for this complexity selection bias, such as alternatively using a fixed level

of complexity or of using sampling without replacement are investigated and it is

shown that the latter works well in many settings. We focus on high-dimensional

binary response data, with bootstrap .632+ estimates of the Brier score for perfor-

mance evaluation, and censored time-to-event data with .632+ prediction error curve

estimates. The latter, with the modified bootstrap procedure, is then applied to an

example with microarray data from patients with diffuse large B-cell lymphoma.

Keywords: Bootstrap; Complexity bias; High-dimensional data; Prediction perfor-

mance.

1 Introduction

When high-dimensional data, arising e.g. from techniques such as microarrays, is to

be used for improved judgement of prognosis for patients, statistical techniques have

to be employed that allow for building prediction models from such data. Prediction

performance of a statistical model fitted to one data set is often evaluated using a

separate validation set. Evaluating prediction performance on the training data would
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result in overoptimism. The problem however is that, especially for techniques such

as microarrays, where each single observation is potentially very expensive to obtain,

it is not advisable to reduce the size of the training data by setting aside data for

validation.

The bootstrap approach (Efron, 1983) provides an attractive alternative for evaluating

prediction performance, especially when employing the .632+ correction proposed by

Efron and Tibshirani (1997). Bootstrap samples are generated by drawing observations

from the original data and a predictive model is fitted in each of these samples. Predic-

tion performance is then evaluated using the observations not included in the respective

bootstrap samples. The general properties of the bootstrap for prediction error estima-

tion and how it compares to alternatives, such as cross-validation, have already been

examined for applications with high-dimensional data (Lusa et al., 2006; Molinaro et al.,

2005; Jiang and Simon, 2007) and in other bioinformatics contexts (Fu et al., 2005).

However, one limitation of the existing studies is, that they employ only very simple

approaches for building prediction models, where either no complexity parameter has to

be chosen or such parameters are set to fixed values. For example, Molinaro et al. (2005)

reduce the number of features to 20 (by univariate t-tests) before applying model fitting

techniques. As will be seen, this avoids a complexity selection bias that can occur in

bootstrap samples, but fails to provide guidance when selection of a model complexity

parameter is wanted.

One modern class of statistical techniques, that requires selection of a complexity pa-

rameter, are gradient boosting algorithms (Friedman, 2001; Bühlmann and Yu, 2003).

They can be used to estimate parameters in a high-dimensional setting, e.g. for gener-

alized linear, generalized additive, and survival models, by stepwise maximization of a

loss function. For deriving a final predictive model, the number of boosting steps to be

used has to be decided on. This is typically performed by automatic techniques, such as
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cross-validation. Therefore, to obtain realistic bootstrap estimates of prediction perfor-

mance, it is important to repeat this complexity selection step in every single bootstrap

sample. Otherwise the resulting estimates may be overoptimistic (Simon et al., 2003;

Dupuy and Simon, 2007; Zhu et al., 2008).

However, it is still unclear how well automatic complexity selection works in high-

dimensional bootstrap samples. The results of Steck and Jaakkola (2003) indicate that

in bootstrap samples drawn with replacement a larger level of complexity is selected

compared to the original data, when model selection criteria such as AIC or BIC are

used. This is contrary to what one would expect, as bootstrap samples contain less in-

formation compared to the original data. Intuitively this would correspond to selection

of a smaller level of model complexity. There is also a result that indicates a distortion

with respect to the distribution of p-values from univariate tests in bootstrap samples

drawn with replacement (Strobl et al., 2007). When considering calculation of univariate

p-values as a check for including covariates into a predictive model, this also corresponds

to a complexity selection bias in bootstrap samples.

For model selection criteria such as AIC or BIC, Steck and Jaakkola (2003) propose a

correction, that leads to approximately unbiased model selection in their application.

As an more general alternative, that applies for all kinds of automatic model selection

techniques, they suggest to use bootstrap samples drawn without replacement. This is

also what is used by Strobl et al. (2007) for bias correction. A further alternative would

be to employ parametric bootstrap techniques (see Liao and Chin, 2007, for example),

but we will not investigate this option in the present paper.

In the following we will systematically investigate the extent of the complexity selection

bias for predictive models fitted to high-dimensional bootstrap samples. Specifically, we

are interested in how this bias affects bootstrap-based prediction error estimates. In Sec-

tion 2, bootstrap techniques for prediction error estimation, specifically .632+ estimates,
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and error measures for binary response data and censored time-to-event settings will be

considered. Section 3 then presents a simulation study for evaluating a potential bias

with respect to error estimates for these two types of response. This includes a short

overview of gradient boosting techniques, which will be employed for fitting predictive

models. The resulting recommendations for avoiding bias in prediction error estimates

will then be illustrated with microarray survival data from patients with diffuse large

B-cell lymphoma in Section 4. Concluding remarks are given in Section 5.

2 Prediction error estimation

2.1 Bootstrap .632+ estimates

In the following we shortly review bootstrap .632+ prediction error estimates, closely

following the notation in Efron and Tibshirani (1997) and Gerds and Schumacher (2007).

The aim is to evaluate the prediction performance of a procedure fitted to given train-

ing sample observations x = {x1, . . . , xn}, which are a random sample, where a sin-

gle observation xi = (yi, zi) contains an observed response yi and a covariate vector

zi = (zi1, . . . , zip)
′. After fitting some statistical model a risk prediction rule rx(z) can

be derived, which predicts the response y from covariate information z.

Given some discrepancy function Q(y0, rx(z0)), which quantifies the error of the risk

prediction rule rx(z0) for a new observation x0 = (y0, z0), the quantity of interest is the

true error

Err = E[Q(y0, rx(z0))], (1)

where x and rx(z) are fixed and the expectation is taken over the distribution of the

random quantity x0 = (y0, z0).
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Using the apparent error

err =
1

n

n∑

i=1

Q(yi, rx(zi)) (2)

as an estimate for the true error (1) will typically result in overoptimism with respect

to estimated prediction performance, as the same data is used for fitting and error

estimation. A conservative approach is to evaluate the prediction performance on new

data. For this purpose often validation data is set aside, i.e., not all available data is

used for fitting. However, especially in high-dimensional settings, such as e.g. with

microarray data, there are often only relatively few observations available and every

observation set aside impairs the fit of the model.

There are basically two alternatives for more realistic prediction error estimates: cross-

validation and the bootstrap. Cross-validation partitions the data into folds and eval-

uates prediction performance on every single fold with models fitted to the data from

the remaining folds. In jacknife estimation every fold contains only one observation.

Therefore the bias, resulting from not having all observations for fitting, is minimal, but

the variability of the estimates is very large. Generally, large variability of the predic-

tion performance estimates is a downside of the cross-validation approach. Therefore we

focus on the bootstrap in the following.

The bootstrap for prediction error estimation (Efron, 1983) imitates drawing of a new

validation set from the population, by randomly drawing observations from the original

data, i.e., the empirical distribution. That way several bootstrap samples are generated.

In each of these samples the model under investigation is fitted, including selection of

potential complexity parameters. For assessing prediction performance, for every boot-

strap sample the mean value of the discrepancy function is evaluated for the observations

not in the respective bootstrap sample. This is also called bootstrap cross-validation or

out-of-bag estimation. With B bootstrap samples, and b0 being the number of observa-

tions i ∈ x0
b not in bootstrap sample b = 1, . . . , B, the bootstrap cross-validation estimate
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is

ÊrrB0 =
1

B

B∑

b=1

1

b0

∑

i∈x
0
b

Q(yi, rxb
(zi)), (3)

where rxb
(zi) is the risk prediction rule resulting from model fitting in bootstrap sample

b.

As will be seen, the way of drawing observations for bootstrap samples, with or with-

out replacement, and the number of “new” observations drawn, critically affects the

estimate (3). We consider two variants: bootstrap sampling of n observations with re-

placement, and drawing of 0.632n observations without replacement. The motivation for

the fraction 0.632 in the latter variant is, that in bootstrap sampling with replacement,

approximately 0.632n unique observations will enter into a bootstrap sample. Therefore

both variants are expected to result in bootstrap samples with a similar level of infor-

mation in terms of unique observations. Efron (1983) indicates that also half-sample

cross-validation, i.e., drawing n/2 observations without replacement, is closely related

to bootstrap sampling with replacement, but we did not find this in preliminary exper-

iments for our application.

The bootstrap cross-validation estimate (3) is known to be biased upwards. As a cor-

rection, Efron and Tibshirani (1997) propose the .632+ estimate, which is a weighted

linear combination of the apparent error (2) and the bootstrap cross-validation estimate

(3), i.e.,

Êrr.632+ = (1 − w)err + wÊrrB0. (4)

The weight w is obtained via w = 0.632/(1 − .368R̂) from the relative overfit

R̂ =
ÊrrB0 − err

̂NoInf − err
,

which is based on an estimate of the no-information error NoInf , which would apply
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if z and y were independent. This quantity is estimated by

̂NoInf =
1

n2

n∑

i=1

n∑

k=1

Q(yi, rx(zk)).

2.2 Measures of prediction error

For binary response data the response y takes only two values, 0 and 1, and risk prediction

rules can be obtained from fitted models via the predicted probabilities p̂(z) = P (y =

1|z), i.e., rx(z) = p̂(z). When some cutoff on the latter is used, to arrive at actual

class predictions, estimates of misclassification rate can be obtained. However, often

the predicted probability is more interesting than class assignment. An example, where

these two objectives lead to different results, is seen for boosting techniques, which seem

to be resistant to overfitting when only misclassification rates are considered, but at the

same time show strong signs of overfitting when the predicted probabilities are inspected

Bühlmann and Yu (2003). While misclassification rate will be rather stable as long as

the behavior near the classification boundary stays the same, some error measure that

focusses more on the predicted probabilities will also be sensible to changes far away from

that boundary. As we prefer the latter, the Brier score (Brier, 1950), with corresponding

discrepancy function

QBrier(y0, p̂(z0)) = (y0 − p̂(z0))
2, (5)

will be used for estimating prediction performance in the following.

When the response of interest is an event time, there often are censored observations, i.e.,

an observation xi = (ti, δi, zi) comprises not only of an observed time ti and a covariate

vector zi, but also of a censoring indicator δi. Given survival time Ti and censoring time

Ci (with ti = min(Ti, Ci)), the latter is defined by δi = I(Ti ≤ Ci), where I() is an

indicator function that takes value 1 if its argument is true, and 0 otherwise.
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Denoting by Yi(t) the state of individual i at time t, with value 1 if no event has occurred

yet, and 0 otherwise, Gerds and Schumacher (2007) suggest to employ a time dependent

discrepancy function

Q(t;Y0(t), rx(t; zi)) = (Y0(t) − rx(t; zi))
2

for bootstrap prediction error estimation. This means that the Brier score (5) is evalu-

ated at time t for a risk prediction rule rx(t; zi), that returns the predicted probability

of still being free of an event at time t, given the covariate information in zi.

Tracking the true error (1) for this discrepancy function over time results in prediction

error curves. For consistent estimates of the latter based on actual data, weights that

account for censoring have to be introduced (Graf et al., 1999; Gerds and Schumacher,

2006). For example, the apparent prediction error curve is obtained by

err(t) =
1

n

n∑

i=1

(Yi(t) − rx(t; zi))
2W (t, xi)

with inverse probability of censoring weights

W (t, Ĝ, xi) =
I(Ti ≤ t, Ti ≤ Ci)

Ĝ(Ti−)
+

I(Ti > t)

Ĝ(t)
,

where Ĝ(t) denotes a uniformly consistent estimate of the conditional probability of being

uncensored at time t, given the history. For simplicity, we assume in the following that

the censoring mechanism is independent of the survival and the history, and therefore,

like in Graf et al. (1999), the Kaplan-Meier estimate can be used for Ĝ(t).

Adapting the .632+ estimate (4) by tracking the estimated prediction error over time and

employing inverse probability of censoring weights, bootstrap .632+ prediction error curve

estimates are obtained. For more details see Gerds and Schumacher (2007); Schumacher
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et al. (2007).

3 Simulation study

3.1 Data structure

Two types of response, binary and censored time-to-event, are considered in the fol-

lowing. As we are mainly interested in a potential bootstrap complexity bias in high-

dimensional settings, a large, varying number of covariates p ∈ {200, 1000, 5000} is

considered, with a fixed number of n = 100 observations for binary response settings

and n = 200 for censored time-to-event settings.

For the structure of the covariates, an uncorrelated and a correlated scenario is used.

In the uncorrelated scenario, each covariate zij, i = 1, . . . , n, j = 1, . . . , p, is drawn from

a N(0, 1) normal distribution, i.e., there is zero covariance between covariates. The

correlated scenario, which is similar to the one employed in Bair and Tibshirani (2004),

mimics microarray data structure. For each covariate j an error term ǫij ∼ N(0, 1) is

generated and the covariate values are determined by

zij =





−1 + ǫij if i ≤ 0.5n, j ≤ 0.05p

1 + ǫij if i > 0.5n, j ≤ 0.05p

1.5 · I(ui1 < 0.4) + ǫij if 0.05p < j ≤ 0.1p

0.5 · I(ui2 < 0.7) + ǫij if 0.1p < j ≤ 0.2p

1.5 · I(ui3 < 0.3) + ǫij if 0.2p < j ≤ 0.3p

ǫij if j > 0.3p

,

where uij are uniform random variables on the interval [0; 1] and I() is an indicator

function that takes value 1 if its argument is true, and 0 otherwise. This results in

correlations of about 0.50 for j ≤ 0.05p, 0.35 for 0.05p < j ≤ 0.1p, 0.05 for 0.1p < j ≤
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0.2p, 0.32 for 0.2p < j ≤ 0.3p, and no correlation otherwise.

The linear predictor ηi is determined by

ηi = z′iβ i = 1, . . . , n,

where zi = (zi1, . . . , zip)
′ are the covariate vectors and β = (β1, . . . , βp)

′ is the true

parameter vector with

βj =





ce if j · 200/p ∈ {1, 3, 5, 7, 9}

−ce if j · 200/p ∈ {2, 4, 6, 8, 10}

0 otherwise

.

This corresponds to 10 informative covariates, where the constant ce determines the

amount of information in the data. We investigate three settings with “weak”, “medium”,

and “strong” effect. The ces are chosen such that prediction performance in uncorre-

lated scenarios and in scenarios with correlated covariates is approximately equal. For

the correlated covariate scenarios this corresponds to ce ∈ {0.075, 0.1, 0.15} for a binary

response and to ce ∈ {0.05, 0.075, 0.1} for censored time-to-event data. For scenarios

with uncorrelated covariates a “strong” information setting is difficult to obtain, as all

the information has to be contained in 10 covariates, while in a correlated setting a

whole group of correlated covariates can carry information. Therefore in the former we

investigate only “weak” and “medium” effects, corresponding to ce ∈ {1, 2} for binary

response data and ce ∈ {0.5, 1} for censored time-to-event settings.

For the binary response setting, responses yi, i = 1, . . . , n, are generate from Binomial

distributions y ∼ B(µi, 1), where µi = exp(z′iβ)/(1 + exp(z′iβ)). For time-to-event data,

survival times Ti are determined by a Cox-exponential model (see Bender et al., 2005,
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for example), i.e.,

Ti = −
Ui

λ exp(z′iβ)
, i = 1, . . . , n,

where Ui is generated from a uniform distribution over the interval [0; 1] and λ = 0.1,

corresponding to a mean baseline survival time of 10. Censoring times Ci are determined

by Ci = −UCi/λC , i = 1, . . . , n, where again UCi is generated from a uniform distribution

over the interval [0; 1] and λC = 0.1. The latter results in censoring for about 50% of

the observations. The observed times are then determined by ti = min(Ti, Ci) and the

censoring indicator is obtained by δi = I(Ti ≤ Ci).

For each response type and each combination of the number of covariates p, correlation

structure, and effect size, 50 data sets and corresponding tests sets of size nnew = 1000,

for determining true prediction performance, are generated.

3.2 Fitting procedure

For fitting in the binary response setting, the response yi is assumed to be from a

Binomial distribution yi ∼ B(p(zi), 1), where p(zi) follows the model

p(zi) = h(ηi) = h(F (zi;β))

with response function h(η) = exp(η)/(exp(η) + exp(−η)). The function F (z;β), which

has to be estimated, is taken to depend on a parameter vector β. For censored time-to-

event data we use a Cox proportional hazards model

λ(t|zi) = λ0(t) exp(F (zi;β))

with baseline hazard λ0(t), also requiring estimation of the function F (z;β), depending

on a parameter vector β.
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For parameter estimation we use a gradient boosting approach (Friedman, 2001; Bühlmann

and Yu, 2003). In general form, such algorithms estimate a function F (z;β) by mini-

mizing expected loss E[L(y, F (z;β))], where L(y, F (z;β)) is a loss function, that takes

fitted functions F (z; β̂) and responses y (or (t, δ), for censored time-to-event data) as its

arguments. This is performed in k = 1, . . . ,m, boosting steps by determining in each

step the negative gradient

−g
(k)
i = −

[
∂L(yi, F (z;β))

∂F (z;β)

]

F (z;β)=F (k−1)(z;β̂(k−1))

i = 1, . . . , n,

with respect to the current estimate F (k−1)(z; β̂(k−1)) at the observations, and using a

weak learner to obtain a fit f (k)(z; γ̂(k)) by estimating a parameter (vector) γ(k), i.e.,

the negative gradient is taken to be the response. The overall estimate is then updated

via

F (k)(z; β̂(k)) = F (k−1)(z; β̂(k−1)) + δf (k)(z; γ̂(k)),

where δ is some small value providing for cautious updates.

When for F (z;β) the simple linear form F (z;β) = z′β, with parameter vector β =

(β1, . . . , βp)
′, is used and in each boosting step k only one element of this parame-

ter vector is updated by choosing between per-covariate updates f
(k)
j (z; γ

(k)
j ) = γ

(k)
j zj ,

componentwise boosting is obtained. This results in sparse estimates, where only few el-

ements of an estimates parameter vector β̂ will have a value unequal to zero (Bühlmann,

2006). The resulting fits will be similar to those from path algorithms, which estimate

the parameter vector by penalizing the L1 norm (Park and Hastie, 2007).

We will use componentwise boosting in the following, more specifically the implemen-

tation in the R package “mboost”, described in Hothorn and Bühlmann (2006). For
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binary response settings the loss function employed is the deviance

L(y, F (z;β)) = −2(yi log(p(z)) + (1 − y) log(1 − p(z))),

i.e., minus two times the log-likelihood. For censored time-to-event settings the negative

Cox partial log-likelihood is used as a loss function (Ridgeway, 1999).

The essential parameter, that determines model complexity for gradient boosting ap-

proaches, is the number of boosting steps m. While in some special cases (e.g. in

continuous response settings) model selection criteria such as AIC or BIC are avail-

able for selecting this parameter, this is not the case for gradient boosting for the Cox

model. We therefore employ 5-fold cross-validation, with respect to misclassification rate

in binary response examples and with respect to the partial log-likelihood for censored

time-to-event data. This procedure is applied in each of the 50 original samples for each

setting. For prediction error estimation we use B = 100 bootstrap samples. As there are

two variants, sampling with and without replacement, this amounts to 2×50×100 boot-

strap samples for each setting, where gradient boosting together with cross-validation is

applied.

3.3 Results

3.3.1 Binary response setting

Table 1 shows the median number of boosting steps selected by 5-fold cross validation

for binary response models in various settings. The number of boosting steps selected

for scenarios without correlation is considerable larger compared to correlated scenarios.

The reason for this might be that in the former it takes many boosting steps to build

up adequate estimates of the large true parameter values, as there will always be some

boosting steps that accidentally target other covariates. In contrast, in a setting with
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Table 1: Median number of boosting steps selected by 5-fold cross-validation for bi-
nary response gradient boosting in 50 original samples and 50×100 bootstrap samples
drawn with replacement and without replacement for scenarios with a varying number of
covariates p, with (cor) and without correlation (uncor), and with varying effects sizes.

effect p original sample bootstrap w.repl. without replacement
uncor cor uncor cor uncor cor

weak 200 65.5 6 295 183 20 6
1000 17.5 9 184 172.5 4 6
5000 12 8 154 149 3 5

medium 200 135 16 362 222 38 12
1000 46 10.5 210 181 7 8
5000 9.5 12 159 167 3 9

strong 200 - 29 - 254 - 20
1000 - 21.5 - 215 - 19
5000 - 23.5 - 196 - 21

a large number covariates that are correlated with the covariates with non-zero true

parameter value, every boosting step that targets one of the former extracts at least

some information.

Comparing the number of boosting steps selected in bootstrap samples drawn with

replacement to that selected in the original data, a clear tendency towards a larger

number of boosting steps is seen. This bootstrap complexity bias is present regardless of

the number of covariates, the correlation structure, and the effect size. So the complexity

bias seen by Steck and Jaakkola (2003), when selecting the complexity of fitted graphs

by AIC or BIC, is also seen for linear predictor binary response models fitted by gradient

boosting, with complexity selected by cross-validation. Therefore the number of boosting

steps selected in bootstrap samples drawn with replacement is no good estimate for the

number of boosting steps selected in the original data. The number of boosting steps

selected by cross-validation in bootstrap samples drawn without replacement is seen to

be systematically smaller compared to the original data. So the former also is no good

estimate for the latter. However, this is not our objective.

A second quantity that indicates model complexity, besides the number of boosting
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Table 2: Median number of non-zero parameter estimates (par) resulting from 5-fold
cross-validation for binary response gradient boosting, mean hit rates (hit), and mean
false alarm rates (false) in 50 original samples and 50×100 bootstrap samples drawn
with replacement and without replacement for scenarios with a varying number p of
correlated covariates and varying effects sizes.

effect p original sample bootstrap w.repl. without replacement
par hit false par hit false par hit false

weak 200 4 0.216 0.019 32 0.287 0.147 3 0.135 0.022
1000 6.5 0.080 0.009 39 0.105 0.037 4 0.052 0.007
5000 6.5 0.024 0.002 41 0.026 0.008 4 0.012 0.001

medium 200 7 0.384 0.032 32 0.405 0.144 6 0.273 0.028
1000 7 0.132 0.010 39 0.147 0.037 5 0.086 0.007
5000 9.5 0.046 0.002 42 0.048 0.008 7 0.029 0.002

strong 200 11 0.510 0.041 31 0.504 0.132 9 0.406 0.033
1000 13 0.242 0.011 37 0.238 0.034 11 0.181 0.011
5000 17 0.098 0.003 40 0.090 0.008 14 0.067 0.003

steps, is the number of non-zero elements of the estimated parameter vectors, i.e., the

number of covariates deemed influential. The median number of such parameters is

given in Table 2 for the scenarios with correlated covariates, together with mean hit

rates and false alarm rates with respect to identification of influential covariates. Similar

to the selected number of boosting steps, the number of non-zero parameters fitted in

bootstrap samples drawn with replacement is much larger compared to the original

data. As expected, the median number of parameters selected in bootstrap samples

drawn without replacement is smaller compared to the original samples. Note also that

the number of non-zero parameters is similar for all levels of information, when using

bootstrap samples drawn with replacement. Only in the original samples and in samples

drawn without replacement the number of non-zero parameters seems adapts to the

amount of information in the data. This is a further aspect where automatic model

building behaves differently in bootstrap samples drawn with replacement.

The bias towards selecting more complex models in bootstrap samples drawn without

replacement is also seen from the mean hit rates in Table 2. In several instances this

16



0 1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

score statistic

de
ns

ity

Figure 1: Density of the univariate, per-covariate score statistic obtained from 50 rep-
etitions with a binary response and p = 1000 standardized, correlated covariates with
medium effect in the original data (solid curve), bootstrap samples drawn with replace-
ment (dashed curve), and bootstrap samples drawn without replacement (dash-dotted
curve). Median and 90% quantiles are indicated by thick and thin vertical lines respec-
tively.

quantity is larger in the bootstrap samples compared to the original data. As the former

contain less information, this obviously comes at the price of increased false alarm rates.

The latter are consistently larger, at least by a factor of 3, even when the hit rates are

similar to the original data. In contrast, in bootstrap samples drawn without replace-

ment the mean false alarm rates are smaller compared to the original data in almost

all scenarios, indicating more cautious model selection. Roughly extrapolating the false

alarm rates towards a situation where the hit rates would be similar to that from boot-

strap samples drawn with replacement, it seems that the overall covariate identification

performance might be better in bootstrap samples drawn without replacement compared

to sampling with replacement.

One potential source of the complexity bias, i.e., the bias with respect to the number
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of boosting steps as well as with respect to the number of covariates with non-zero

coefficients, is the change of correlation structure between the covariates and the response

due to bootstrap sampling. Figure 1 shows the density for the univariate, per-covariate

score statistic (which is closely related to the correlation between covariates and the

response) for the scenario with p = 1000 correlated covariates and a medium level of

information. While the density resulting from bootstrap sampling without replacement

(dash-dotted curve) almost coincides with the density obtained from the original data

(solid curve), the density for bootstrap samples drawn with replacement (dashed curve)

is distinctly different. It has considerably more mass in the tail, probably resulting from

artificial covariate-response relationships introduced by replicated observations.

We performed a small simulation study (not reported here) where covariates were gener-

ated to follow densities such as seen in Figure 1. There it could be seen that the density

of the score statistic determines the selected model complexity, even when there are no

replicated observations. So it seems that the larger mass in the tail directly results in a

larger number of boosting steps and in more complex models being selected. This also

means that the complexity bias can not (only) be due to the potential overlap of training

folds and test folds with respect to observations in cross-validation, which is induced by

bootstrap sampling with replacement.

The main target of the present study is a potential bootstrap bias with respect to

prediction error estimation. To investigate in which way such a potential bias depends

on the sampling and the complexity selection scheme, three variants of .632+ estimates

are considered. For estimates based on bootstrap samples drawn with replacement, the

number of boosting steps either is selected in each bootstrap sample separately, or the

same, fixed number of boosting steps is used, which is determined by cross-validation in

the original data. Our initial motivation for considering the latter complexity selection

scheme had been to quantify the overoptimism incurred by leaving out the model building
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step of complexity selection (Simon et al., 2003). However, preliminary experiments

indicated that reasonable prediction error estimates might nevertheless be obtained.

Therefore we include this variant as a competitor in its own right. For bootstrap samples

drawn without replacement the number of boosting steps, i.e. model complexity, is

determined in every single bootstrap sample by cross-validation.

With Êrr.632+ being the .632+ estimate of the Brier score, and Err being the true Brier

score, the relative bias is obtained via

RelBias =
Êrr.632+ − Err

Err
.

Table 3 shows the mean relative bias for various scenarios. For each of these the .632+

variant with the smallest mean relative bias is indicated by boldface printing. The largest

relative bias is seen for .632+ estimates based on bootstrap samples drawn with replace-

ment, with complexity selected in every bootstrap sample. The complexity selection

bias seen in Tables 1 and 2 seems to directly translate into a large bias with respect

to prediction error estimation. In contrast, the estimates based on bootstrap samples

drawn without replacement exhibit a much smaller, more reasonable bias, which only

in 3 scenarios is on average larger than 5% of the true error. So the smaller amount of

model complexity selected does not seem to be a disadvantage.

The small bias of the .632+ estimates obtained with a fixed number of boosting steps, in

bootstrap samples drawn with replacement, is surprising, as not all model building steps

are performed in every bootstrap sample. While for uncorrelated covariates the fixed

complexity estimates even seem to be on par with the estimates obtained from sampling

without replacement, the latter perform better in the correlated scenarios. As these are

more realistic, at least for microarray applications, the approach without replacement

should be preferred. On theoretical grounds it also has the advantage that it does not

omit model building steps.
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Table 3: Mean relative bias of .632+ estimates for the Brier score (with standard errors in
parentheses), for binary response models fitted by gradient boosting, based on bootstrap
samples drawn with replacement, with the number of boosting steps either selected in
every bootstrap sample (w. repl.) or taken to be the same as in the original data
(original step), and based on bootstrap samples drawn without replacement (w/o repl.),
for scenarios with a varying number of covariates p, with (cor) and without correlation
(uncor), and with varying effects sizes. The smallest mean bias in each scenario is printed
in boldface.

effect p w. repl. original step w/o repl.

uncorrelated covariates
weak 200 0.149 (0.023) 0.052 (0.019) 0.072 (0.019)

1000 0.050 (0.016) 0.002 (0.013) 0.001 (0.012)
5000 0.038 (0.010) -0.001 (0.009) -0.012 (0.010)

medium 200 0.176 (0.030) 0.104 (0.027) 0.150 (0.029)
1000 0.103 (0.019) 0.036 (0.016) 0.035 (0.015)
5000 0.090 (0.014) 0.033 (0.008) 0.025 (0.008)

correlated covariates
weak 200 0.058 (0.010) -0.006 (0.012) 0.008 (0.012)

1000 0.065 (0.013) -0.015 (0.011) -0.002 (0.012)
5000 0.062 (0.012) -0.005 (0.012) 0.003 (0.012)

medium 200 0.109 (0.021) -0.030 (0.016) -0.011 (0.017)
1000 0.119 (0.016) 0 (0.011) 0.012 (0.012)
5000 0.080 (0.019) -0.025 (0.016) -0.011 (0.016)

strong 200 0.099 (0.025) -0.031 (0.019) -0.017 (0.019)
1000 0.052 (0.023) -0.049 (0.016) -0.031 (0.017)
5000 -0.014 (0.032) -0.080 (0.026) -0.066 (0.026)
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Table 4: Median number of boosting steps selected by 5-fold cross-validation for Cox
model gradient boosting in 50 original samples and 50×100 bootstrap samples drawn
with replacement and without replacement for scenarios with a varying number of co-
variates p, with (cor) and without correlation (uncor), and with varying effects sizes.

effect p original sample bootstrap w.repl. without replacement
uncor cor uncor cor uncor cor

weak 200 431 34 986 481 216 28
1000 302 33.5 754.5 571.5 72 24
5000 108 36.5 611 496 22 22

medium 200 972.5 58.5 1893 510 715 48
1000 800.5 48.5 1203 589.5 354 42
5000 532 49 745 515 102 40

strong 200 - 74.5 - 550 - 66
1000 - 69.5 - 605 - 59
5000 - 63 - 521 - 57

3.3.2 Censored time-to-event setting

In this section we will investigate the performance of .632+ bootstrap prediction error

curve estimates in censored time-to-event settings. Table 4 shows the median number of

boosting steps selected in the various scenarios by 5-fold cross-validation. The results are

very similar to the binary response settings. In the uncorrelated scenarios a much larger

number of boosting steps seems to be required for similar prediction performance. Again,

using bootstrap samples drawn without replacement results in a number of boosting

steps that is considerably larger compared to the number of steps chosen in the original

data. Also, the number of boosting steps chosen in bootstrap samples drawn without

replacement is seen to be smaller compared to the latter. So, the bootstrap complexity

bias described by Steck and Jaakkola (2003) and seen for the binary response examples,

also seems to be present for high-dimensional Cox survival models.

Figure 2 shows the mean .632+ prediction error curve estimates for scenarios with

p = 1000 correlated covariates with a weak (left panel) or a medium effect (right panel).

In both scenarios the true prediction error (solid curve) is below the Kaplan-Meier bench-
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Figure 2: Mean .632+ prediction error curve estimates for Cox survival models fitted
by gradient boosting, based on bootstrap samples drawn with replacement, with the
number of boosting steps either selected in every bootstrap sample (dashed curves) or
taken to be the same as in the original samples (long dashed curves), and based on
bootstrap samples drawn without replacement (dash-dotted curves), for scenarios with
p = 1000 correlated covariates with small (left panel) and medium (right panels) effect
size. The mean true prediction error (solid black curves), apparent error (dashed grey
curves), and the Kaplan-Meier benchmark (solid grey curves) are given as a reference.
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mark (solid grey curve), i.e., at least some information can be extracted. The .632+

estimate based on bootstrap samples drawn with replacement in combination with a

fixed number of boosting steps, selected in the original data, as well as the estimate

based on bootstrap samples drawn without replacement closely track the true prediction

error. In contrast, the estimate based on bootstrap samples drawn with replacement

and a variable number of boosting steps considerably overestimate the prediction error.

For example, for the scenario with weak covariate effect (left panel) the latter estimate

would even wrongly suggest that gradient boosting performs worse than the Kaplan-

Meier benchmark. For the example with a medium covariate effect (right panel), the

bootstrap complexity bias results not only in a simple upwards shift, but in a distortion

of the shape of the true prediction error curve. So a simple correction afterwards, e.g.

by modifying the weights in (4), does not seem to be possible.

For a comparison beyond visual inspection of (mean) prediction error curve estimates,

we consider the integrated differences (up to time 10) between the true prediction er-

ror a .632+ estimate. The integrated difference is divided by the area under the true

prediction error curve to arrive at a measure of relative bias. A positive value of this

quantity indicates that on average the prediction error is overestimated. Table 5 shows

the mean relative bias for the three types of .632+ estimates under consideration in

various scenarios.

The .632+ estimate based on bootstrap samples drawn with replacement, in combination

with a variable number of boosting steps selected in every bootstrap samples, consistently

performs worst for prediction error curve estimation. Even the difference to the approach

showing the second to best performance is seen to be very large in most scenarios. While

in the binary response scenarios there did not seem to be a systematic effect of p on

the size of the (relative) bias, there is a clear pattern for the censored time-to-event

setting. The bias is larger for a larger number of covariates (regardless of whether these

23



Table 5: Mean relative bias of .632+ prediction error curve estimates (with standard
errors in parentheses), for Cox survival models fitted by gradient boosting, based on
bootstrap samples drawn with replacement, with the number of boosting steps either
selected in every bootstrap sample (w. repl.) or taken to be the same as in the original
data (original step), and based on bootstrap samples drawn without replacement (w/o
repl.), for scenarios with a varying number of covariates p, with and without correlation,
and with varying effects sizes. The smallest mean relative bias in each scenario is printed
in boldface.

effect p w. repl. original step w/o repl.

uncorrelated covariates
weak 200 0.062 (0.005) 0.033 (0.005) 0.007 (0.005)

1000 0.072 (0.008) 0.048 (0.007) 0.006 (0.008)
5000 0.065 (0.007) 0.053 (0.006) 0.021 (0.006)

medium 200 0.094 (0.009) 0.050 (0.008) 0.011 (0.007)
1000 0.119 (0.008) 0.087 (0.007) 0.007 (0.007)
5000 0.115 (0.009) 0.103 (0.007) 0.004 (0.007)

correlated covariates
weak 200 0.038 (0.006) 0.004 (0.005) -0.003 (0.005)

1000 0.051 (0.007) -0.004 (0.006) -0.011 (0.006)
5000 0.074 (0.006) -0.006 (0.006) -0.014 (0.007)

medium 200 0.045 (0.007) 0.002 (0.006) -0.009 (0.006)
1000 0.089 (0.007) -0.005 (0.006) -0.015 (0.006)
5000 0.112 (0.008) -0.018 (0.007) -0.029 (0.007)

strong 200 0.049 (0.007) -0.004 (0.007) -0.014 (0.007)
1000 0.098 (0.008) -0.014 (0.007) -0.025 (0.006)
5000 0.124 (0.009) -0.027 (0.007) -0.038 (0.007)
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are correlated or uncorrelated). Therefore prediction error curve estimation in high-

dimensional settings seems to be particularly affected. The bias also is seen to be larger

when there is more information in the data.

Comparing the estimates based on fixed complexity to estimates based bootstrap samples

drawn without replacement, the situation is also different to the binary response setting.

While there the former approach was sometimes found to be superior, in the survival

setting both approaches are very close. The differences seem to depend on the specific

kind of scenario. The .632+ estimates based on sampling without replacement display a

tendency towards underestimating the prediction error, albeit only by a small amount,

while the fixed complexity estimates tend to overestimate. Generally, both approaches

seem to result in reasonable estimates of the true prediction error curve.

4 Application

In the following we are going to illustrate the three types of .632+ prediction error

curve estimates, using microarray survival data from 240 patients with diffuse large B-

cell lymphoma (DLBCL) (Rosenwald et al., 2002), where 7399 microarray features are

available. The event of interest, death, occurred for 57% of the patients during follow

up, where median follow up was 2.8 years. For an overview of analyses targeting this

data set see Segal (2006).

While the simulation study focussed on gradient boosting for model fitting, the reported

complexity selection bias can also be seen when other model fitting procedures are ap-

plied to high-dimensional data. Therefore, in addition to gradient boosting, Cox survival

models are fitted by the CoxPath procedure (Park and Hastie, 2007) and the PC-PCR

approach (Li and Gui, 2004). For preprocessing of the data and details of the procedures

in this specific application see Schumacher et al. (2007). We also have a limited set of
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simulation results for the latter two procedures, but do not report these here.

The number of boosting steps selected in the original data by 5-fold cross-validation for

gradient boosting is 93. The median number selected in bootstrap samples drawn with

replacement is 625.5, without replacement it is 58.5. This is consistent with the com-

plexity bias seen in the simulation study. For the CoxPath procedure model complexity

is described by the degrees of freedom of a fitted model. Using 5-fold cross-validation, a

model with 54 degrees of freedom is obtained from the original data. The median of the

degrees of freedom in bootstrap samples drawn with replacement is 66, without replace-

ment it is 12.5. This indicates that also for the CoxPath procedure, bootstrap sampling

with replacement results in more complex models, while in samples drawn without re-

placement less complex models are chosen, compared to the original data. Similarly,

for the PC-PCR approach, which has the number of partial model components as its

complexity parameter, 3 components are chosen in the original data, while the median

is 4 components using bootstrap with replacement, and 3 without replacement. For

the latter approach a p-value criterion (as suggested by Li and Gui, 2004), instead of

cross-validation, is used for complexity selection. As nevertheless a complexity selection

bias occurs, this indicates that this bias is not tied to a specific complexity selection

procedure. While Steck and Jaakkola (2003) report a bias for complexity selection cri-

teria such as AIC or BIC, in the simulation study we found it to be also present when

employing cross-validation, and in the present example data it is now also seen to be

present when using a p-value criterion. This is no surprise, as the change in dependency

structure introduced by bootstrap sampling with replacement, seen e.g. from Figure 1,

is expected to affect all kinds of complexity selection procedures.

Given that the complexity selection bias is seen in the present example for all three

model fitting procedures, effects similar to the simulation study are also expected with

respect to estimates of prediction error. Figure 3 shows the .632+ prediction error curve
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Figure 3: .632+ prediction error curve estimates for Cox survival models fitted to large
B-cell lymphoma microarray survival data by gradient boosting (left panel), the Cox-
Path procedure (middle panel), and the PC-PCR approach (right panel), based on boot-
strap samples drawn with replacement, with model complexity either selected in every
single bootstrap sample (dashed curves) or taken to be the same as in the original
data (long dashed curves), and based on bootstrap samples drawn without replacement
(dash-dotted curves). The apparent error (dashed grey curves) and the Kaplan-Meier
benchmark (solid grey curves) are given as a reference.
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estimates for all model fitting approaches, based on bootstrap with replacement, us-

ing variable (dashed curves) or fixed complexity (long dashed curves), and based on

bootstrap samples drawn without replacement (dash-dotted curves). For all three pro-

cedures the estimates based on bootstrap samples drawn without replacement are below

the estimates based on bootstrap samples drawn with replacement. Based on the simu-

lation results in Section 3.3.2, the former are believed to be more accurate. For gradient

boosting the effect of the complexity selection bias seems to be especially large and

problematic. The estimate based on bootstrap sampling with replacement would indi-

cate that the model performs worse than the Kaplan-Meier benchmark, which does not

use any covariate information. In contrast, the estimate based on bootstrap samples

drawn without replacement probably correctly indicates that gradient boosting man-

ages to extract information from the data. The estimates based on a fixed level of model

complexity in bootstrap samples are close to the estimates based on bootstrap samples

drawn without replacement. This also is in line with the results of the simulation study,

where both estimates closely tracked the true prediction error.

5 Concluding remarks

Up to now a potential model complexity selection bias in (high-dimensional) bootstrap

samples hardly seems to have been investigated and only scarcely appears in the lit-

erature. In the present study, we systematically investigated this bias, using gradient

boosting techniques for model fitting. It was demonstrated that in bootstrap samples

drawn with replacement in many instances models are selected that have much larger

complexity compared to models selected in the original data. While it is already known

that such an effect occurs when model complexity is selected by criteria such as AIC or

BIC, we consistently found it here also when employing cross-validation.
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In the present setting the goal was not to estimate model complexity per se, but to get

good estimates of prediction error, based on the bootstrap .632+ technique. For the

Brier score in binary response settings and prediction error curves in a censored time-to-

event setting, the complexity selection bias was shown to result in a severe bias for .632+

estimates. As an alternative we investigated bootstrap sampling without replacement.

This avoids replicated observations, which seem to be a source of the complexity bias,

probably due to the change in dependency structure they induce. The proposed sampling

scheme, where 0.632n observations are drawn without replacement, was seen to result

in improved, reasonable estimates of the true Brier score and of prediction error curves

in high-dimensional settings.

Bootstrap sampling without replacement is closely related to cross-validation, where the

data is repeatedly split into k folds, and models are fitted using the observations from

k − 1 folds and evaluated on the remaining fold. However, while for cross-validation

typical values for k are 5, 10, or n (corresponding to the jackknife), the approach pro-

posed in the present paper roughly corresponds to k = 3. The choice of using samples

with 0.632n observations was made such that these samples contain approximately the

same number of unique observations, and therefore the same amount of information,

as bootstrap samples drawn with replacement. This close correspondence was sought,

because we still wanted to apply the .632+ correction, which was developed for sampling

with replacement. While it was seen that this indeed resulted in good estimates of the

true prediction error, for cross-validation with arbitrary values of k it is unclear how to

correct for a potential bias of the resulting estimates.

We are aware that the theoretical basis for using the .632+ correction together with

bootstrap samples of size 0.632n, drawn without replacement, is weak. However, for the

theoretically more sound samples of size n/2, which Efron (1983) suggests to be similar

to the bootstrap with replacement, a larger bias was seen in preliminary experiments. So,

29



our main justification for the proposed approach is its good performance in the simulation

study. Naturally, this implies that the performance for scenarios not addressed in the

simulation design is unclear. This is e.g. the case for scenarios where the number of

covariates is smaller than the number of observations.

Improved estimates could also be obtained, when model complexity was not selected

in every single bootstrap sample, but a fixed level of complexity, selected in the orig-

inal data, was used. This is very surprising, as one essential step of model building

is omitted in the bootstrap samples. While it would be expected that this results in

underestimation of prediction error (Simon et al., 2003), this was not seen to be the

case here. One explanation might be, that not the actual list of selected covariates was

transferred from the original data to the bootstrap samples, but only the level of com-

plexity, therefore only correcting for the complexity bias, without passing on too much

information. This approach is tempting, as it is computationally much less demanding

compared to approaches where complexity selection has to performed in every single

bootstrap sample. Nevertheless, we recommend using the approach based on bootstrap

sampling without replacement, as it does not omit model building steps and therefore

has a better theoretical foundation.

While we also investigated .632+ estimates of misclassification rate and of the area un-

der the ROC curve, we did not report results on these. There, effects of the complexity

selection bias could also be seen, but due to the coarseness of these error measures, cor-

rection by a modified bootstrap sampling scheme did not work as well as for estimates of

the Brier score. In the present study we also did not explore how large the number of co-

variates has to be for the model complexity bias to appear, as we were mainly interested

in high-dimensional settings, that arise e.g. in the analysis of microarray data. Further-

more, we restricted attention to models with linear predictors. The complexity selection

bias may for example also be a problem for additive models which are estimated via
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splines with a large number of basis functions. This requires further investigation.

Finally, it was demonstrated with in an application example microarray survival data,

how .632+ prediction error curve estimates, based on bootstrap samples drawn without

replacement, can also be used for judging the performance of procedures other than

gradient boosting. There the complexity selection bias was also seen for the CoxPath and

the PC-PCR procedure when sampling with replacement was employed. The similarity

to the results from the simulation study leads us to expect, that also for the latter

(and even more) procedures .632+ prediction error curve estimates based on sampling

without replacement will be reasonable. Therefore they may present a useful addition

to the statistician’s toolbox.
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Hothorn, T. and Bühlmann, P. (2006). Model-based boosting in high dimensions. Bioin-

formatics, 22(22):2828–2829.

32



Jiang, W. and Simon, R. (2007). A comparison of bootstrap methods and an adjusted

bootstrap approach for estimating the prediction error in microarray classification.

Statistics in Medicine, 26(29):5320–5334.

Li, H. and Gui, J. (2004). Partial Cox regression analysis for high-dimensional microarray

gene expression data. Bioinformatics, 21 (Suppl. 1):i208–i215.

Liao, J. G. and Chin, K.-V. (2007). Logistic regression for disease classification using

microarray dara: Model selection in a large p and small n case. Bioinformatics,

23(15):1945–1951.

Lusa, L., McShane, L., Radmacher, M. D., Shih, J. H., Wright, G. W., and Simon, R.

(2006). Appropriateness of some resampling-based inference procedures for assess-

ing performance of prognostic classifiers derived from microarray data. Statistics in

Medicine, 26(5):1102–1113.

Molinaro, A. M., Simon, R., and Pfeiffer, R. M. (2005). Prediction error estimation: A

comparison of resampling methods. Bioinformatics, 21(15):3301–3307.

Park, M. Y. and Hastie, T. (2007). L1-regularization path algorithms for generalized

linear models. Journal of the Royal Statistical Society B, 69(4):659–677.

Ridgeway, G. (1999). The state of boosting. Computing Science and Statistics, 31:172–

181.

Rosenwald, A., Wright, G., Chan, W. C., Connors, J. M., Campo, E., Fisher, R. I.,

Gascoyna, R. D., Muller-Hermelink, H. K., Smeland, E. B., and Staudt, L. M. (2002).

The use of molecular profiling to predict survival after chemotherapy for diffuse large-

B-cell lymphoma. The New England Journal of Medicine, 346(25):1937–1946.

Schumacher, M., Binder, H., and Gerds, T. A. (2007). Assessment of survival prediction

models based on microarray data. Bioinformatics, 23(14):1768–1774.

33



Segal, M. (2006). Microarray gene expression data with linked survival phenotypes:

Diffuse large-B-cell lymphoma revisited. Biostatistics, 7(2):268–285.

Simon, R., Radmacher, M. D., Dobbin, K., and McShane, L. M. (2003). Pitfalls in the

use of DNA microarray data for diagnostic and prognostic classification. Journal of

the National Cancer Institute, 95(1):14–18.

Steck, H. and Jaakkola, T. (2003). Bias-corrected bootstrap and model uncertainty. In

Advances in Neural Information Processing Systems 16.

Strobl, C., Boulesteix, A.-L., Zeileis, A., and Hothorn, T. (2007). Bias in random forest

variable importance measures: Illustrations, sources and a solution. BMC Bioinfor-

matics, 8(25).

Zhu, J. X., McLachlan, G. J., Ben-Tovim Jones, L., and Wood, I. A. (2008). On selection

biases with prediction rules formed from gene expression data. Journal of Statistical

Planning and Inference, 138(2):374–368.

34


