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Universitätsklinikum Freiburg

Stefan-Meier-Straße 26

D–79104 Freiburg im Breisgau

christine.gall@fdm.uni-freiburg.de

angelika.caputo@novartis.com

ms@imbi.uni-freiburg.de



Abstract

One of the main objectives in clinical epidemiology is to detect a relation between treat-

ment and outcome. We address data where treatment is applied repeatedly in time and

the dose given at a specific time-point may be modified due to actual measurements on

disease parameters. If such measurements are subsequently affected by the treatment,

they might act as time-dependent confounders. Standard statistical methods cannot ade-

quately address such confounders, but Marginal Structural Models (MSMs) proposed by

Robins cope with them. However, these models are still controversely discussed because

they are defined within the counterfactual framework.

We illustrate Robins’ approach as an extension of a common approach developed for

the handling of missing outcomes which does not explicitely use counterfactuals. We

address two questions on breast cancer chemotherapy schemes given in repeated cycles.

First, we examine the therapy effect and compare two different chemotherapy schemes

by the outcome after the fully applied chemotherapy regimen. We account for confound-

ing due to early stopping by Inverse-Probability-of-Censoring-Weighting. Secondly, we

investigate the dose effect of one chemotherapy, i.e. the influence of the number of given

cycles on the outcome which is modeled by a MSM. Now, the effect is defined by coun-

terfactual variables and time-dependent confounders are accounted for by estimating the

parameters of the MSM via Inverse-Probability-of-Treatment-Weighting. We illustrate

the concepts of MSMs by showing parallels to the first analysis and pointing out the

differences.

Keywords: Causal Inference, Counterfactuals, Intermediate Variables, Inverse-Probability-

Weighting, Marginal Structural Model, Time-dependent Confounding
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1 Introduction

In observational studies on the effect of time-varying treatments, the administered dose

is often based on actual measurements of disease parameters. Also, treatment might be

discontinued due to side effects. Then, estimating the therapy or dose effect is compli-

cated due to time-dependent confounders. Such confounders affect the outcome and are

simultaneously associated with the treatment in a time-dependent way: subsequent ap-

plication of the treatment is influenced by the confounder which itself may be influenced

by previous applications. Marginal Structural Models (MSMs) proposed by Robins [1, 2]

cope with this problem. They are defined within the counterfactual framework which

is controversially discussed because it explicitely makes assumptions whose validity is

untestable. For some statisticians this is unacceptable [3]. Others [4] appreciate that

this makes aware of the limitations of empirical research on causal effects and offers the

opportunity to modify experimental design or evaluation techniques towards plausible

assumptions. In the field of missing data, including the method of Inverse-Probability-

of-Censoring-Weighting (IPCW) [5, 6, 7], one also deals with untestable assumptions

about the reasons for missingness, but the necessity is largely accepted.

To provide insight into Robins’ approach, we compare it to this missing data approach.

We consider two treatment arms where treatment is applied in various cycles. First,

we compare both arms with respect to the fully applied treatment, i.e. by the outcome

after the application of all planned cycles. We refer to the difference in outcome as the

therapy effect. Here, we consider the outcome as missing, if another number of cycles

were applied. Secondly, we address the effect of a treatment regime comprising a fixed

number n of application cycles. Here, the difference to the outcome after the application

of n−1 cycles is regarded as the dose effect. The MSM is a parametric model to evaluate

these differences for all possible numbers n.
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Both analyses use a reweighting scheme to account for time-dependent confounding

which requires similar untestable assumptions on the confounding mechanism. We illus-

trate the concepts of MSMs by showing parallels of the estimation steps and emphasizing

the differences.

For illustration, we use data from a randomised clinical trial in breast cancer on pre-

operatively applied chemotherapy schemes which are given in repeated cycles. Clinical

parameters such as palpation result measured before each cycle and side effects may lead

to stop chemotherapy prior to the last planned cycle.

2 Data example

The GEPARDUO study [8] is a randomised controlled clinical trial run by the German

Breast Group to compare two chemotherapy schemes which are applied preoperatively.

There is a short and a long treatment arm which involve the application of a chemother-

apy scheme of four and eight cycles, respectively.

The primary endpoint is pathological complete remission (pCR) in the breast and axillary

nodes. It was measured by the resected breast specimen and axillary lymph nodes at

subsequent surgery. Reasons for early stopping were partly foreseen in the study design

and consisted amongst others of toxicity and progress of disease diagnosed by palpation

carried out before each cycle. If chemotherapy was discontinued, immediate surgery was

performed. Therefore, response assessment was possible for every patient which allows

to investigate the effect of a certain number of cycles within one treatment arm. As we

focus on the binary outcome complete remission, we do not consider, that after early

stopping, the endpoint was observed prior to the end of study.

To maintain the beneficial effects of randomisation, the therapy effect was analysed in

[8] by the Intention-To-Treat (ITT) principle. This means, patients are analysed as be-
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longing to their randomised arm, regardless of whether they discontinued chemotherapy.

This analysis is typically conservative, i.e. it tends to underestimate the effect. Now, by

the first approach, we aim to reduce the possible bias introduced by ignoring early stop-

ping. Per treatment arm, we estimate the outcome after all planned cycles adjusted for

early stopping and then compare both treatment arms. The second approach addresses

a different problem. We only consider one treatment arm and regard the dose effect by

comparing the outcome after differential numbers of cycles.

3 Characteristics of time-dependent confounders

In our setting, a time-dependent confounder is a prognostic factor for tumor status

which is characterised as a possible reason to stop treatment and furthermore as being

affected by previously given cycles. One of the possible time-dependent confounders in

our data set is increased leucocytes measured in WHO toxicity grades 1 to 4. Part of the

confounding situation is shown in Figure 1. Application of treatment cycle n is given

by the status variable ∆n. If cycle n is given, ∆n equals 1, otherwise it is set to 0.

The covariates measured just before cycle n are denoted by Xn. Baseline covariates are

included in X1. The outcome is determined by Y . To simplify the graph, the figure only

shows two cycles and does not contain the impact of baseline covariates. We see, that

the number of leucocytes influences the doctor’s decision to continue or stop treatment,

i.e. Xn−1 → ∆n−1 and Xn → ∆n. But also, by ∆n−1 → Xn, there is a relation the other

way round, as depending on whether cycle n − 1 is given, the number of leucocytes is

affected. As this pathway carries on to Y , the value of Xn partially resembles a treatment

effect. Therefore, usual adjustment for time-dependent confounders is unsuitable.
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4 First approach: Therapy effect

The therapy effect refers to the difference of both treatment arms with respect to the

outcome after the application of all planned cycles. For those patients who stopped

chemotherapy early, this outcome is not observed and considered as censored. As both

treatment arms are randomised subgroups of the population sample and are thus ex-

pected to be similar with respect to baseline characteristics, we adjust for censoring

seperately per treatment arm.

Due to time-dependent confounding, there is a non-random selection of patients who

received all planned cycles. This is accounted for by the missing data approach of

Inverse-Probability-of-Censoring-Weighting (IPCW) [5, 6, 7], which we use to estimate

the expected outcome adjusted by confounders separately per treatment arm. The idea

of IPCW is that censored patients are replaced by observations with similar covariate

history up to the censoring time, here, the time until early stopping. For this purpose,

uncensored patients are weighted by the probability of not being censored which, here,

equals the probability of receiving all planned cycles. The weights are deduced from

assumptions on the censoring mechanism in the underlying data structure.

4.1 Outcome after application of all planned cycles per treatment

arm

In this section, we consider each treatment arm separately and focus on the outcome

after the application of all planned cycles. To indicate that chemotherapy was fully

applied, we define a new outcome variable Yall which is equal to Y , if all cycles are

given and missing otherwise. This means, if the outcome is measured after less than

the planned number of cycles, it is considered as censored. Censoring is induced by the

relations between Xn and ∆n shown in Figure 1. We can interpret ∆n as the censoring
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indicator which manifests in time. To account for the time-dependent aspects and the

chronological order of cause and effect, the censoring mechanism is usually characterised

by sequentially defined conditional independence assumptions (denoted by ⊥⊥ ) which

require for all possible numbers of cycles n:

Yall⊥⊥∆n|Xn,∆n−1 (1)

Here, we write ∆n for (∆1, ...,∆n) where ∆0 is defined to be 0 to simplify notation.

Xn = (X1, ..., Xn) is the covariate history prior to cycle n. Baseline covariates are

included in X1.

The assumptions in (1) can be interpreted in two ways. Firstly, by comparison of two

patients just before cycle n who received chemotherapy so far and have the same covariate

history Xn. According to (1), knowing that for one of them cycle n is withheld, does

not imply that complete remission, had all planned cycles been given, is more or less

likely than for the other patient where cycle n is given. This means, the fact that cycle

n is given or not does not improve the prediction on the outcome after all planned cycles

based on the covariate history Xn. Secondly, (1) implicitely ensures that all information

on the disease status which influences the doctor’s decision to stop chemotherapy is

included in Xn. For example, if the number of leucocytes, which has a prognostic effect

on response, is not included in Xn, a patient who discontinues chemotherapy after cycle

n− 1 due to a high number of leucocytes is more likely to have complete remission after

all cycles had been given than a patient with a low number of leucocytes. Then, knowing

∆n = 0 does improve the prediction on the outcome.

Now, we use (1) to transform the parameter of interest, E(Yall) = P (Yall = 1), into a

term that only includes probabilities of uncensored outcomes. These probabilities can

then be estimated by weighting the observed data. The weights are read off from the

resulting term. The transformation is done by iterative multiplication by a factor which
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is equal to 1. For the first cycle, (1) implies P (Yall = 1|X1 = x1) · P (∆1 = 1|X1 = x1) =

P (Yall = 1,∆1 = 1|X1 = x1) which leads to the following:

P (Yall = 1) =
∑
x1

P (X1 = x1) · P (Yall = 1|X1 = x1) =

=
∑
x1

P (X1 = x1) · P (Yall = 1|X1 = x1)·
=1︷ ︸︸ ︷

P (∆1 = 1|X1 = x1)/P (∆1 = 1|X1 = x1)
(1)
=

=
∑
x1

P (X1 = x1) · P (Yall = 1,∆1 = 1|X1 = x1)/P (∆1 = 1|X1 = x1) =

=
∑
x1

P (Yall = 1,∆1 = 1, X1 = x1)/P (∆1 = 1|X1 = x1)

Applying this procedure iteratively, we obtain with p the number of planned cycles

P (Yall = 1) =
∑
xp

P (Yall = 1,∆p = 1p, Xp = xp)/P (1p,xp) (2)

where we sum over all possible covariate vectors xp = (x1, ..., xp) with

P (δp,xp) =
p∏
i=1

P (∆i = δi|∆i−1 = δi−1, Xi = xi)

evaluated at δp = (δ1, ..., δp) = 1p, where 1p is the vector of length p with all elements

equal to 1.

The weights can be deduced from (2) as

w = 1/P (δp,xp)

for δp = 1p. Stabilised weights are used to obtain more efficient estimates [2]:

sw =
p∏
i=1

P (∆i = δi|∆i−1 = δi−1)
/
P (δp,xp). (3)
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The expected outcome per treatment arm, E(Yall), is estimated by the mean of Yall

in the weighted uncensored subset. Assumption (1) makes sure that this estimate is

unbiased.

4.2 Estimation of the weights

The weights are estimated by a statistical model appropriate for the mode of treatment

application. In our case, skipping one chemotherapy cycle is not allowed. Thus, we

regard the number of the last cycle applied, i.e. the failure time variable

N := max{n : ∆n = 1}

and model the probability of having received a certain number n of cycles by a discrete

proportional hazards model [9]. We estimate the denominator of (3) by adjusting for the

time-dependent and baseline covariates Xn. The estimate of the nominator is just the

relative frequency of cycles applied. Per treatment arm, a different model is fitted.

4.3 Therapy effect: comparison of both treatment arms

The therapy effect corresponds to the comparison of both treatment arms with respect

to the outcomes after all planned cycles. As the outcome is binary, i.e. E(Yall|Z) =

P (Yall = 1|Z), with random variable Z that indicates the treatment arm, the therapy

effect is quantified by the odds ratio:

Therapy Effect =
P (Yall = 1|Z = long arm)/(1− P (Yall = 1|Z = long arm))
P (Yall = 1|Z = short arm)/(1− P (Yall = 1|Z = short arm))

(4)

The expectations are estimated as shown above separately for both treatment arms.

The odds ratio is then calculated from these estimates. For comparison with the MSM
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below, we also write down a statistical model for it:

logitP (Yall = 1|Z) = α0 + α1 · Z (5)

The parameters α0 and α1, where α1 equals the odds ratio, can be estimated by weighted

logistic regression fitted by the subset of observations who received all planned cycles

using the weights in (3).

5 Second approach: Dose effect

In the previous section, we focussed on the therapy effect and compared two chemother-

apy schemes. Now, we only regard data from one treatment arm as if it would have been

a prospective observational study. We focus on the dose effect of one chemotherapy

scheme by comparing the outcome after the application of differential numbers of cycles.

The dose effect is quantified by the odds ratio of these outcomes. Primarily, we compare

two groups where n and n − 1 cycles were applied, respectively. This comparison is

facilitated by the counterfactual framework due to its convenient definition of outcome

variables. We proceed analogously to the missing data approach. First, we set up as-

sumptions corresponding to the confounding mechanism in the data structure. These

assumptions allow to rewrite probabilities of counterfactual variables in terms of prob-

abilities of observable variables. Weights can be deduced from the resulting term which

facilitate to estimate the expected outcomes after the application of n and n− 1 cycles

from the reweighted subsets of patients who actually received such numbers of cycles.

Then, to regard these comparisons for all n simultaneously, we use a Marginal Struc-

tural Model which allows to analyse the question on different doses within one model

by making a parametric assumption on the differences in outcome. Its parameters are

estimated by Inverse-Probability-of-Treatment-Weighting.
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5.1 Counterfactual model setup

To distinguish the outcome after a differential number of cycles by notation, we regard

a whole vector (Y1, Y2, ..., Yp) of outcome variables. Such a variable Yn represents the

outcome after the application of n cycles. As one patient can only be treated according

to one chemotherapy scheme, there are more outcome variables than can be observed.

They are linked to the observed outcome Y as follows. If actually N = n cycles were

given, the observed outcome Y is equal to Yn. In other respects, if N 6= n, we do not

know the outcome after n cycles and call Yn counterfactual. Analogously to (1), we

claim the following sequentially defined conditional independence assumptions for all

n ≤ p:

(Y1, Y2, ..., Yp)⊥⊥∆n|Xn,∆n−1 (6)

It is called the assumption of no unmeasured confounders and used as identifying as-

sumption to make estimation feasible. Additionally, estimating procedures are based on

the positivity assumption

P (∆n−1 = δn−1, Xn = xn) > 0⇒ P (∆n = δn|∆n−1 = δn−1, Xn = xn) > 0 (7)

for all possible δn and xn. It is also called the assumption of experimental treatment

assignment [10, 11]. It claims that at every level of the confounder history measured just

before cycle n, there is a positive probability of receiving the next cycle n and stopping

after cycle n− 1, respectively.
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5.2 Dose effect: comparison of two groups

The dose effect is quantified by the odds ratio of the outcome after application of n

versus n− 1 cycles:

Dose Effect =
P (Yn = 1)/(1− P (Yn = 1))

P (Yn−1 = 1)/(1− P (Yn−1 = 1))
(8)

The estimation of P (Yn = 1) = E(Yn) is done analogously to the estimation of E(Yall)

for the evaluation of the therapy effect in section 4. However, now we address Yn and

the subset of observations where actually n cycles were applied. For patients, who did

not receive n cycles, Yn is counterfactual, i.e. not observed. Using (6), P (Yn = 1) can

be deviated in terms of observables analogously to (2). Now, the sequence ∆p we are

interested in depends on the respective n and the stabilised weights in (3) are deduced

for the sequence δp where only the first n cycles are given, i.e. δi = 1 for i ≤ n and δi = 0

otherwise. Thus, P (Yn = 1) = E(Yn) is estimated as the mean of Yn in the reweighted

subset of patients who received n cycles. This reweighting of counterfactual variables

is usually called Inverse-Probability-of-Treatment-Weighting (IPTW). It implicates the

exchangeability of the treatment groups not only with respect to baseline characteristics.

Also, the remaining differences in time-dependent covariates only reflect the effect of

treatment. The reweighted population mimics the adequate trial to test for the dose

effect where patients are sequentially randomised before each cycle either to receive

another cycle or to stop treatment.

If various doses are compared and there is information on the relation of the odds ratios

for different n, the dose effect can be analysed by fitting a Marginal Structural Model

as shown in the next section.
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5.3 Dose effect: comparison of all groups by a Marginal Structural

Model

For our data situation with binary outcome, a simple model which links the marginal

distributions of the counterfactual variables Yn is given by the logistic model:

logitP (Yn = 1) = β0 + β1 · n. (9)

It assumes that the odds ratios in (8) for different n are constant and equal to β1.

This is a Marginal Structural Model as proposed by Robins [1, 2]. The parameter n is

not a random variable but indicates the counterfactual outcome. The estimation of the

parameters β0 and β1 is done in two steps. First, stabilised weights as in (3) are assigned

to every observation according to the respective ∆p, which corresponds to the observed

N , and the covariate history XN . Then, the model is fitted by weighted regression using

all observations. This can be done by standard statistical software.

6 Comparison of both approaches

In this section, we compare the modelling assumptions and estimating procedures of the

approaches described above. Both approaches measure a population effect. This means,

they estimate a marginal effect which depends on the characteristics of the overall pop-

ulation. The missing data approach allows inference on an optimal study conduct where

everybody received the planned treatment regime and no early stopping, i.e. censoring,

occurs. In contrast, the MSM approach simultaneously predicts the marginal effect of

all potential outcomes which are coexistent and of equal interest. Instead of defining Yall

as the outcome variable of interest, we regard a whole vector (Y1, Y2, ..., Yp) of outcome

variables. These outcome variables allow the definition of the effects without relation
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to the way on how patients are actually assigned to treatment regimes. These relations

belonging to the data structure are considered by the assumptions (1) and (6), respec-

tively. They describe the mechanism that controls which outcome variable is observable.

They are set up analogously. As Yp = Yall, (6) contains (1).

For the missing data approach, assumptions on the censoring mechanism are needed

which are similarily structured as the assumptions made by the MSM approach. In

both situations, they are not verifiable by the data but can only be made plausible by

sensitivity analyses [12].

The weights, deduced from these assumptions, are derived in the same way and their

estimates use the information on covariates Xn and on ∆n of all observations in both

analyses. However, the analyses differ in the second step. Estimating the therapy effect,

only outcomes are used for observations with all planned cycles given, whereas with

respect to the dose effect, all outcomes are considered and weighted differently according

to the observed number of given cycles.

The MSM is a structural model which defines the relation between the marginal prob-

abilities of the counterfactual variables Yn. The dependent variable n is not random in

contrast to a conventional associational model as in (5) where Z is a random variable

and the outcome variable is a conditional probability. Note, that in both cases, time-

dependent confounding is accounted for by reweighting, such that neither (5) nor (9)

contain any covariates for adjustment.
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7 Results

7.1 The data

We investigate the full-efficacy population of the GEPARDUO study chosen in [8] for

the primary endpoint analysis. This data set involves 855 patients of which 441 were

randomised to the long treatment arm consisting of eight cycles. We use a subset of the

data shown in Table 1 where the outcome was documented and covariate information

used to model the weights is not missing. As possible time-independent confounders

between early stopping and the primary endpoint pCR at surgery, we consider the pre-

dictors of pCR identified as significant from multivariate logistic regression analysis in

[8]: tumor grade (1 and 2 vs 3) and hormone receptor status (HR+ vs HR-). As possible

time-dependent confounders, we regard palpation result and WHO toxicities where at

least 5% of the patients showed grade 3 or 4 and less than 30% of the patients have

missing values. These are alopecia, fatigue and increased leucocytes.

The original analysis in [8] yields a pCR rate of 14.3% and 7.0% for the long and the

short arm, respectively. Within the multivariate analysis, the odds ratio of the long

versus the short arm results to 2.42. These results are based on an ITT-analysis where

no adjustment for early stopping is performed.

7.2 Estimation of the weights

The stabilised weights in (3) are estimated in two steps. To obtain the nominator,

we calculate the relative frequencies of cycles applied. For the denominator, we fit a

discrete proportional hazards model for the time until the last cycle applied for each

treatment arm. With respect to the time-dependent variables, we first perform model

selection by univariate analyses. According to the Akaike criterion [13], we include only
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those time-dependent covariates where the unadjusted p-value of the two-sided Wald

test is p ≤ 0.157. Patients with missing values are excluded in those analyses where the

missing covariate is considered. Estimates per treatment arm are given in Table 3. As

recommended in [11], we check that the stabilised weights have a mean of one (see Table

2), which is a necessary condition for correct model specification.

7.3 Therapy effect

The therapy effect after the application of all planned cycles quantified by (4) results

to an odds ratio of 2.62 with confidence interval [1.48; 4.64]. It is calculated from the

estimates of E(Yall) of the long and the short treatment arm which equal the pCR rates.

They result to 16.0% (Std Error 0.0235) and 6.8% (Std Error 0.0146), respectively. In

comparison to the original analysis, the pCR rate of the long arm is higher whereas it is

almost the same for the short arm, resulting in a higher odds ratio. This confirms our

expectations as in the long arm 21% of the patients discontinue therapy which diminishes

the therapy effect. In the short arm, only 7% do not receive all planned cycles which

hardly affects the estimates.

7.4 Dose effect

The trial was not designed to assess the dose effect and most of the patients received all

planned cycles. So, its analysis can only be used for illustrating the method. We restrict

the data to the long treatment arm with eight cycles, as there is more variation with

respect to early stopping. For estimating the parameters of the MSM by the weighted

logistic model (9), we use the SAS program Proc Genmod. To obtain robust variances,

we follow [2] and choose the option ”repeated“ and specify an independence working

correlation matrix.
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Figure 2 shows the probability of pCR with respect to the number of cycles applied.

The dots show the values of P (Yn = 1) = E(Yn) estimated by the weighted means in the

subset of patients who received n cycles. The line indicates the estimate of the MSM

which assumes that the logistic model (9) holds. Nobs indicates the number of patients

who actually received n cycles. We see, that the MSM mainly adjusts for the value at

n = 8 where the data gives most of the information.

8 Discussion

In this paper, we address the handling of time-dependent confounders in observational

studies. MSMs cope with such confounders but are still controversely discussed as

they are defined within the counterfactual framework where untestable assumptions

are needed for identification. The counterfactual framework facilitates the definition of

the treatment effect because counterfactual outcomes are defined separately from any

probability model about the way in which observations are assigned to treatment groups.

To get more familiar with this approach, we illustrate it by comparison to a common

approach developed for the handling of missing outcomes which is based on related un-

verifiable assumptions. By presenting similarities and discrepancies, we give insight into

the structural model approach.

We exemplify our statements by data on breast cancer chemotherapy schemes. Here,

the results for the dose effect can only be used for illustration, as there are not enough

observations with early stopping to obtain reliable estimates. As this analysis is not

meant to gain knowledge about breast cancer and its rehabilitation, the choice of prog-

nostic factors and time-dependent confounders, as well as the assumptions made by

the model for the weights, was not agreed with medical experts. Furthermore, we did

not respect the change in chemotherapeutic decomposition and used a simple structural
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model. If one is in doubt whether the model for the treatment assignment mechanism or

the model for the counterfactual data might be misspecified, one might turn to doubly

robust estimators [14].

MSMs estimate a population based effect, i.e. the marginal effect in the recruited patient

collective. It is estimated from observational data where certain rules are used to decide

on further application doses with respect to actual measurements of disease parameters,

i.e. where so called dynamic treatment regimes are applied. However, the estimated

MSM effect applies to the effect of a static treatment regime where the application

doses are determined at baseline and do not change in response to past history of the

individual patient. Effects of dynamic treatment regimes are challenging even with

respect to their definition and interpretation. They are increasingly addressed in the

literature [15, 16].

MSMs are very flexible as all kinds of regression models for the weights and the relation

of the treatment with the outcome can be chosen according to the data. In case of

a survival outcome, time-dependent weights are used [17]. For most of the regression

models, standard statistical software packages provide a weighted fit.

MSMs make the assumption of experimental treatment assignment shown in (7) which

claims that at every time-point every patient has a chance to get further treatment.

As sometimes treatment must be stopped due to severe adverse events such as toxi-

city of high grade, this is not absolutely satisfied in our data example. In [18], van

der Laan and Petersen describe how to relax this assumption and propose causal ef-

fect models which only consider possible treatment options. To apply such models to

the data of the GEPARDUO study and explore their properties is subject of further

considerations.
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Tables

Table 1: Analysis set per treatment arm: number of patients by number of
cycles received

number of cycles received
1 2 3 4 5 6 7 8

Short arm (319 Obs) 2 7 14 296 - - - -
Long arm (311 Obs) 2 3 2 13 23 11 12 245

Table 2: Summary of stabilised weights per treatment arm
stabilised weights

Mean Max Min Std Dev
Short arm (4 cycles, 319 Obs) 1.017 5.680 0.093 0.476
Long arm (8 cycles, 311 Obs) 1.008 4.179 0.268 0.355

Table 3: Results of multivariate discrete proportional hazards model for de-
nominator of the stabilised weights

Short treatment arm Long treatment arm
Hazard Hazard

Characteristics ratio 95% CI p-value ratio 95% CI p-value
Baseline characteristics

Tumor grade (1 and 2 vs 3) 0.29 0.09;0.89 0.03 0.71 0.41;1.26 0.24
Hormone receptor (HR+ vs HR-) 1.28 0.41;3.96 0.67 0.802 0.44;1.45 0.47

Time-dependent characteristics
Palpation result not included not included

WHO toxicities
Alopecia not included 0.81 0.50;1.32 0.40
Fatigue 1.64 1.05;2.54 0.03 1.71 1.31;2.24 ≤ 0.001
Increased leucocytes 1.78 1.28;2.47 ≤ 0.001 1.18 0.96;1.44 0.12CI: confidence interval, p-value from two-sided Wald test
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Figures

Figure 1: Time-dependent confounding: relations between time-dependent
covariates Xn, application of treatment ∆n and outcome Y
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Figure 2: Probability of pCR by number of given cycles n estimated by MSM
(line) and by weighted means (dots) with Nobs number of patients who
received n cycles
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