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Abstract

Modern techniques for fitting generalized additive models mostly rely

on basis expansions of covariates using a large number of basis functions

and penalized estimation of parameters. We exemplarily use a mixed

model approach to fit a model for children’s lung function that allows for

non-linear influence of several covariates available in a substantial data

set. While the resulting model is expected to have good prediction per-

formance, its handling beyond simple visual presentation is problematic.

It is shown how the number basis functions of the underlying B-spline

representation can be reduced by knot removal techniques without refit-

ting, while preserving the shape of the fitted functions. We extend the

condition for exact knot removal towards approximate knot removal by

incorporating the covariance matrix of the initial parameter estimates,

resulting in considerable simplification of the model. Covariance matrices

for the transformed parameter estimates are provided. It is demonstrated

that enforcing the knot removal condition during estimation leads to the

difference penalties employed in the P-spline approach for estimation of

B-spline coefficients and therefore provides a further justification for this

type of penalty. A final transform to a truncated power basis provides

a simple equation for the model. This increases transportability, while

retaining properties of the initial fit such as good prediction performance.

Key words: B-splines; Difference penalty; Generalized additive models; Knot-
removal; Transportability

1 Introduction

In medical research there are many diagnostic and prognostic studies where for
each observation a considerable number of continuous covariates is available and
where for each of them identification of the functional form of its influence on
the response is wanted. Generalized additive models (Hastie and Tibshirani,
1990) provide a convenient framework where continuous covariates are modeled
to have additive influence, specified by unknown functions on an exponential
family response. This includes models for different types of response, such as
continuous, binary, or Poisson responses.

Modern techniques for fitting such models, e.g. via simultaneous estimation
of all functions by penalized likelihood (Marx and Eilers, 1998; Wood, 2004,
2006) or via a mixed model representation (see Ruppert et al., 2003, for ex-
ample), have in common that they use basis expansions of covariates. A set of
knots covering the domain of the covariate is employed to obtain an expanded
set of variables that allows for modeling of local features. While this may result
in good prediction performance when the smoothness of the fitted functions is
properly regularized (Binder and Tutz, 2006), the resulting models are difficult
to transport beyond simple visual presentation. For example, a suggested num-
ber of 20 or more basis functions per covariate (Ruppert, 2002) implies that
already for univariate models no simple model equation is available. Obviously,
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a simple model equation featuring only a few parameters would facilitate com-
munication and transportability of the model (e.g. doctors could easily calculate
the model’s prediction for a patient) and thereby increase its clinical usefulness
(Wyatt and Altman, 1995).

In the following we present a technique for knot removal that reduces the
number of basis functions while preserving the shape of the fitted functions
and thereby also prediction performance. Especially when a fitted function has
simple structure (e.g. when the plot looks like a global polynomial) a substantial
number of knots can be eliminated. The coefficients for the resulting smaller set
of new basis functions is obtained without refitting by a linear transform and
therefore also transformed covariance matrices are available. The technique will
first be introduced for univariate models, but as there is no refitting required it
is then easily transferred to the multivariate setting.

There are many univariate approaches for forward knot selection (see Zhou
and Shen, 2001; Miyata and Shen, 2003; Mao and Zhao, 2003; Gervini, 2006,
for example) and also some prominent multivariate approaches such as TURBO
(Friedman and Silverman, 1989), MARS (Friedman, 1991), POLYMARS/POLYCLASS
(Stone et al., 1997; Kooperberg et al., 1997), or the approaches of Breiman
(1993) and Molinari et al. (2004). These are distinctly different from the present
knot removal approach, because they employ refitting after every knot selection
step. That way they try to simultaneously address the objectives of good pre-
diction performance and of obtaining a parsimonious model. In contrast, the
present approach relies on the good prediction performance of existing fitting
techniques for generalized additive models seen for example in Binder and Tutz
(2006). Model simplification is only attempted afterwards in a shape-preserving
manner without refitting. This approach is also supported by results from pre-
liminary experiments where refitting after knot removal did even result in a
slight decrease of prediction performance on new data.

Section 2 gives a formal description of the generalized additive modeling
framework and reviews the method for fitting such models that will be used as
a basis for knot removal, including the B-spline basis and penalized estimation
using the difference penalty from the P-spline approach. Exact knot-removal
based on linear transforms will be reviewed in Section 3.1 and an extended ver-
sion for approximate knot removal together with transformed covariance matri-
ces will be introduced in Section 3.2. This includes a result that motivates the
difference penalty of the P-spline approach as an enforcement of knot removal
at estimation (Section 3.3). In Section 4 a final transform from the reduced
B-spline basis to a truncated power series basis is proposed for obtaining in-
terpretable model equations. Section 5 presents examples where the proposed
techniques are applied to models fitted to children’s lung function data aiming
to obtain simple model equations. Finally, Section 6 gives a discussion and
sketches potential extensions.
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2 Fitting Generalized Additive Models

2.1 Framework

Given data (yi, xi), i = 1, . . . , n with response yi and covariate vectors xi =
(xi1, . . . , xip)

′, generalized additive models (Hastie and Tibshirani, 1990) assume
that the response is from an exponential family, which (among others) allows for
modeling of continuous, binary as well as Poisson responses. The structural part,
which allows for non-linear influence of the covariates via unknown functions
fj, j = 1, . . . , p, is given by

E(yi|xi) = µi = g



β0 +

p
∑

j=1

fj(xij)





with known response function g and intercept parameter β0. Modern approaches
feature simultaneous estimation of all functions fj, e.g. by direct maximization
of a penalized likelihood (Marx and Eilers, 1998; Wood, 2004) or via a mixed
model representation (see Ruppert et al., 2003, for example). They require basis
expansions of covariates, e.g. using a B-spline or a truncated power series basis,
which will be reviewed in the following.

Note that even if the same type of basis expansion is used for different esti-
mation approaches, probably the resulting models will differ. For example, the
mixed model approach is known to result in smoother fitted functions (Binder
and Tutz, 2006) than direct maximization of penalized likelihood. If compari-
son beyond graphical displays is wanted, it is necessary to simplify the model
equation for each covariate.

2.2 Truncated Power Series and B-Spline Basis

For one covariate a function f is represented by a combination of M basis
functions

f(x) =

M
∑

k=1

δkBk(x) (1)

with known basis functions Bk, k = 1, . . . , M and parameters δk, k = 1, . . . , M
that have to be estimated. A popular choice for the basis functions, advocated
for example by Ruppert et al. (2003), is the truncated power series basis. Let
the domain of the covariate x be divided into s intervals by an arbitrary knot
sequence ξ1 < . . . < ξs+1, where we say that knots ξ2, . . . , ξs are “within” the
domain of the covariate. With a truncated power basis of degree q the function
is given by

f(x) =

q
∑

l=0

δl+1x
l +

s
∑

l=2

δl+q(x − ξl)
q
+

where ()+ takes the positive part of its argument. This has the natural interpre-
tation of a polynomial of degree q, i.e. a global function with q +1 components,
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with (local) modifications to the right of each knot given by s − 1 truncated
power functions. For example, when a smooth function for the effect of a vari-
able x is fitted and there is only a single knot at x = 20, then the explanation
given could be like “the general shape is ..., but changes with x = 20 ...”. The
final number of knots within the domain of the covariate, s − 1, will also be
useful to characterize the complexity of the representation of a function after
knot removal. For s = 1 only one interval remains, which means that a global
polynomial representation could be obtained.

Another popular choice, which is numerically more stable compared to the
truncated power series, is the B-spline basis (de Boor, 2001). For B-splines
of degree q the basis functions Bk are polynomial pieces of degree q, which
are non-zero on a domain spanned by q + 2 knots. The position of each piece
is characterized by an indexing knot and we take the leftmost knot, the knot
at which the polynomial piece starts to become non-zero. As each interval is
covered by q + 1 of these polynomial pieces, compared to the truncated power
series basis q knots ξ−q+1, . . . , ξ0 to the left of ξ1 and q knots ξs+2, . . . , ξs+q+1 to
the right of ξs+1 have to be inserted, resulting in s+2q +1 knots for M = s+ q
basis functions. In contrast to the truncated power series basis there is no
distinction between global and local components.

The B-spline basis functions Bk can be defined in terms of truncated power
functions (ξl − x)q

+, i.e. a set of functions of x indexed by the knots ξl (de
Boor, 2001, p. 87). Similar to Eilers and Marx (2004) we will deviate slightly
by giving the definition based on (x − ξl)

q
+ (requiring an extra term (−1)q),

because this will provide for an easier link to the truncated power series basis.
A B-spline basis of degree q can then be defined as

Bk(x) = (ξk+q+1 − ξk)(−1)q
(

[ξk, . . . , ξk+q+1](x − ·)q
+

)

(2)

where (x − ·)q
+ is a “placeholder” notation indicating that x is kept fixed and

that (x − ξl)
q
+ is used as a function of the knots ξl alone for determining the

divided differences [ξk, . . . , ξk+q+1] (see de Boor, 2001, for more details).
From (2) it is then seen that B-splines can be defined in terms differences

of truncated power functions. This allows for a basis transform from a B-spline
basis to a truncated power series basis (see Section 4). It can also be seen that
a B-splines basis of degree q corresponds to a truncated power series basis of
degree q.

2.3 P-Spline Difference Penalty and Mixed Model Ap-

proach

Traditionally only a small number of basis functions for each covariate was
incorporated into regression models to avoid overfitting. The corresponding
knots were often placed to be equidistant or on quantiles of the data. This
results in a certain arbitrariness with respect to the fitted functions because
when the number of knots is rather small the exact position may have a strong
influence. Alternatively a large number of knots can be used, now combined with
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penalized estimation. When the number of knots is large enough, neither their
exact position nor their exact number seems to matter much when the penalty
is chosen adequately to prevent overfitting (Ruppert, 2002). We will use equally
spaced knots corresponding to 10 or 20 basis functions in the following.

In their “P-spline” penalty approach, which we will adapt in the following,
Eilers and Marx (1996) propose to use a B-spline basis with equally spaced
knots together with maximization of a criterion that penalizes for complexity in
the form of differences of the parameters. The log-likelihood l(δ), which classi-
cally is maximized for estimation of the parameter vector δT = (δ1, . . . , δM ), is
augmented by a penalty term to arrive at a penalized criterion

lP (δ) = l(δ) − λ

M
∑

j=k+1

(∆kδj)
2 (3)

where ∆k denotes the kth order difference and λ is a penalty parameter. The
latter determines how smooth the estimated functions will be, i.e. model com-
plexity, and has to be chosen. However, a good choice of the penalty is a difficult
issue.

As already pointed out by Speed (1991), penalized estimation of smooth
functions can alternatively be performed via a mixed model representation.
There the penalty parameters correspond to variance components, i.e. they
are determined automatically. Ruppert et al. (2003) provide a comprehensive
overview of this approach. In Binder and Tutz (2006) it was seen that it results
in parsimonious fits featuring very smooth functions in combination with good
prediction performance. As this nicely complements with our aim of obtaining
simple model equations, we employ this approach in the following. Specifically,
we use the methods described in the appendix of Wood (2004), that allow for
incorporating the P-spline difference penalty from (3), together with covariance
matrices based on the Bayesian approach described in Wood (2006, p. 318).

To give a theoretical justification for the difference penalty in (3), Eilers
and Marx (1996) point out that, using an appropriate differencing order, it
can approximate the integrated squared second derivative as a penalty term,
which is the standard for smoothing spline estimation (see Green and Silverman,
1994, for example). Note that this is only the case for equally space knots and
else weighted differences are required for this connection to hold. A further
convenient property of the difference penalty is that for large values of the
penalty parameter λ polynomial regression models are obtained (Eilers and
Marx, 2004), i.e. the model equation is very simple but still retains the flexibility
of a global polynomial when all local structure is smoothed out. Eilers and
Marx (2004) also demonstrate that a q + 1th order difference penalty for a B-
spline basis of degree q corresponds to estimation using a truncated power series
basis of degree q together with a ridge penalty (i.e. penalizing the sum of the
squared parameter values). Later, when we investigate how knot removal can
be enforced at the time of estimation it will be seen that a further justification
for the difference penalty is obtained (see Section 3.3).
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3 Knot Removal for B-Spline Fits

We investigate a knot removal algorithm that reduces the number of basis func-
tions without refitting while preserving the shape of the fitted functions. First
an approach for exact knot removal is reviewed, where the function numerically
stays the same. This is subsequently extended towards approximate knot re-
moval where small deviations from the original function are allowed for. Knot
removal will be performed separately for each covariate. As there is no refitting,
the fitted functions for the other components will not be influenced when knot
removal is performed for a specific function. Therefore a univariate strategy
for knot removal can easily be extended towards knot removal for multivariate
models.

3.1 Exact Knot Removal

Knot removal for B-splines without change of the functional form has been
proposed as the reverse of knot insertion (Boehm, 1980; Tiller, 1992). The
motivation for knot insertion mainly comes from Computer-Aided Design where
new control points have to be added to a surface that is represented by a B-
spline basis without changing the shape. Such new control points can then be
moved to change the shape of the B-spline in a desired way. In the reverse, knots
that have been inserted, but not moved, or knots that fulfill the same conditions
as newly inserted knots, can be removed without changing of the shape of the
function. Therefore to derive conditions for knot removal, knot insertion has to
be examined first.

Given the knots ξ−q+1 < . . . < ξs+q+1 with corresponding B-spline basis
functions Bk, k = 1, . . . , M , assume that a new knot ξ∗, ξl < ξ∗ < ξl+1, 1 ≤ l <
s+1 is inserted to arrive at knots ξ∗

−q+1 < . . . < ξ∗s+q+2 with corresponding basis
functions B∗

k(x), k = 1, . . . , M + 1. This means that a function f in addition to
(1) has another unique representation

f(x) =

M+1
∑

k=1

δ∗kB∗

k(x)

in terms of the new knots and basis functions.
Boehm (1980) shows that the parameters δk, k = 1, . . . , M and δ∗k, k =

1, . . . , M + 1 of the two representations are related by

δ∗k = αk−qδk + (1 − αk−q)δk−1 (4)

where

αk =











1 for k ≤ l − q
ξ∗

−ξ∗

k

ξ∗

k+q+1
−ξ∗

k

= ξ∗

−ξk

ξk+q−ξk
for l − q + 1 ≤ k ≤ l

0 for k ≥ l + 1

.

Taking knot removal as the reversal of knot insertion, the parameters after
knot removal δk, k = 1, . . . , M can be calculated recursively from the parameters
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δ∗k, k = 1, . . . , M + 1 before removal (as shown for example by Tiller, 1992) via
the relation

δk =







δ∗k for k ≤ l
(δ∗k − (1 − αk−q)δk−1)/αk−q for l < k < l + q
δ∗k+1 for k ≥ l + q

.

In matrix form the parameter vector δ = (δ1, . . . , δM )T resulting from removal
of knot l + 1 is obtained by

δ = Rq,l+1δ
∗ (5)

with δ∗ = (δ∗1 , . . . , δ∗l , δ∗l+2, . . . , δ
∗

M+1)
T and

Rq,l+1 =





Il−1

Ξq,l+1 0q+1

IM−q−l+1





where Il−q−1 and IM−q−l+1 are identity matrixes of size l−q−1 and M−q−l+1
respectively, 0q+1 is a column vector of zeros of size q, and Ξq,l+1 is a square
matrix of size q that has the following structure

Ξq,l+1 =











1
. . .

1
− 1−αl

αl

1
αl











· · · · ·











1

−
1−αl−q+2

αl−q+2

1
αl−q+2

1
. . .











.

Removing a just inserted knot is a rather artificial scenario. In practice there
will be an estimated parameter vector δ̂∗ = (δ̂∗1 , . . . , δ̂∗M )T corresponding to knot
vector (ξ∗

−q+1, . . . , ξ
∗

s+q+1)
T . A transformed parameter vector is then obtained

by δ̂T = Rq,l+1δ̂
∗ with corresponding new knot vector (ξ−q+1, . . . , ξs+q)

T =
(ξ∗

−q+1, . . . , ξ
∗

l , ξ∗l+2, . . . , ξ
∗

s+q+1)
T . Using the matrix formulation (5) a covari-

ance matrix for the transformed estimate δ̂ can be obtained by

Cov(δ̂) = Rq,l+1Cov(δ̂∗)RT
q,l+1 (6)

where Cov(δ̂∗) is the covariance matrix of δ̂∗ with the row and column l + 1
deleted.

For each knot ξl+1 with corresponding parameter δ̂∗l+1+1 it has first to be
checked whether it can be removed. The equations in (4) are over-determined
and can be used to derive a condition for knot removal. For example for q = 3
it follows that

αlδ̂
∗

l+4 − δ̂∗l+3 +
1 − αl

αl−1

(

δ̂∗l+2 −
1 − αl−1

αl−2

(

δ̂∗l+1 − (1 − αl−2)δ̂
∗

l

)

)

= 0 (7)

if knot ξ∗l+1 can be removed.
It is seen that removal of knot ξ∗l+1 depends on a condition on parameters

δ∗l , . . . , δ∗l+q+1. Therefore the leftmost knot that can potentially be checked and
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removed is ξ∗2 , leaving the first q + 1 knots unremovable in principle. As a pa-
rameter δ∗k corresponds to knot ξ∗k−q , this means that the first q + 1 elements
of the parameter vector δ∗1 , . . . , δ∗q+1 can also not be eliminated. It will be seen
that these correspond to the global terms 1, x, x2, . . . , xq after transformation to
the truncated power series basis (see Section 4), i.e. when all removable knots
are eliminated there is still a global polynomial of degree q left, which requires
q + 1 parameters in a model equation. For example, with q = 2 it is impossible
to arrive at a simple linear component for a model equation, because there will
always be an additional quadratic component. Nevertheless, removal of unnec-
essary knots results in a (considerable) simplification of the model equation.

Checking for knot removal can be done simultaneously by using equations
such as (7) for constructing a (M −q−1)×M matrix Pq that is structured such

that the zero elements of Pq δ̂
∗ indicate which of the (potentially removable)

knots can be eliminated. For example, for q = 3 Pq takes the form

P3 =









. . .
(1−αl)(1−αl−1)(1−αl−2)

αl−1αl−2
− (1−αl)(1−αl−1)

αl−1αl−2

1−αl

αl−1
−1 αl

. . .









.

(8)

3.2 Approximate Knot Removal

For one covariate one might also want to remove a knot when the corresponding
element of Pq δ̂

∗ is only very close to 0. We therefore extend the knot removal
conditions of the type given in (7) and (8) towards approximate knot removal, by
introducing a cutoff c for deciding on knot removal. This will allow for a tradeoff
between preserving the exact shape of the fitted functions and a simpler model
equation based on a small number of basis functions. These minor changes in one
variable will hardly have any influence on the other functions in a multivariate
model.

The elements of Pq δ̂
∗ from a covariance matrix Cov(δ̂∗) for the initial pa-

rameter estimates and the diagonal elements of PqCov(δ̂∗)PT
q , combined with

a cutoff c, can be used to decide on knot removal. Specifically, a knot k + 1 and
the corresponding parameter δ̂∗k+q+1 will be removed if

[Pq δ̂
∗]k

[PqCov(δ̂∗)PT
q ]kk

< c (9)

where []k and []kk indicate the kth element and the kth diagonal element re-
spectively.

With exact knot removal, i.e. c = 0, knots can be removed in any order
and it does not matter whether the removal condition is evaluated based on
the initial or on the transformed parameter vectors and covariance matrices.
This is because removing one knot does not influence the removal condition
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for the others. There might be a difference for c > 0. We propose to remove
knots from left to right, because this is the reading direction for the typical
interpretation of fitted functions. For evaluation of the knot removal condition
two alternative modes will be investigated: In the simultaneous mode the knot
removal condition (9) is evaluated for every knot simultaneously using the initial
covariance matrix. Knots where the condition holds are removed, moving from
left to right. In the stepwise mode the knot removal condition is evaluated
from left to right and knots are removed immediately when the condition holds.
After a knot is removed, the transformed covariance matrix (6) is calculated and
together with a newly calculated Pq the next knot to be removed is determined.

3.3 Enforcing Knot Removal at Estimation

The P-spline approach of Eilers and Marx (1996) uses a penalty for estimation
that is formed by differences of the parameters. In the same way the knot
removal condition matrix Pq could be used to construct a penalized likelihood
criterion

lP (δ) = l(δ) + λδT PT
q Pqδ

that enforces knot removal at time of estimation. For a B-spline basis of degree
q and equally spaced knots it is seen, e.g. from (8), that this is (up to a constant
factor) equivalent to a q + 1th order difference penalty employed in (3) for the
P-spline approach. So this approach for penalized estimation will automatically
enforce the knot removal condition when the appropriate differencing order for
the penalty is employed. This is also true for the mixed model approach used
in our example.

While Eilers and Marx (1996) refer to the approximation of an integrated
squared curvature penalty for justifying the difference penalty, knot removal
enforcement provides a further, exact justification. Furthermore, Eilers and
Marx (2004) show that for a large value of the penalty parameter the difference
penalty results in fitting of global polynomials, which corresponds to removal of
all knots.

4 From B-spline to Truncated Power Series Ba-

sis

Compared to B-splines a model equation using a truncated power series basis
is expected to be easier to handle, because it only relies on powers and the
truncation operator. Eilers and Marx (2004) show how transformation from a
B-spline basis to a truncated power series basis can be performed for equally
spaced knots. Based on the results of Welham et al. (2007) we extend this to
the case of unequally spaced knots, typical after knot removal.

Let B be the n× s+ q matrix that in its columns contains the B-spline basis
expansions for all observations. For the corresponding truncated power series
basis let F be a n× (s− 1) matrix, that in the columns contains the truncated
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power functions used by this basis and X a n× (q +1) matrix that contains the
powers 0, . . . , q. The truncated power functions in F are only a subset of the
truncated power functions needed for calculation of the B-spline basis functions
in B (according to (2)). It has to be padded by q columns with additional
truncated power functions on the left and by q columns on the right, resulting
in the matrix n × (s + 2q − 1) matrix F̆ . For performing the transformation
B = F̆ D̆T

q the (s + q) × (s + 2q + 1) matrix D̆q is needed. Similar to Welham
et al. (2007), define the diagonal scaling matrix

Sq = diag

{

1

ξl+q − ξl

; l = −q + 1, . . . , s + 1

}

and in addition the (u − 1) × u first order differencing matrices

Du =







−1 1
. . .

. . .

−1 1






.

Then

D̆q =

{

Ds+2S1Ds+3 for q = 1

(−1)q−1Ds+q+1SqD̆q−1 for q > 1
.

Let δ be the parameter vector of the B-spline representation and β and
b be the parameter vectors of the truncated power series representation, i.e.
Bδ = Xβ + Fb. Let S be a (s + 4q)× (s− 1) matrix formed by a s− 1 identity
matrix bordered by p + 1 rows of zeros at the top and at the bottom. Then
F = F̆S. Let in addition D be given by D = (D̆qS)T . Following Eilers and
Marx (2004) transformation of the parameters is performed by

b = Dδ , β = (X ′X)−1X ′(B − FD)δ.

Therefore, for transformation from a B-spline basis to a truncated power series
basis transformation matrices are available. This means that, given a covari-
ance matrix for the B-spline parameter estimates (possibly after knot removal),
covariance matrices for the truncated power series parameters are available.

5 Example

For illustration of the proposed techniques we use data on children’s respiratory
health. The data are a subset from the study described in Ihorst et al. (2004),
more specifically the data for the German children obtained in autumn 1997. We
use only the 811 observations with complete data for the 11 variables considered
for modeling. The continuous response of interest is “forced vital capacity”
(FVC), a lung function parameter related to children’s respiratory health where
larger values indicate better lung function. There are 6 continuous covariates for
which influence will be modeled by a smooth function: “age” (in years), “birth
weight” (bweight), “height”, “maximal nitrogen dioxide (NO2) value of last 24h
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before lung function measurement” (NOH24), “maximal ozone (O3) value of
last 24h before lung function measurement” (O3H24), and “body mass index”
(BMI). Of these the main interest is on “O3H24”, because short term ozone
exposure is known to have an effect on lung function parameters. In addition,
there are 5 binary covariates: “sex” (0=male, 1=female), “whistling or wheezy
breath” (whibreath), “shortness of breath, laboured breathing” (shobreath),
“assured sensitivity against pollen” (pollsens), and “patient lives in a village
with high ozone values” (hiozone). There are no large correlations between
covariates. We checked that there are no strong (linear) interactions between
covariates which could potentially disturb additive fitting of smooth functions.

5.1 Univariate Model

First we consider a univariate model for “O3H24”. Estimation is performed
via the mixed model approach described in Wood (2004), employing a B-spline
basis of degree q = 2 together with a third order difference penalty for enforcing
the knot removal condition. Alternatively, we could use cubic basis functions,
i.e. q = 3, but in our experience there is hardly any difference in the fitted
functions and it would lead to more difficult model equations even if all knots
can be removed.

We apply knot removal to fits with 10, 20, and 40 initial basis functions to
explore the impact of the number of basis functions. Furthermore two modes of
evaluation of the knot removal condition are investigated: simultaneous evalua-
tion based on the initial covariance matrix and stepwise evaluation based on the
transformed parameter vector and covariance matrix after each removal step.
Table 1 shows the resulting number of basis functions/parameters after knot
removal using various values for the cutoff c. Figure 1 shows the initial fitted
functions (solid curves) together with pointwise confidence intervals for 20 basis
functions (dotted curves). The other curves indicate the fits after knot removal
using simultaneous evaluation of the knot removal condition (left panel) and
stepwise evaluation (right panel) based on various cutoffs c.

It is seen from Table 1 that using a cutoff c ≥ 0.5 the number of parame-
ters remaining after knot removal hardly depends on the initial number of basis
functions. This indicates the latter parameter is rather unimportant with re-
spect to the number of remaining knots and can be chosen from a large range.
As seen from the left panel of Figure 1 there are nevertheless differences be-
tween the initial fits resulting from various numbers of basis functions, that do
not even disappear completely when all knots are removed. For 10 initial basis
functions the fitted function seems to have somewhat less complex structure,
requiring only 3 instead of 4 parameters after knot removal, which corresponds
to a global polynomial of degree 2. We will therefore focus on the fit using 20
initial basis functions.

The simultaneous mode of evaluation of the knot removal condition results
in an abrupt drop in the resulting number of parameters and the maximum
absolute deviation when the cutoff c is changed from 0.25 to 0.5. The reason
for this is seen from the dash-dotted curve (20 basis functions) and the long-

12



Table 1: Number of remaining parameters (red) and maximum absolute devia-
tion (dev) after knot removal using various cutoffs c and simultaneous (simult)
vs. stepwise evaluation (step) of the knot removal condition for a varying initial
number (init) of basis functions.
mode init cutoff c

0.1 0.25 0.5 0.75 1
red dev red dev red dev red dev red dev

simult 10 3 0 3 0 3 0 3 0 3 0
20 10 0.001 8 0.001 3 0.050 3 0.050 3 0.050
40 17 0.003 11 0.005 3 0.059 3 0.059 3 0.059

step 10 3 0 3 0 3 0 3 0 3 0
20 5 0.001 4 0.003 4 0.012 4 0.028 3 0.05
40 14 0.001 4 0.004 4 0.014 4 0.030 3 0.059
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Figure 1: Initial fitted functions (solid curves) and reduced knot fits
(dashed/dash-dotted curves) for the univariate lung function model with re-
maining knots indicated by circles. Pointwise confidence intervals for the orig-
inal fit using 20 basis functions are indicated by dotted curves. Left panel:
simultaneous evaluation of the knot removal condition. For 10 initial basis
functions the reduced knot representation coincides with the original fits. For
20 and 40 initial basis functions the reduced knot representations (dash-dotted,
filled circles and long-dashed, hollow circles) nearly coincide with the original
fit when using c = 0.25 and are distinctly different when using c = 0.5. Right
panel: stepwise evaluation using cutoffs c ∈ {0.25, 0.5, 0.75, 1} and 20 initial
basis functions (dash-dotted, filled circles).
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dashed curve (40 basis functions) corresponding to c = 0.25 in the left panel
of Figure 1, which are practically indistinguishable from the original fits, with
remaining knots indicated by filled and hollow circles. The latter all have a
similar value with respect to the knot removal criterion in (9) and therefore will
be eliminated at the same time when the cutoff is increased. This indicates that
the simultaneous mode of evaluation critically depends on the exact value of the
cutoff, making it rather unstable.

Using the stepwise mode of evaluation of the knot removal condition there
is a more gradual decrease of the number of resulting parameters and the max-
imum absolute deviation. The filled circles on the dashed-dotted curves in the
right panel of Figure 1 indicate the one remaining knot within the domain of the
covariate for 0.25 ≤ c ≤ 0.75. It is seen that this knot moves to the right with
increasing value of c, resulting in a worsening of the fits. The reason for this is
that, moving from left to right for the evaluation of the knot removal condition,
smaller values of c lead to an earlier rejection of the condition. In the present
case the structure of the original fitted function is so simple that after that one
knot, where the condition does not hold, is retained, all remaining knots can be
removed.

As we prefer a gradual decrease of the quality of the fit after knot removal
over abrupt changes when the cutoff is increased, we suggest to use the stepwise
mode of evaluation of the knot removal condition. In the example the cutoff
for the latter can be chosen from a large range and the resulting fits still are
within the pointwise confidence intervals. Only for c = 1, where no knot remains
within the domain of the covariate, the resulting fit is outside these intervals.
The resulting global polynomial of degree 2 can no longer adequately represent
the structure of the initial fit. Nevertheless, we will use the very cautious value
of c = 0.25 in the following, which in the example resulted in a fit nearly
indistinguishable from the original fit, while reducing the number of parameters
from 20 to only 4.

The corresponding truncated power series representation is

FVC = 2.66 − 8.30 · 10−3 · O3H24 + 4.24 · 10−5 · O3H242

−5.09 · 10−5 · (O3H24 − 114)2+ + ǫ

with error term ǫ. Using just one knot instead of 17 knots within the domain of
the covariate makes the equation manageable. It can now be used to extract the
expected “forced vital capacity” (FVC) by simply plugging in the corresponding
value of the covariate “max. O3 value of last 24h” (O3H24). In addition, the
position of the remaining knot indicates in which area there is structure in the
data not adequately represented by a global polynomial. For covariate values
above 114, i.e. for high O3 concentrations, the increase starts to level of, which
deviates from the u-shape of the global polynomial.

5.2 Multivariate Model

We employ the mixed model approach described in Wood (2004) to fit a multi-
variate model for “FVC”, including 5 binary covariates and 6 smooth functions.
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Figure 2: Fitted functions (solid curves) for the multivariate lung function model
together with pointwise confidence intervals (dotted curves) and functions re-
sulting from knot reduction with cutoffs c = 0.25 (dashed curves) and c = 1
(dash-dotted curves). Often the curves are indistinguishable. Note the different
scale for the “height” function.

For representation and estimation of each smooth component a B-spline basis of
degree 2 with 10 basis functions together with a third order difference penalty is
used. Unfortunately, we could not evaluate the use of a larger number of basis
functions (e.g. 20 per component), because this resulted in numerical problems.
This is a downside of the mixed model approach already encountered in the the
simulation study in Binder and Tutz (2006).

Figure 2 shows the resulting fitted smooth functions (solid curves) for the
continuous covariates together with approximate pointwise confidence intervals
(dotted curves). The covariate “height” seems to have the largest influence on
the response (note the different scale), which is plausible because lung volume
increases with height.

The functions resulting from knot removal, using cutoff c = 0.25, are in-
dicated by dashed curves in Figure 2. Except for a small deviation for large
values of covariate “BMI” these are virtually identical to the original fits. At
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the same time the number of parameters is reduced considerably: For 4 of the 6
continuous covariates (“age”, “bweight”, “NOH24”, and “O3H24”) all 7 knots
within the domain of the covariate can be removed. That means that only the
minimum of 3 basis functions is used for each of these covariates, corresponding
to a global polynomial of degree 2. For covariate “height” there are still 7 basis
functions and for covariate “BMI” there are 6 basis function. Using a cutoff of
c = 1 reduces this to 6 and 4 basis functions respectively, but the correspond-
ing fits (dash-dotted curves in Figure 2) already start to differ noticeably from
the original fits. Therefore it seems that the use of 7 and 6 basis functions
respectively is justified. Taken together, there is a considerable simplification
compared to the initial 10 basis functions used for representation of each of the
fitted smooth functions.

The corresponding coefficients of the truncated power series representation
are given in Table 2. In addition the standard error estimates based on the
transformed covariance matrices are given.

The constant terms from all components have been absorbed into the inter-
cept term and therefore no standard error is given for the latter. The approx-
imate standard error estimates are not intended for selection of components,
which should be based on p-values for the whole fitted functions. (Mis-)using
the standard errors for significance tests would result in stepwise knot selection,
which is not the intention of the present approach.

For the truncated power representation resulting from c = 0.25 there are still
25 parameters to be considered for the prediction of a new observation. Nev-
ertheless, this presents a considerable simplification over the original fit which
would correspond to 60 parameters (with the constant terms being absorbed
into the intercept term). Note also that 5 of the 25 parameters belong to binary
covariates and therefore were not even subject to reduction. So only a mean
number of about 3 parameters is used for representing the smooth influence of a
continuous covariate, which is close to the number typically used in unpenalized
approaches. Also, a simple linear model would already have 12 parameters and
a model that features quadratic components 18 parameters. Taken together, the
reduced representation is much improved with respect to transportability, while
preserving the shape of the fitted functions and thereby predictive performance.

One indication where interesting local features of the fitted functions are to
be found is given by the position of the knots remaining after knot removal.
This does not mean that there is no change of the fitted function in other areas
as the shape there still corresponds to a polynomial of degree 2, but only that in
areas with a larger number of knots global polynomials are no longer sufficient to
adequately describe the structure. For example for “height” the knot positions
in the representation resulting from using c = 0.25 together with the full sample
fit indicate that important local structure is present for values between 130 and
146. This corresponds to the increase in slope up to about 136 and the decrease
in slope up to 146 seen in Figure 2.

For the representation resulting from using c = 1 all parameters except the
ones for “height” and “BMI” stay the same. The complexity of the representa-
tion for the “BMI” component is reduced considerably. The parameter estimate
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Table 2: Coefficients and their standard errors for the truncated power series
representation of the reduced knot versions of the multivariate lung function
model fitted to the full data of size n = 811 (using c = 0.25 and c = 1) and to
a sub-sample of size n = 405 (using c = 0.25).

n = 811, c = 0.25 n = 811, c = 1 n = 405, c = 0.25
coef SE coef SE coef SE

intercept 1.84·101 - 1.65·101 - 1.66 -
sex -1.83·10−1 1.50·10−2 -1.83·10−1 1.50·10−2 -2.01·10−1 2.17·10−2

whibreath 3.17·10−2 3.85·10−2 3.17·10−2 3.85·10−2 4.07·10−2 5.36·10−2

shobreath 1.03·10−1 4.01·10−2 1.03·10−1 4.01·10−2 1.32·10−1 6.13·10−2

pollsens -4.40·10−2 1.78·10−2 -4.40·10−2 1.78·10−2 -4.63·10−2 2.55·10−2

hiozone -5.43·10−2 2.09·10−2 -5.43·10−2 2.09·10−2 -6.33·10−2 3.07·10−2

age 1.46·10−1 1.92·10−1 1.46·10−1 1.92·10−1 2.28·10−1 2.80·10−1

age2 -8.21·10−3 1.20·10−2 -8.21·10−3 1.20·10−2 -1.32·10−2 1.74·10−2

bweight 2.16·10−1 7.94·10−2 2.16·10−1 7.94·10−2 1.76·10−1 1.40·10−1

bweight2 -2.67·10−2 1.18·10−2 -2.67·10−2 1.18·10−2 -2.27·10−2 2.15·10−2

height -3.27·10−1 3.31·10−1 -2.92·10−1 2.57·10−1 -6.09·10−2 4.89·10−2

height2 1.38·10−3 1.30·10−3 1.24·10−3 9.85·10−4 3.38·10−4 1.77·10−4

(height-130)2+ -8.72·10−4 1.99·10−3 - - - -
(height-136)2+ -1.62·10−3 1.23·10−3 -2.78·10−3 2.03·10−3 - -
(height-141)2+ 1.25·10−3 1.11·10−3 1.69·10−3 1.46·10−3 - -
(height-146)2+ 2.06·10−3 1.21·10−3 2.06·10−3 1.21·10−3 - -
NOH24 -8.84·10−4 1.57·10−3 -8.84·10−4 1.57·10−3 -8.28·10−4 2.18·10−3

NOH242 -5.09·10−6 1.53·10−5 -5.09·10−6 1.53·10−5 -4.31·10−6 2.08·10−5

O3H24 -3.63·10−3 1.25·10−3 -3.63·10−3 1.25·10−3 -5.16·10−3 1.81·10−3

O3H242 2.09·10−5 6.64·10−6 2.09·10−5 6.64·10−6 2.86·10−5 9.46·10−6

BMI 1.98·10−1 1.15·10−1 1.80·10−1 8.83·10−2 1.64·10−1 1.10·10−1

BMI2 -5.02·10−3 3.57·10−3 -4.27·10−3 2.45·10−3 -3.87·10−3 3.19·10−3

(BMI-16.5)2+ 1.62·10−3 4.43·10−3 - - - -
(BMI-18.7)2+ 2.68·10−3 2.92·10−3 - - 2.31·10−3 5.57·10−3

(BMI-20.9)2+ 2.99·10−3 2.76·10−3 7.70·10−3 4.16·10−3 2.53·10−3 3.62·10−3

(BMI-23.1)2+ - - - - 1.52·10−3 3.22·10−3
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for one remaining knot within the domain of the covariate is larger than the cor-
responding estimate in the representation for c = 0.25. So it seems that this
one knot takes over the role of three knots from the latter representation. This
results in a distinct change of the fitted function. For the “height” component
all but one knot are retained compared to the representation for c = 0.25. This
is probably due to the narrow confidence intervals and the corresponding covari-
ance matrix which result in a more strict knot removal criterion. So it seems
that the local structure of the “height” function is well supported by the data.

To explore the influence of sample size on the fitted model and on the reduced
knot representation we fit the multivariate model to a random subsample of the
data of size n = 405. Figure 3 shows the fitted functions (dashed curves) after
knot reduction (using c = 0.25) and Table 2 shows the corresponding coefficients.
It is seen that, compared to the fit from the full sample (solid curves), the local
structure for the “height” function has disappeared. The reduced representation
does not feature any knot within the domain of the covariate. This might cast
doubt on the validity of the local features found for the “height” function in the
full sample. For the “BMI” component the fits from the full sample and from
the subsample look very similar and for the latter still three knots are retained
within the domain of the covariate (featuring slightly different positions). This
might suggest validity of the local features of the “BMI” function. For all
other covariates the fitted functions and parameter estimates are very similar,
indicating robustness of the fitted model and of the reduced knot representation.

6 Discussion

Modern techniques for fitting generalized additive models can deal with a large
number of covariates. For example, in the present paper we constructed a model
for children’s lung function featuring 6 continuous covariates with potentially
non-linear influence in addition to 5 binary covariates. The downside is that,
due to the large number of basis functions, the results can only be plotted, but
the corresponding model equation is much to complicated to be transported. In
our example it would have contained 60 parameters.

One prominent way for representing smooth function is the B-spline basis.
With this basis, or a basis that can be transformed to the B-spline basis, knots
can often be removed without changing the shape of the function. As this
knot removal is implemented without refitting as a linear transform of the (esti-
mated) parameters, also the covariance matrix of the parameter estimates can
be transformed. Thereby simplified model equations including standard error
estimates are obtained. We extended this to approximate knot removal where a
certain margin for the knot removal condition is allowed. It was demonstrated
that this can result in a considerably simplified model equation while closely
preserving shape. In our example we obtained a representation with only 25
parameters compared to the original 60 parameters, where several components
could be reduced to a global polynomial form. In this simplified form the model
can then easily used by other researchers to plug in covariate values of their

18



7 8 9 10

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

age

ef
fe

ct
 o

n 
F

V
C

1 2 3 4 5 6

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

bweight

ef
fe

ct
 o

n 
F

V
C

120 130 140 150 160

−
0.

5
0.

0
0.

5
1.

0

height

ef
fe

ct
 o

n 
F

V
C

20 40 60 80 100

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

NOH24

ef
fe

ct
 o

n 
F

V
C

40 60 80 100 120 140 160

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

O3H24

ef
fe

ct
 o

n 
F

V
C

15 20 25 30

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

BMI

ef
fe

ct
 o

n 
F

V
C

Figure 3: Fitted functions resulting from knot removal with cutoff c = 0.25 for
the multivariate lung function model fitted to the full data (solid curves) and to
a subsample of size n = 405 (dashed curves), together with pointwise confidence
intervals for the model from the full data (dotted curves).
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observational units to derive predictions from their own data or by doctors to
calculate predictions for patients. Such an application of a fitted model on new
data is essential for validation and might help to finally derive a robustified and
generally applicable model.

Decreasing the sample size, at least for the present example, resulted in a
model with less local structure. While this might be seen as a loss of information
with respect to the underlying structure, this also lead to a simpler, maybe
more robust, model fit with a smaller number of parameters in the reduced
knot representation. In any case, the knot removal technique allowed to explore
the effects of sample size on local features more closely.

The proposed knot removal approach could potentially also be useful for
analysing stability of fitted generalized additive models. When the fitting pro-
cedure under investigation is repeatedly applied to bootstrap samples, knot
reduction in every bootstrap samples could indicate which local features are
consistently retained and which ones may be just artefacts.

One use of the knot removal technique that has not been illustrated in this
paper is that of comparison of model fits. There are various approaches for fit-
ting generalized additive models and so far the results from different approaches
are often only compared by inspecting the plots of the fitted functions. Given
that each approach uses the B-spline basis or a basis that can be transformed
to it (such as the truncated power series basis) reduced knot representations
for the fits from the single approaches can be obtained. Given that the num-
ber of knots can be reduced considerably, these representations can then be
more easily compared between the approaches. Recently, Govindarajulu et al.
(2007) presented an alternative approach where the (weighted) area between
fitted functions is used for comparison.

One potential further extension is with respect to the set of global functions:
When all potentially removable knots are removed in the present approach,
global polynomials are obtained. This is only a very limited class of global
functions. When there is only little local structure, the fractional polynomial
approach (Royston and Altman, 1994; Sauerbrei and Royston, 1999) is more
flexible, resulting in a fit that is at least as good as a global polynomial. It also
has the advantage of selecting a simple linear function if a quadratic term does
not improve the fit. We are currently investigating new approaches that allow
for a larger set of global functions in combination with a (small) number of local
features obtained by knot removal.

Finally, the approach is not limited to continuous response models. When-
ever a generalized additive model can be fitted (e.g. for a binary or a Poisson
response) using a B-spline basis or a basis that can be transformed to the B-
spline basis, knot removal can be applied afterwards. This is also the case for
even more complex model classes such as generalized additive mixed models.
For example for the lung function data used in this paper there are additional
repeated measures available. Therefore the next step in model building could be
to construct an appropriate mixed model. The resulting representation could
then again be simplified by knot removal. This shows that the proposed ap-
proach is a general tool that is applicable in a wide variety of settings.
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