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Abstract

The unpredictability of seizures is a central problem for all patients suffering from uncontrolled epilepsy. Recently, numerous

methods have been suggested that claim to predict from the EEG the onset of epileptic seizures. In parallel, new therapeutic devices

are in development that could control upcoming seizures provided that their onset is known in advance. A reliable clinical appli-

cation controlling seizures, consisting of a seizure prediction method and an intervention system, would improve patient quality of

life. The question therefore arises as to whether the performance of the seizure prediction methods is already sufficient for clinical

applications. The answer requires assessment criteria to judge and compare these methods, but recognized criteria still do not exist.

Based on clinical, behavioral, and statistical considerations, we suggest the ‘‘seizure prediction characteristic’’ to evaluate seizure

prediction methods. Results of this approach are exemplified by its application to the ‘‘dynamical similarity index’’ seizure pre-

diction method using 582 hours of intracranial EEG data, including 88 seizures.

� 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

The recurrent and sudden incidence of seizures can

lead to dangerous and possibly life-threatening situa-

tions [1]. Since disturbance of consciousness and sudden

loss of motor control often occur without any warning,

the ability to predict epileptic seizures would reduce

patients� anxiety, thus improving quality of life and
safety considerably [2]. Constraints in everyday life
would be alleviated, and secondary behavioral distur-

bances might be avoided. Knowing in advance that a

seizure will occur could widen therapeutic options dra-

matically. For example, long-term treatment with an-

tiepileptic drugs, which may cause cognitive or other

neurological side effects, could be reduced to a targeted

and short-acting intervention [3].

During the last decade, several methods have been
suggested for prediction of epileptic seizures, based on

intracranial or scalp EEG recordings, that use concepts

of linear and nonlinear time series analysis [4–16]. It

has been claimed that seizures can be predicted at

least 20 minutes beforehand, maybe up to 1.5 hours

prior to onset for temporal lobe epilepsy. However,

there has been so far no evaluation of the performance

of seizure prediction methods based on long-term high-
quality data [17]. Furthermore, recognized perfor-

mance standards for assessing and comparing seizure

prediction methods are lacking [18]. Up to now, most

seizure prediction methods have been evaluated by

analyzing few and brief preseizure data sets to obtain

their sensitivity. Moreover, no or insufficient interictal

data have been investigated to determine their speci-

ficity.
In 1998, Osorio et al. proposed that both seizure

detection and prediction methods should be evaluated

with respect to sensitivity and false prediction rate
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[19,20]. We have extended this approach and suggest the
‘‘seizure prediction characteristic’’ to evaluate and

compare the performance of seizure prediction methods.

This assessment criterion is based on clinical and sta-

tistical considerations.

In the following, we focus on the properties and basic

requirements of a clinically applicable seizure prediction

method, which determine its assessment criterion in a

straightforward way. Our approach is illustrated by its
application to the ‘‘dynamical similarity index,’’ a sei-

zure prediction method introduced by Le van Quyen

et al. [7]. For this purpose, we have used intracranial

EEG data from 21 patients with pharmacorefractory

focal epilepsy. The examined data pool comprises 582

hours of EEG data and 88 seizures.

2. Seizure prediction methods and intervention systems

A clinical application controlling seizures consists of

a seizure prediction method that raises an alarm in

case of an upcoming seizure and an intervention sys-
tem that is able to control a seizure (Fig. 1). For a

successful application the properties and interdepen-

dencies of these two components have to be consid-

ered.

A seizure prediction method has to forecast an up-

coming epileptic seizure by raising an alarm in advance

of seizure onset. A perfect seizure prediction method

would indicate the exact point in time when a seizure is
to occur. This ideal behavior is not expected of current

prediction methods analyzing EEG data. We suggest

considering this uncertainty by use of the seizure oc-

currence period (SOP), which is defined as the period

during which the seizure is to be expected. In addition,

to render a therapeutic intervention or a behavioral

adjustment possible, a minimum window of time be-

tween the alarm raised by the prediction method and
the beginning of SOP is essential. This window of time

is denoted as the seizure prediction horizon (SPH)

(Fig. 2).

These two periods have to be taken into account to

judge a correct prediction. For a correct prediction, a

seizure must not occur during the seizure prediction

horizon, but during the seizure occurrence period. The

exact time of seizure onset may vary within SOP,
thereby reflecting the uncertainty of the prediction. It is

preceded by the seizure prediction horizon SPH, which

mirrors the capability of the method to give an alarm

early enough for a proper reaction.

If the seizure prediction horizon were long enough,

a simple warning would enable a patient to prepare

herself or himself for an arising seizure. He or she

could avoid a dangerous situation, for example, a
swimming pool or a busy street. Instead of warning the

patient, an intervention by an implanted ‘‘brain pace-

maker’’ is also imaginable. This device could activate a

minipump to deliver anticonvulsive drugs into the ep-

ileptic focus or trigger electrical stimulations, control-

ling the seizure [21].

Fig. 1. A clinical application controlling seizures consists of two

components: a seizure prediction method raising an alarm in case of an

upcoming seizure and an intervention system that is able to control the

seizure.

Fig. 2. A seizure prediction method has to forecast an upcoming epileptic seizure by raising an alarm in advance of seizure onset. As a perfect

prediction, indicating the exact time of seizure onset, is not expected, consideration of an uncertainty is required. We suggest the seizure occurrence

period (SOP) to be defined as the period during which the seizure is supposed to occur. In addition, a minimum window of time between an alarm

and the beginning of the SOP is essential for therapeutic devices. This time window is denoted as the seizure prediction horizon (SPH).
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3. Sensitivity and false prediction rate

A seizure prediction method should forecast a high

percentage of seizures. This ‘‘sensitivity’’ is calculated as

the fraction of correct predictions to all seizures. In a

realistic setting, false predictions cannot be prevented

and have to be permitted if they appear scarcely. They

are quantified by the number of false predictions in a

given time interval, the false prediction rate (FPR),
which is the appropriate measure for specificity in the

present context.

To increase sensitivity, the parameters of a seizure

prediction method may be adjusted for each patient.

Unfortunately, this also influences the false prediction

rate, as shown by the following example. Let us assume

a seizure prediction method based on a feature extracted

from the EEG data, which has significantly higher val-
ues during preictal than during interictal states. Crossing

a threshold triggers an alarm. As illustrated in Fig. 3,

lowering the threshold increases the number of crossings

and therefore increases sensitivity. After lowering the

threshold parameter, the seizure prediction method is

not only more sensitive in preictal but also in interictal

epochs, leading to more false predictions. In the extreme
case of a very low threshold every seizure will be pre-

dicted, increasing sensitivity up to 100%. This is

achieved at the expense of a large number of false alarms

during interictal phases. Because of this interdepen-

dency, sensitivity always has to be evaluated together

with the false prediction rate.

4. The maximum false prediction rate FPRmax

It may not be possible to circumvent false alarms

completely, but their negative impact leads to the

question of how many of them can be tolerated per time

unit. The negative effects of false predictions depend on

the chosen intervention system. In the case of a simple

warning, the patient prepares himself or herself during
the seizure prediction horizon and expects a seizure at

any moment during the seizure occurrence period. Since

in the case of a false prediction, the seizure will not arise

during this time, the patient is unnecessarily scared. Too

many false alarms may result in the effect that patients

will not take further alarms seriously and will be un-

Fig. 3. (a,b) Examples of EEG data (a) and an extracted feature (b) used by a seizure prediction method. (c–e) One-hour interictal (c) and two-hour

preictal (d,e) epochs. Bold vertical lines mark seizure onsets. Upward crossing of a threshold triggers an alarm. Three different thresholds (dashed

lines) illustrate the dependency between sensitivity and false prediction rate: For T1 no alarm occurs either during the preictal or interictal phases,
meaning zero sensitivity and zero false predictions. Threshold T2 leads to the correct prediction of the second seizure in (e) in a time interval 20
minutes before seizure onset, at the expense of one false prediction during the interictal epoch in (c). Decreasing the threshold to T3 to predict the first
seizure in (d) produces another false alarm. Hence, ignoring the false prediction rate may yield a high sensitivity when adapting the seizure prediction

method�s parameters. For evaluation of a prediction method the simultaneous calculation of sensitivity and false prediction rate is required.
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prepared for seizures. On the other hand, patients taking
all alarms seriously will potentially suffer from a huge

psychological stress.

Interventions like the administration of anticonvul-

sive drugs and triggering an electrical stimulation are

accompanied by possible side effects which may add up

to relevant neuropsychological impairment, if too many

interventions based on false predictions are carried out.

Hence, depending on the patient and chosen interven-
tion system, a maximum false prediction rate (FPRmax)
has to be defined that is still acceptable from a clinical

point of view.

The average seizure incidence may indicate a rea-

sonable range for FPRmax. In the setting of presurgical
monitoring there is an artificially high seizure frequency

due to the reduction of anticonvulsive medication. Here,

a maximum averaged number of 0.15 seizure per hour,
or 3.6 seizures per day, was reported [22]. Under normal

conditions, patients with pharmacorefractory focal epi-

lepsy have a mean seizure frequency of about three

seizures per month, meaning 0.0042 seizure per hour

[23]. Values of FPRmax higher than the mean seizure
frequency of 0.15 seizure per hour during monitoring

are questionable with respect to possible clinical appli-

cations. Even if all seizures can be predicted correctly, at
least 50% of all alarms would be false alarms for patients

during monitoring. This percentage increases to 97% in

the case of epileptic patients under normal conditions.

5. Minimum seizure prediction horizon (SPHmin) and
maximum seizure occurrence period (SOPmax)

All intervention systems require a certain period to

become effective. Whereas implanted devices may need

only a few seconds to control an upcoming seizure, a

warning system has to predict the seizure at least tens of

seconds before onset, providing enough time to prevent

dangerous situations. This intervention period deter-

mines the minimum seizure prediction horizon (SPHmin)
for a successful clinical application.
Similarly, the chosen intervention system determines

the maximum seizure occurrence period (SOPmax). Be-
cause the exact point of time for seizure onset is un-

known, interventions like electrical stimulation and

delivery of anticonvulsive drugs should have effects

lasting the whole seizure occurrence period. Longer oc-

currence periods may increase the risk of additional side

effects of such a prolonged intervention. This determines
an upper limit for the seizure occurrence period.

In case of a warning system, the patient�s psycho-
logical stress increases with longer seizure occurrence

periods, because a seizure is expected at any moment

during this interval. Seizure occurrence periods that are

too long contribute to the patient�s anxiety. Clinical
considerations have to determine a maximum stress level

leading to an upper bound for the seizure occurrence
period.

Apart from clinical aspects, comparison with unspe-

cific prediction methods gives insight into a reasonable

scale for the seizure occurrence period, based on statis-

tical relations.

6. Unspecific seizure prediction methods

Seizure prediction methods should have a signifi-

cantly higher sensitivity than unspecific ones like the

random and periodical prediction methods.

6.1. Random prediction method

One unspecific prediction method is random predic-
tion, in which alarms are triggered completely randomly

without using any information from the EEG. The re-

lation of the random prediction method to any other

method is as follows: In general, the parameters of a

seizure prediction method are adjusted to increase sen-

sitivity until the false prediction rate equals the upper

bound FPRmax. Then, during a small interictal time in-
terval I the probability of an alarm is p ¼ FPRmax � I .
Observing a longer time intervalW, the probability P of

at least one alarm can be calculated as

P ¼ 1� 1ð � FPRmax � IÞW =I � 1� e�FPRmaxW for I � W :

For W ¼ SOP , this is exactly the sensitivity of a random
prediction method, because it is the probability of at

least one alarm during the seizure occurrence period.

6.2. Periodical prediction method

The periodical prediction method is another unspe-

cific prediction method in which no information from

the EEG is used. Here, alarms are raised periodically. If

during interictal phases the false prediction rate equals

FPRmax, the probability P of an alarm during the seizure
occurrence period SOP is

P ¼ min FPRmax � SOP ; 100%f g:
This is the sensitivity of a periodical prediction method.

In the case of high values of SOP or FPRmax, both
unspecific prediction methods achieve high sensitivity

approaching 100%. For example, if we consider a

maximum false prediction rate of one false prediction

per hour (FP/h) and a seizure occurrence period of 50

minutes, the random prediction method yields a sensi-
tivity of 57%, and the periodical prediction method, a

sensitivity of 83%. Hence, for maximum false prediction

rates, which are too high, or seizure occurrence periods,

which are too long, the performance of any specific

seizure prediction method cannot be distinguished from

the results of these unspecific prediction methods.
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7. Assessing seizure prediction methods

The parameter set of a seizure prediction method is

adjusted until the method is most sensitive without

producing false predictions exceeding the upper bound

FPRmax. Therefore, interictal data of at least 1=FPRmax
duration are required to verify the condition for the false

prediction rate. For example, to verify FPRmax corre-
sponding to one false alarm per day, at least 24 hours of
interictal data are necessary. During this time interval

only one false prediction is permitted. Even more EEG

data are needed to examine the prediction method�s
performance with a maximum false prediction rate of

the same magnitude as the mean seizure frequency of

three per month, typically for patients with pharma-

corefractory focal epilepsy.

The values for the maximum false prediction rate
FPRmax, the minimum seizure prediction horizon SPHmin,
and the maximum seizure occurrence period SOPmax
depend on a particular intervention system, which is

generally unknown at the time of the development of a

particular seizure prediction method. Therefore, the

prediction method should be evaluated for a reasonable

range of FPRmax, SPH, and SOP. Consequently, a sei-
zure prediction method cannot be assessed by a single
parameter, but its performance is mirrored by the de-

pendence of sensitivity S on the maximum false pre-

diction rate, the seizure prediction horizon, and the

seizure occurrence period for a given seizure prediction

method, leading to the seizure prediction characteristic

S ¼ SðFPRmax; SPH ; SOP Þ:
This approach enables the assessment and comparison of

various seizure prediction methods independently of any

particular clinical application. As a minimum require-

ment, a seizure prediction method should be superior to
unspecific seizure predictionmethods, such as the random

or periodical prediction methods, by achieving a signifi-

cantly higher seizure prediction characteristic.

8. An application: the dynamical similarity index method

Le van Quyen et al. introduced a seizure prediction
method called ‘‘dynamical similarity index’’ [7]. In sev-

eral studies, they applied their method to EEG data

from patients suffering from temporal lobe epilepsy [8,9]

and neocortical epilepsy [15]. We implemented the dy-

namical similarity index as introduced in [7]; a brief

description of the method is given in Appendix A.

The dynamical similarity index was applied to a large

data pool of intracranial EEG data from 21 patients
suffering from pharmacorefractory focal epilepsy. The

data were recorded during presurgical epilepsy moni-

toring with invasive electrodes. Preictal period was de-

fined as the period preceding the first unambiguous

electrographic ictal EEG pattern in clinically manifest
seizures, as judged by certified epileptologists. For every

patient, 2–5 seizures (mean 4.2) with preictal periods of

50 minutes and 24 hours of interictal data sets were

analyzed. Altogether 582 hours of EEG data, including

88 seizures, were investigated.

For the dynamical similarity index, the average sei-

zure prediction characteristic SðFPRmax; SPH ; SOPÞ for
all patients was calculated in the aforementioned man-
ner. Figs. 4 and 5 display the seizure prediction char-

acteristic with fixed values for SOP ¼ 30 minutes and
FPRmax ¼ 0:15 FP/hour, respectively. In both figures,
SPH is fixed to 5 seconds, corresponding to the mini-

mum seizure prediction horizon of very fast intervention

systems. The dotted lines display the performance of the

periodical prediction method; the dashed lines, the

random prediction method.
The logarithmically scaled maximum false prediction

rate FPRmax covers three regions (Fig. 4): values around
FPRmax ¼ 0:004 FP/hour correspond to the mean seizure
frequency of pharmacorefractory focal epilepsy patients

with three seizures per month. Here, contiguous EEG

data of several days are required to evaluate the corre-

sponding sensitivity. Our data pool, comprising 24

hours of interictal data for every patient, enables the
evaluation of at least one false alarm per day, i.e., 0.042

false prediction per hour.

In the middle region, ranging from one false predic-

tion per day up to the averaged maximum seizure fre-

quency during monitoring, 3.6 per day, sensitivity

amounts to 21–42%. However, the false prediction rate

is at least 10 times higher than the mean seizure fre-

quency under normal conditions.
For higher maximum false prediction rates up to

FPRmax ¼ 1 FP/hour, sensitivity strongly increases and
reaches values close to 100%. The reason for this is ev-

ident: After an alarm, the seizure prediction method is

inactivated and produces no further alarms during the

seizure prediction horizon and the seizure occurrence

period. Suppose a maximum false prediction rate of one

per hour and a refractory period SPH þ SOP of half an
hour after every alarm. In this case only half the amount

of EEG data is used to test for false predictions. Now,

more sensitive parameter settings can be chosen yielding

a higher sensitivity. This relation is illustrated by an

unspecific periodical prediction method (dotted line): it

‘‘predicts’’ correctly about 50% of the seizures for

FPRmax ¼ 1:0 FP/hour.
Relating a maximum false prediction rate of

FPRmax ¼ 0:2 FP/hour to the spontaneous seizure rate
of 0.15 seizure per hour in the monitoring setting, 57%

of the alarm events would be false predictions. In the

general case with three seizures per month, the fraction

of false alarms increases up to 98%. Hence, only maxi-

mum false prediction rates at least below 0.15 FP/hour

are reasonable.
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Fig. 5 displays the dependency of the seizure predic-

tion characteristic on the seizure occurrence period

(SOP) for a given maximum false prediction rate of 0.15

FP/hour, which corresponds to the averaged maximum

seizure frequency during monitoring. For short seizure

occurrence periods of a few minutes, sensitivity amounts

Fig. 5. Seizure prediction characteristic SðFPRmax ¼ 0:15 FP=hour; SPH ¼ 5 seconds; SOPÞ for the dynamical similarity index with twice its standard
deviation calculated from all patients. The dashed line displays the performance of the random prediction method; the dotted line, the periodical

prediction method.

Fig. 4. Seizure prediction characteristic S(FPRmax, SPH¼ 5 seconds, SOP¼ 30 minutes) for the dynamical similarity index with twice its standard
deviation calculated from all patients. The dashed line displays the performance of the random prediction method; the dotted line, the periodical

prediction method. Vertical lines mark averaged maximum seizure frequencies during epilepsy monitoring and for patients with pharmacorefractory

focal epilepsy under normal conditions.
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to 10–20%. Up to SOP ¼ 36 minutes, sensitivity in-
creases faster than for the unspecific prediction methods.

For longer seizure occurrence periods, sensitivity pla-

teaus at about 50%. The slight increase in sensitivity for

this range cannot be distinguished from the increase in

the random and periodical prediction methods, and is

therefore not a performance feature of the method.

In summary, the values of the seizure prediction

characteristic of the dynamical similarity index are
significantly higher than those of the unspecific pre-

diction methods. For a reasonable range of false pre-

dictions per hour below the averaged maximum seizure

frequency during monitoring, seizure occurrence peri-

ods up to 30 minutes, and a small seizure prediction

horizon of 5 seconds, its sensitivity ranges from 21 to

42%.

9. Conclusion

The unpredictability of upcoming seizures is a central

problem for patients with uncontrolled epilepsy and for

their relatives [24]. The level of uncertainty and the as-

sociated stress of a patient will be reduced dramatically

if a correct prediction of seizures is possible [25], leading
to a higher degree of perceived self-control [26]. To

contribute to a reduction in uncertainty about the im-

minent occurrence of a seizure, it is necessary to con-

sider both false and correct predictions.

The above considerations, however, demonstrate that

adjusting the parameters of a prediction method to

achieve higher sensitivity also increases the false pre-

diction rate. Therefore, to assess seizure prediction
methods, the simultaneous calculation of false predic-

tion rate and sensitivity is essential.

Too many false alarms may cause patients to ignore a

warning system or lead to possible side effects of un-

necessary interventions, causing physiological impair-

ment. A clinical application achieving a high sensitivity

at the expense of a high false prediction rate is ques-

tionable with respect to the quality of life of patients.
Frequent false predictions might even immobilize the

patients� coping processes [25] and contribute to the
patients� helplessness and depression [27]. Therefore,
depending on a chosen intervention system, a maximum

false prediction rate has to be determined based on these

considerations.

Not only the maximum false prediction rate, but also

the values for the minimum seizure prediction horizon
and maximum seizure occurrence period have to be

based on these considerations. In the case of a warning

system, the patient�s psychological stress would likely
increase with longer seizure occurrence periods. In

contrast, a seizure prediction horizon that is too short

would not provide enough time to avoid situations that

could endanger the patient in the event of a seizure.

Hence, for a particular intervention system and de-
pending on clinical and behavioral considerations, a

maximum false prediction rate, a maximum seizure oc-

currence period, and a minimum seizure prediction ho-

rizon have to be determined.

As in general an intervention system is unknown

during the development of a seizure prediction method,

sensitivity has to be calculated for a range of values for

the maximum false prediction rate, the seizure predic-
tion horizon, and the seizure occurrence period. This

relation is described by the seizure prediction charac-

teristic. It can be determined for any particular seizure

prediction method and thus constitutes an objective

measure of their performance. It allows not only for an

assessment but also for a comparison of different seizure

prediction methods. This is a prerequisite for the further

development of seizure prediction methods with the aim
of improving patients� quality of life.

Appendix A. The ‘‘dynamical similarity index’’

The ‘‘dynamical similarity index’’ introduced by Le

van Quyen et al. [7] compares the dynamic of the EEG

data in a sliding window St with the data in a fixed
reference window Sref of an interictal period. This ref-
erence is chosen far from any seizure and lasts 300 sec-

onds.
For the calculation, new time series In are computed

as time intervals between two positive zero crossings of

the EEG data. A delay embedding with dimension

m ¼ 16 and delay s ¼ 1 leads to An ¼ ðIn; In � s; . . . ;
In�ðm�1ÞsÞ. To reduce noise, the trajectory matrices AðStÞ
of the sliding window and AðSrefÞ of the reference win-
dow are projected on the principal axes of the refer-

ence window, yielding XðStÞ and XðSrefÞ, respectively.
The principal axes are calculated by means of a singu-

lar value decomposition of the reference window. A

random selection YðSrefÞ of XðSrefÞ in the phase space
is compared with XðStÞ using the cross-correlation

integral

CðSref ; StÞ ¼
1

NrefNt

XNref
i¼1

XNt

j¼1
H r
�

� ~YY iðSrefÞ
��� � ~XX jðStÞ

���
�
:

Here, k � k denotes the euclidian norm, H the Heaviside

step function, and Nref and Nt the number of points in

the phase space of the reference and sliding windows,

respectively. The distance r is defined as the 30%

quantile of the cumulative neighborhood distribution of

the reference window.

Finally, the dynamical similarity index cðStÞ is given
by

cðStÞ ¼
CðSref ; StÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CðSref ; SrefÞCðSt; StÞ
p :
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