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Universitätsklinikum Freiburg

Stefan-Meier-Straße 26

D–79104 Freiburg im Breisgau

rs@fdm.uni-freiburg.de

jan@fdm.uni-freiburg.de

ms@imbi.uni-freiburg.de

binderh@fdm.uni-freiburg.de



Abstract

The development of prognostic time to event models is an area of active research,

notably in the fields of cardiology, oncology and intensive care medicine. These

models try to find a link between patient covariates and an event at a later time

point, and are used for example for therapy assignment, risk stratification or inter-

hospital quality assurance. Increasingly, interest is not only in prognostic models

with one possible type of event (e.g. death), but in models that distinguish between

several competing endpoints. However, research into methods for the evaluation of

the prognostic potential of these models is still needed, as most proposed methods

measure either discrimination or calibration of models, but do not examine both

simultaneously. We adapt the prediction error proposal of Graf et al. (1999) and

Gerds and Schumacher (2006) to handle models with more than one possible event

type and introduce a consistent estimator. A simulation study investigating the

behaviour of the estimator in small sample size situations and for different levels of

censoring together with a real data application follows, highlighting the usefulness of

the proposed approach for quantifying effects of model misspecification in summary

models for a competing risks setting.

Keywords: Brier Score, Competing Risks, IPCW, Prediction Error, Quadratic Loss.

1 Introduction

The development of prognostic time to event models is an area of active research, notably

in the fields of cardiology, oncology and intensive care medicine. These models try to

find a link between patient covariates and an event at a later time point, and are used for

example for therapy assignment, risk stratification or inter-hospital quality assurance.

Increasingly, interest is not only in prognostic models with one possible type of event

(e.g. death), but in models that distinguish between several competing endpoints. A
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prominent example in oncology is the treatment of leukemia with bone marrow trans-

plantation, major endpoints being the recurrence of leukemia, graft versus host disease

and death (Andersen and Perme, 2008). In coronary risk prediction, it has been recog-

nized that especially in elderly populations, the competing event ’death of other causes’

needs to be taken into account appropriately - otherwise there is danger to substantially

overestimate long term coronary heart disease risk (Wolbers et al., 2009). There is an

ongoing debate whether composite endpoints are still appropriate in times of complex

therapy assignments. A recent literature review in clinical oncology (Le Tourneau et al.,

2009) found a multitude of combined endpoints including, e.g., progression-free survival,

distant metastasis-free survival, locoregional relapse-free survival etc.. The medical prob-

lems at hand will, as these endpoints exemplarily suggest, usually be more complex than

can be addressed by the analysis of time until one potentially combined event type. In

a Lancet comment, Cuzick (2008) has criticized using combined endpoints as not being

specific enough, potentially leading to ‘substantial loss of information’. His criticism ex-

plicitly included the endpoint ‘time until death’, i.e., overall survival, because it lumps

together disease-specific death and other causes of death. Overall survival may not be

specific enough for good-prognosis diseases. In recent methodological research, this cri-

tique has been taken up and increasingly competing risk modelling has been applied.

Prediction from such transition hazard models has been prominently studied, see e.g.

Cheng et al. (1998); Fine and Gray (1999); Shen and Cheng (1999); Scheike and Zhang

(2003); Sun et al. (2006); Hyun et al. (2009).

However, research into methods for the evaluation of the prognostic potential of these

models is still needed. In a recent article, Saha and Heagerty (2010) enhance time-

dependent versions of sensitivity and specificity to handle competing risks. Wolbers et al.

(2009) suggest an adapted concordance index C, as well as an adapted D (a measure

of prognostic separation in survival data proposed by Royston and Sauerbrei, 2004).

However, all of these are rather measures of discrimination than measures of predictive
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accuracy. Rank-based measures such as sensitivity, specificity and the C-Index also

cannot distinguish between well and badly calibrated prognostic models, as they are

invariant to monotone transformations of predictions. Additionally, common estimators

for the C Index suffer from a bias incurred by right-censored event types. This has been

recognized and corrected (Gerds et al., 2010) for survival data, but is still missing for

competing risks data. Gail and Pfeiffer (2005) give an overview of evaluation criteria

(with regard to calibration, discrimination, accuracy and explained variation measures)

for competing risk models, but without touching the issue of estimation in the presence

of censoring.

One criterion suggested by Gail and Pfeiffer (2005) is the mean squared error of pre-

diction, or expected Brier score (Brier, 1950), which has also been termed prediction

error (Gerds and Schumacher, 2006). The prediction error is the expected quadratic loss

incurred by the difference of observed event status and by the model predicted event

probabilities. It can be shown that the prediction error is minimal if and only if the true

probabilities are used for prediction. Such prediction error measures are called strictly

proper, because they encourage the honesty of the forecaster (the quality of the model

resp.) (Dawid, 1986). The prediction error measures simultaneously both calibration

and discrimination (Kohlmann et al., 2009) and as such is an unified attempt for an

overall inaccuracy measure.

We follow this line of thinking and adapt the prediction error proposal of Graf et al.

(1999) and Gerds and Schumacher (2006) to handle models with more than one pos-

sible event type. We focus on predictions made in terms of predicted probabilities, as

it is known that time point predictions are usually of poor value (Henderson et al.,

2001).

We will derive adapted prediction error measures in two intuitively plausible ways. The

first derivation uses the concept of improper event times e.g. mentioned by Gray (1988)
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which, at least conceptually, allows straightforward application of the prediction error

for only one endpoint. The second derivation utilizes the quadratic loss function tailored

to several possible event types. We will show that both approaches lead to the same

measure. A consistent estimator for the case of conditionally independent censoring

will be introduced that uses a weighting scheme commonly known as IPCW (inverse

probability of censoring weighting; Robins et al., 1994).

In a simulation study, we will investigate the behaviour of the estimator in small sample

size situations and for different levels of censoring. Additionally, we will study the effect

in prediction error terms when using a misspecified prognostic model. Knowing the

true underlying probabilities and thus the minimal prediction error, we can quantify the

amount of prediction error due to misspecification. One reason why misspecification of

prognostic time to event models in the presence of competing risks is a concern is that

the two most frequently used ways of modelling the (sub)distribution of event times with

competing risks exclude each other. If one assumes that the data follow a proportional

cause-specific hazards model, then a Cox analysis of the subdistribution hazard (Fine

and Gray, 1999) is misspecified, and vice versa. Latouche et al. (2007) and Grambauer

et al. (2010) have studied the least false parameter of such an analysis, see also Klein

(2006) for a related discussion. Besides showing that our proposal can quantify the

effects of misspecification, this highlights the importance of employing measures that are

independent of model assumptions. For example, when the proportionality assumption

does not hold, any measures based on the partial log-likelihood will be misguided, while

our proposed measure is not affected.

Finally, we will analyse a real data set where competing risks are present. Again, using

the proposed measure enables to compare different prognostic models with each other

and gives a first insight into which model to prefer and which assumptions are probably

misspecified.
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2 Prediction error for survival time data

To be able to adapt the prediction error concept to competing risk data, we will shortly

outline the approach for standard survival data. We define a prediction π(s|z) as an

estimate of the conditional survival probability P(T > s|Z = z) with T ∈ R+ the

survival time, Z a vector-valued baseline covariate and s a time point of interest. (As

usual, we denote random variables with capital letters and their realisations with lower

case letters.) Typically, π(s|z) will be the output of a prognostic model applied to a

subject with covariate vector z. Graf et al. (1999) and Gerds and Schumacher (2006)

define the prediction error as the expected quadratic loss of prediction π:

PE(s) = E[I(T > s) − π(s|Z)]2 (1)

While π(s|Z) is the predicted probability that a subject with covariate vector Z will

survive time point s, the indicator process I(T > s) denotes the actual survival status.

It will be 1 for all subjects at the beginning of the study and only turn 0 after a subject

dies.

Estimation of the prediction error is easy for complete data, but in the presence of

censoring the survival status at time point s cannot be observed for all individuals. Graf

et al. (1999) suggested an estimator for the case of random censoring, which was extended

to independent censoring conditional on the covariate by Gerds and Schumacher (2006):

Let (T1, Z1), . . . , (Tn, Zn) denote n independent copies of (T, Z). We assume that we have

an externally created prediction π that is validated in the dataset (T1, Z1), . . . , (Tn, Zn).

(Otherwise, we need to require of a sample dependent πn that it will converge for large

n to a limit π, see Gerds and Schumacher, 2006). With right censoring, the event time

Ti is not observable for every patient i. Let U ∈ R+ be the time to censoring and

(U1, . . . , Un) n independent copies of U . T̃i = min(Ti, Ui) is called the observation time
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with ∆i = 1{Ti ≤ Ui} the censoring indicator, ∆i = 0 indicating that T̃ is a censoring

time. We assume that the censoring time U is stochastically independent of the event

time T given covariate vector Z, and that (U1, . . . , Un) are identically distributed with

G(s|z) = P(U > s|Z = z) the conditional survival function of the censoring variable.

The information observable for patient i therefore consists of (T̃i, ∆i, Zi).

With these assumptions and with τ a point in time with G(τ |z) > 0, a uniformly strong

consistent estimator for the prediction error is given for all times s ≤ τ (Gerds and

Schumacher, 2006) by

P̂E(s) =
1

n

n∑

i=1

[I(ti > s) − π(s|zi)]
2w(s; t̃i; δi; Ĝn, zi) (2)

and

w(s; t̃i; δi; Ĝn, zi) =
I(t̃i ≤ s)δi

Ĝn(t̃i − |zi)
+

I(t̃i > s)

Ĝn(s|zi)
(3)

where Ĝn is a consistent estimate of G in the following sense:

sups≤τ |
∫

Ĝn(s|z)−G(s|z)dPZ |
as
−→ 0. Gerds and Schumacher (2006) suggest to estimate

G e.g. by the Cox or Aalen additive regression model. If random censoring is present,

G can be estimated by the covariate independent Kaplan Meier estimator.

Weighting schemes like this are generally called ’inverse probability of censoring weight-

ing’ (IPCW). General inverse probability weighting was already introduced in the early

1950 (Horvitz and Thompson, 1952) in the area of sample selection. This idea was trans-

fered to parameter estimation in semiparametric models with missing data at random

by Robins et al. (1994) who suggested to use inverse weighting of complete cases. The

intuitive reasoning behind it is as follows: Let p(Z) be the probability of an individual

with covariate vector Z to have complete data (complete data refers in this situation to

complete observation of a response vector, while Z is assumed to be always observable).

Any individual with complete data and covariate Z can therefore be thought of to repre-
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sent 1
p(Z) individuals at random from the population, some of which might have missing

data. This suggests a reweighting of complete cases with covariate vector Z by 1
p(Z) to

account for the missing individuals.

Missing values are a form of data coarsening, and Heitjan and Rubin (1991) developed

a general theory for coarsened data that includes censored as well as missing data.

Applied to our data situation, we have complete data consisting of (Ti, Zi), i = 1, . . . , n,

and coarsened (censored) data consisting of the data vector (T̃ , Zi), where ’Complete

cases’ refers in our case to all patients with an identifiable event status at the time

point s. In our notation, these are all patients with an observed event up to s (i.e.

Ti ≤ Ui, Ti ≤ s, which is the same as T̃i ≤ s,∆i = 1) and all patients still at risk at

s (i.e. Ti > s, Ui > s). We separate the time axis at s and see that the probability of

a complete case given an event up to s and covariate vector zi is thus P(Ui ≥ Ti|Ti ≤

s, Zi = zi) = P(Ui ≥ Ti|Zi = zi) = G(Ti − |zi) (using the factorization of conditional

expectations). The probability of a complete case given an event after s and covariate

vector zi is P(Ui > s|Ti > s, Zi = zi) = P(Ui > s|Zi = zi) = G(s|zi). This suggests

a reweighting of the complete cases with an event before s by 1/G(Ti − |zi), while the

complete cases with an event after s are reweighted by 1/G(s|zi). Note that the weighting

factor 1/G(Ti − |zi) is equal to 1/G(T̃i − |zi) if ∆i = 1. For complete cases the survival

status based on uncensored data is observable and equal to I(T̃i > s).

3 Prediction error for competing risks time to event data

Competing risks situations are situations where a subject is at risk to experience an

event of k = 1, . . . , K different types. Without loss of generality, we assume throughout

the remainder of the text that interest lies in predicting events of type 1 and group all

other types together into type 2. This situation can be depicted in the simple multi-state
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model of Fig. 1 (for an overview on the competing risks multi-state model see Andersen

et al. (2002).)

Initial

state
0 HHHHHHHHj

��������* 1

2 Event of type 2

Event of type 1

Figure 1: Possible states and transitions within a competing risk situation.

Let Xt ∈ {0, 1, 2} denote the state a patient is in at time t. Every patient is in state 0 at

the begin of the study (P(X0 = 0) = 1). At the random time T := inf {t ≥ 0 : Xt 6= 0},

a patient may experience an event of type 1 (XT = 1) or 2 (XT = 2). The event time T

is thus the waiting time in the initial state 0.

With the cumulative incidence function (CIF) of type 1 we denote the probability sub-

distribution P(T ≤ t, XT = 1) (it is a subdistribution function because it does not

converge to 1 as t goes to infinity, but to P(XT = 1), the expected proportion of type 1

events). However, the CIFs for all possible causes in a competing risk model will always

add up to the distribution function of T .

We can adapt the prediction error measure in two intuitively plausible ways. The first

utilizes the concept of improper event times e.g. mentioned by Gray (1988) which allows

for straightforward application of the prediction error for only one endpoint. The second

approach changes the quadratic loss function to one tailored to several possible event

types.
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The idea of introducing improper event times is to recast the competing risks situation

into a standard survival setting. We define the improper event time T ∗ =
{

T XT =1
∞ XT 6=1 .

T ∗ thus has a distribution function equal to the CIF of type 1 for t < ∞ and a point

mass in t = ∞ which represents all events of other types. We note that in a standard

survival setting it is usually not required for event times to have finite values only. The

prediction error in the presence of competing risks is then

PECR;improper(s) = E[I(T ∗ > s) − (1 − π(s|Z))]2 (4)

where π(s|Z) is the predicted CIF of type 1.

If we want to adapt the quadratic loss function, we need to decide upon which event

status (and accordingly which predicted probability) to use. An obvious choice is the

event status of experiencing an event of type 1, I(T ≤ s, XT = 1), and its predicted

probability P(T ≤ s, XT = 1), which is the predicted CIF. The prediction error defined

earlier then changes to

PECR;loss(s) = E[I(T ≤ s, XT = 1) − π(s|Z)]2 (5)

As with the prediction error for survival data, we use the expected squared difference

between observed and model predicted values.

Looking closer at our two approaches, we observe that they in fact result in the same

measure PECR.

We also note that the usual variance-bias decomposition of the Brier score holds. In

fact, one can decompose (5) into

E
[
P(T ≤ s, XT = 1|Z)

(
1 − P(T ≤ s, XT = 1|Z)

)]
+ E

[
P(T ≤ s, XT = 1|Z) − π(s|Z)

]2

(6)
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The first part (variance) describes the inherent variability of the survival status process,

also called ’inseparability’. The second part (bias) measures the calibration or precision

of the prediction with respect to the true probability. With this decomposition, one easily

sees that even for a perfect prediction (i.e. π = P), the prediction error will not be zero,

but will reach its minimum level of E
[
P(T ≤ s, XT = 1|Z)

(
1 − P(T ≤ s, XT = 1|Z)

)]
.

If the prognostic model is misspecified such that π(s|Z) is no consistent estimate of the

CIF, the prediction error will include the additional term E
[
P(T ≤ s, XT = 1|Z) −

π(s|Z)
]2

.

4 Consistent Estimation

The introduction of improper event times allows straightforward application of the pre-

diction error for only one endpoint. Using the notation of section 2 and again assuming

independent censoring conditional on covariates, we define with Θi the minimum of the

improper event time T ∗
i and the censoring time Ui, while ∆Θ

i = I(T ∗
i ≤ Ui) is the indi-

cator whether the observed minimum is an event of type 1 or a censoring time. Ĝθ
n(s|zi)

is an estimate of the conditional censoring survival function G(s|zi) that is calculated on

the improper event time data set. Then, we can employ the estimator P̂E(s) of section

2 with loss [I(t∗i > s) − (1 − π(s|zi))]
2 and weight w(s; θi; δ

θ
i ; Ĝ

θ
n; zi).

Although this approach is quite elegant, it is unpractical in one vital aspect. To be able to

calculate P̂E(s), one needs to observe Θi for all individuals. This is only the case if we are

in a situation of progressive Type I censoring - i.e. the potential censoring time is known

for each individual (e.g. administrative censoring). However, for a random censoring

mechanism, Θi = min(T ∗
i , Ui) remains unobserved for those patients experiencing event

type 2, and the estimator cannot be used straightforwardly. Ruan and Gray (2008)

propose multiple imputation methods to recover such missing potential censoring times.

11



They are imputed by drawing at random from the estimated censoring survival function,

and this is repeated several times. The analysis can then take place and the resulting

estimator is the pooled estimator of all imputation analyses.

We propose another approach to handle censored data that does not require multiple

imputation. The idea behind it is again to reweight the simple plug-in estimator for (4)

with weights to account for the unobservable data. With τ and Ĝn as before, a uniformly

strong consistent estimator for the prediction error in the presence of competing risks is

given ∀s ≤ τ by

P̂ECR(s) =
1

n

n∑

i=1

[I(t∗i > s) − (1 − π(s|zi))]
2w(s; t̃i; δ; Ĝn; zi) (7)

and

w(s; t̃i; δi; Ĝn, zi) =
I(t̃i ≤ s)δi

Ĝn(t̃i − |zi)
+

I(t̃i > s)

Ĝn(s|zi)
(8)

For a proof see the appendix, where the case of sample dependent predictions πn is also

treated.

We observe that the same weighting scheme as in (3) applies: complete cases are those

with an event (of any kind) before s and those with an event after s. For complete cases,

the event status I(t∗i > s) based on uncensored data is observable.

This estimator can be written both in terms of improper event times (7) or adapted loss

function:

P̂ECR(s) =
1

n

n∑

i=1

[I(ti ≤ s, xT,i = 1) − π(s|zi)]
2w(s; t̃i; δ; Ĝn; zi) (9)

This is true since for complete cases the event status in (7) and (9) is observable and

identical. In an unpublished technical report, Rosthøj and Keiding (2003) suggested a

similar estimator for the case of randomly censored data without any covariate depen-
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dency.

Looking at representation (7) of the estimator, we see that the general approach taken

(and the weighting scheme used) is identical to the approach and weighting scheme used

by Fine and Gray in their article proposing Cox regression on improper event times (Fine

and Gray, 1999). Their suggestion was to apply the standard estimation procedure on

improper event times and to reweight complete cases to account for the unobservable

data. They used the same weighting scheme to do this.

Having understood this analogy, we see that estimator (7) is in fact a correction of

estimator P̂E(s) used on improper event times. With weights w(s; t̃i; δi; Ĝn; zi) instead

of w(s; θi; δ
θ
i ; Ĝ

θ
n; zi), information of the original, ’not-improperized’ data is used that

enables estimation even in the case of independent censoring.

5 Simulation study

5.1 Design

One purpose of the following simulation study is to evaluate the performance of the pro-

posed estimator P̂ECR(s) in small sample size situations, with differing ratios of ’events

of type 1’ to ’other events’ and changing influences of a binary covariate on the other

events. We impose different censoring levels on the simulated data and investigate the

deviation of the estimator from the true prediction error under these restrictions.

We follow a multi state model as depicted in Fig. 1 and assume a binary covariate

Z ∈ {0, 1} with P(Z = 0) = 0.5. Data are simulated assuming exponentially distributed
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event times with cause-specific proportional hazards:

α1(t|Z) = λ1 exp(β1Z)

α2(t|Z) = λ2 exp(β2Z)

with α1 and α2 denoting the cause-specific hazards of event type 1 and 2 respectively. As

described in Beyersmann et al. (2009), we first simulate survival times T with all-cause

hazards α1(t|Z) + α2(t|Z). The event type is then decided by a binomial experiment,

which decides with probability α1(t|Zi)/(α1(t|Zi) + α2(t|Zi)) on event type 1. Addi-

tionally, we generate exponentially distributed censoring times with censoring hazard

λc exp(βcZ).

In all scenarios, we assume a negative effect of the covariate on event 1 (β1 = 1) and

a baseline hazard λ2 = 0.1 of the cause-specific hazard α2. The effect of the covariate

on event 2 is assumed to be either protective (β2 = −0.5) or nonexistent (β2 = 0).

Finally, to allow three different ratios of ’events of type 1’ to ’other events’ (80/20,

50/50 and 20/80) we adjust the baseline hazard λ1 accordingly. We set βc = 1 to arrive

at conditionally independent censoring and control its level with λc.

To study convergence issues in small sample situations, we use perfect predicted prob-

abilities π(s|Z). We assume perfect knowledge of the respective true conditional (given

Z) cumulative incidence functions, which are approximated on the basis of 20,000 un-

censored observations using the Aalen Johansen estimators. Each patient of the simu-

lated data set is then assigned a predicted CIF according to his/her simulated covariate

value.

Note that we do not derive the predicted probabilities in the same (small) sample where

evaluation of the predictive performance takes place. By using an external, sample

independent prediction, we remove sample-based variability in the prediction and can so
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be sure that the remaining variation of the estimator of the prediction error around the

true prediction error is caused by the prediction error estimation procedure alone and

not by the prediction.

To study the impact of misspecification, we derive predicted probabilities with the pro-

portional hazards model for the subdistribution of a competing risk (the cumulative

incidence function) (Fine and Gray, 1999). The estimated subdistribution hazard can

be interpreted as a hazard for the improper event time variable T ∗. Since our simu-

lated data follows cause-specific proportional hazards, the assumption of proportional

subdistribution hazards is necessarily wrong (Latouche et al., 2007; Beyersmann and

Schumacher, 2007) and the predicted probability thus misspecified. Again, proportional

hazard based predictions are approximated on the basis of 20,000 uncensored observa-

tions.

Finally, we compare the performance of estimator P̂ECR(s) with P̂E(s) (using improper

event times) in selected scenarios. We are able to do so in our simulated data, since we

know the potential censoring times Ui for all individuals with event of type 2. We

can therefore give evidence of the performance of estimator P̂E(s) in certain censoring

situations.

Estimators P̂ECR(s) and P̂E(s) were computed with estimates Ĝn and Ĝθ
n of the cen-

soring survival function which were derived in the sample by using a Cox model. (As

mentioned, Ĝθ
n was estimated with sample data converted to improper event times).

Every scenario was run N = 500 times for sample sizes n = 50, 80 and 200. All compu-

tations were carried out with the statistical software R.
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5.2 Results

We present six selected scenarios to illustrate our main findings of the simulation study.

These are numbered A-F and described in Table 1. Scenario A is taken as main scenario.

Table 1: Selected scenarios A-F. A is considered the main scenario, deviations in the
other scenarios to A are in bold print.

censoring level effect of covariate on event 2 sample size event ratio

A medium none n=200 50/50
B strong none n=200 50/50
C medium protective n=200 50/50
D medium none n=50 50/50
E medium none n=200 20/80
F strong protective n=50 20/80

Each of the following scenarios B-E vary exactly one influencing factor to A while keeping

everything else fixed. This allows to study the effect of a change in precisely this factor.

Scenario F varies all factors simultaneously to see the added impact. Prediction error

curves for these scenarios can be seen in Fig. 2. Each point of the curve represents a

specific prediction error estimate for the corresponding time point.

We observe on scenarios A to E that the estimator is approximatively unbiased. Increas-

ing the level of censoring obviously increases the width of the 95% interval and reduces

the support of the estimator (B). Variation in the effect of the covariate on event 2 seems

to influence the niveau of the curve but not its variation (C). Decreasing the sample size

(D) also increases the variation of the prediction error curve. This is even more pro-

nounced as in (B) since the mean number of events of type 1 in (B), which is a sort of

effective sample size, still remains at 48 while in (D) it decreases to 18. The event ratio,

having an impact on both the shape of the prediction error curve and its variation, can

be seen in (E). Finally, (F) illustrates the added impact of all changes. This is the only

scenario where a slight bias can be observed. However, note that in this scenario there

are on average only 4.5 events of type 1, and at time point s = 3 only 2 events of type
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Figure 2: Prediction error estimator P̂ECR(s) in selected scenarios with perfect
prediction π (N=500 datasets).
Black curves: true prediction error, dashed curves: mean prediction error, dotted grey
curves: 2.5%, 25%, 75%, 97.5% quantiles. Vertical grey bars with annotation: percentage
of remaining observable events of type 1. Graphs are plotted up to the mean 80%-quantile
of the censored data.

A:
Eventratio 50/50, No effect of covariate on event 2

 n=200, Cond. ind. censoring (medium).
 Mean % censored: 24.8

 Mean % observed events of type 1: 36.9
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B:
Eventratio 50/50, No effect of covariate on event 2

 n=200, Cond. ind. censoring (strong).
 Mean % censored: 49.7

 Mean % observed events of type 1: 24.3
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C:
Eventratio 50/50, Protective effect of covariate on event 2

 n=200, Cond. ind. censoring (medium).
 Mean % censored: 24.9

 Mean % observed events of type 1: 36.3
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D:
Eventratio 50/50, No effect of covariate on event 2

 n=50, Cond. ind. censoring (medium).
 Mean % censored: 24.9

 Mean % observed events of type 1: 36.7
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E:
Eventratio 20/80, No effect of covariate on event 2

 n=200, Cond. ind. censoring (medium).
 Mean % censored: 25

 Mean % observed events of type 1: 14.4
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F:
Eventratio 20/80, Protective effect of covariate on event 2

 n=50, Cond. ind. censoring (strong).
 Mean % censored: 49.9

 Mean % observed events of type 1: 8.2
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Table 2: True and estimated prediction error P̂ECR(s) for event ratio 20/80
and perfect prediction π. True and Mean refers to the integrated prediction error
up to time t respectively. Mean and upper and lower bounds of the 95% interval were
calculated over all N = 500 simulations. Medium and Strong censoring refer to an
overall censoring level of 25% and 50%, respectively.

Time Censoring Samplesize No effect Protective effect
level True Mean 95% intervall True Mean 95% intervall

t=0.5 medium n=50 0.0032 0.0034 [0.0000,0.0151] 0.0024 0.0024 [0.0000,0.0118]
n=80 0.0030 [0.0000,0.0108] 0.0021 [0.0000,0.0091]
n=200 0.0032 [0.0000,0.0083] 0.0022 [0.0000,0.0067]

strong n=50 0.0034 [0.0000,0.0153] 0.0024 [0.0000,0.0121]
n=80 0.0030 [0.0000,0.0109] 0.0021 [0.0000,0.0093]
n=200 0.0032 [0.0000,0.0083] 0.0023 [0.0000,0.0067]

t=1 medium n=50 0.0123 0.0131 [0.0002,0.0403] 0.0091 0.0091 [0.0001,0.0329]
n=80 0.0119 [0.0002,0.0338] 0.0086 [0.0001,0.0269]
n=200 0.0124 [0.0025,0.0251] 0.0088 [0.0001,0.0203]

strong n=50 0.0130 [0.0002,0.0403] 0.0091 [0.0001,0.0334]
n=80 0.0120 [0.0002,0.0343] 0.0086 [0.0001,0.0274]
n=200 0.0124 [0.0025,0.0259] 0.0088 [0.0001,0.0206]

t=1.5 medium n=50 0.0267 0.0282 [0.0008,0.0769] 0.0199 0.0198 [0.0004,0.0614]
n=80 0.0264 [0.0008,0.0648] 0.0192 [0.0004,0.0537]
n=200 0.0271 [0.0084,0.0487] 0.0193 [0.0035,0.0383]

strong n=50 0.0282 [0.0007,0.0786] 0.0198 [0.0004,0.0630]
n=80 0.0264 [0.0007,0.0664] 0.0193 [0.0004,0.0550]
n=200 0.0270 [0.0084,0.0502] 0.0194 [0.0037,0.0395]

t=2 medium n=50 0.0455 0.0482 [0.0017,0.1217] 0.0343 0.0343 [0.0010,0.0965]
n=80 0.0457 [0.0033,0.1031] 0.0336 [0.0010,0.0862]
n=200 0.0468 [0.0174,0.0805] 0.0338 [0.0099,0.0649]

strong n=50 0.0483 [0.0016,0.1222] 0.0342 [0.0009,0.1029]
n=80 0.0458 [0.0026,0.1069] 0.0337 [0.0010,0.0860]
n=200 0.0465 [0.0178,0.0811] 0.0338 [0.0097,0.0649]

1 are remaining. We conclude that prediction error estimates are approximatively unbi-

ased and centered around the mean even for small sample sizes (n = 50), but that the

estimators will become less reliable if only a very small number of the events of interest

is observed. These results were confirmed when studying heavy censoring (80%) (data

not shown).

An overview of examined scenarios is presented in Tables 2 to 4, where true and mean

integrated prediction errors together with the quantiles can be found. Again, we observe

that in all sample sizes, the mean integrated prediction error is close to the true predic-
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Table 3: True and estimated prediction error P̂ECR;loss(s) for event ratio 50/50
and perfect prediction π. True and Mean refers to the integrated prediction error
up to time t respectively. Mean and upper and lower bounds of the 95% interval were
calculated over all N = 500 simulations. Medium and Strong censoring refer to an
overall censoring level of 25% and 50%, respectively.

Time Censoring Samplesize No effect Protective effect
level True Mean 95% intervall True Mean 95% intervall

t=0.5 medium n=50 0.0130 0.0135 [0.0005,0.0334] 0.0100 0.0110 [0.0004,0.0296]
n=80 0.0133 [0.0014,0.0291] 0.0106 [0.0004,0.0245]
n=200 0.0132 [0.0053,0.0223] 0.0107 [0.0034,0.0187]

strong n=50 0.0135 [0.0006,0.0340] 0.0110 [0.0004,0.0299]
n=80 0.0133 [0.0014,0.0291] 0.0106 [0.0006,0.0247]
n=200 0.0131 [0.0054,0.0224] 0.0106 [0.0035,0.0184]

t=1 medium n=50 0.0481 0.0486 [0.0103,0.0999] 0.0376 0.0396 [0.0044,0.0848]
n=80 0.0485 [0.0176,0.0867] 0.0393 [0.0112,0.0760]
n=200 0.0481 [0.0277,0.0701] 0.0393 [0.0201,0.0600]

strong n=50 0.0487 [0.0094,0.1001] 0.0397 [0.0028,0.0869]
n=80 0.0484 [0.0156,0.0866] 0.0393 [0.0109,0.0764]
n=200 0.0480 [0.0281,0.0706] 0.0391 [0.0206,0.0608]

t=1.5 medium n=50 0.1004 0.1018 [0.0403,0.1767] 0.0804 0.0834 [0.0239,0.1559]
n=80 0.1007 [0.0462,0.1653] 0.0829 [0.0347,0.1401]
n=200 0.0999 [0.0667,0.1353] 0.0825 [0.0523,0.1175]

strong n=50 0.1019 [0.0340,0.1802] 0.0837 [0.0208,0.1593]
n=80 0.1005 [0.0460,0.1634] 0.0827 [0.0328,0.1426]
n=200 0.0997 [0.0672,0.1367] 0.0822 [0.0508,0.1175]

t=2 medium n=50 0.1655 0.1679 [0.0834,0.2720] 0.1351 0.1398 [0.0544,0.2392]
n=80 0.1660 [0.0859,0.2554] 0.1385 [0.0720,0.2198]
n=200 0.1651 [0.1215,0.2155] 0.1380 [0.0943,0.1873]

strong n=50 0.1681 [0.0793,0.2743] 0.1402 [0.0522,0.2398]
n=80 0.1655 [0.0871,0.2535] 0.1383 [0.0671,0.2213]
n=200 0.1650 [0.1210,0.2178] 0.1377 [0.0934,0.1870]

tion error, while the 95% interval shrinks with increasing sample sizes and decreasing

censoring level. Also, the 95% interval is narrower (in relative terms) for the 80/20 event

ratio as compared to the other event ratios, keeping everything else fix. This is easily

explained with the larger number of events of interest.

We note a difference in absolute true prediction error values. This is due to the different

shape of the prediction error curve for different event ratios, which we illustrate in Fig.

3. We see that the prediction error curves for ratios 20/80 and 50/50 behave similarly:

they increase steadily and then remain on a plateau. More similarities to a classic
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Table 4: True and estimated prediction error P̂ECR;loss(s) for event ratio 80/20
and perfect prediction π. True and Mean refers to the integrated prediction error
up to time t respectively. Mean and upper and lower bounds of the 95% interval were
calculated over all N = 500 simulations. Medium and Strong censoring refer to an
overall censoring level of 25% and 50%, respectively.

Time Censoring Samplesize No effect Protective effect
level True Mean 95% intervall True Mean 95% intervall

t=0.5 medium n=50 0.0460 0.0464 [0.0230,0.0756] 0.0407 0.0412 [0.0182,0.0702]
n=80 0.0453 [0.0276,0.0657] 0.0404 [0.0238,0.0613]
n=200 0.0456 [0.0347,0.0582] 0.0407 [0.0296,0.0527]

strong n=50 0.0463 [0.0224,0.0767] 0.0412 [0.0178,0.0693]
n=80 0.0453 [0.0277,0.0657] 0.0404 [0.0237,0.0615]
n=200 0.0456 [0.0347,0.0582] 0.0406 [0.0291,0.0526]

t=1 medium n=50 0.1408 0.1416 [0.0979,0.1944] 0.1290 0.1304 [0.0837,0.1850]
n=80 0.1386 [0.1066,0.1764] 0.1277 [0.0951,0.1682]
n=200 0.1402 [0.1195,0.1639] 0.1289 [0.1078,0.1526]

strong n=50 0.1412 [0.0952,0.1943] 0.1303 [0.0832,0.1834]
n=80 0.1385 [0.1036,0.1757] 0.1276 [0.0922,0.1693]
n=200 0.1400 [0.1190,0.1634] 0.1288 [0.1072,0.1523]

t=1.5 medium n=50 0.2508 0.2505 [0.1920,0.3195] 0.2363 0.2363 [0.1761,0.3081]
n=80 0.2471 [0.2027,0.2957] 0.2327 [0.1885,0.2868]
n=200 0.2498 [0.2232,0.2811] 0.2351 [0.2076,0.2673]

strong n=50 0.2483 [0.1891,0.3180] 0.2351 [0.1726,0.3072]
n=80 0.2462 [0.2002,0.2985] 0.2322 [0.1845,0.2875]
n=200 0.2493 [0.2221,0.2792] 0.2347 [0.2069,0.2689]

t=2 medium n=50 0.3625 0.3606 [0.2923,0.4444] 0.3478 0.3457 [0.2750,0.4316]
n=80 0.3576 [0.3043,0.4118] 0.3423 [0.2873,0.4056]
n=200 0.3612 [0.3280,0.3981] 0.3456 [0.3125,0.3848]

strong n=50 NA [ NA,NA] NA [ NA,NA]
n=80 NA [ NA,NA] NA [ NA,NA]
n=200 NA [ NA,NA] NA [ NA,NA]

survival prediction error curve are seen for event ratio 80/20, which peaks and then

levels out. However, the prediction error does not return to zero as in the survival case.

The general behaviour is easily explained looking at the variance bias decomposition

described earlier: For a perfect prediction, the prediction error curve in time s will be

E
[
P(T ≤ s, XT = 1|Z)

(
1 − P(T ≤ s, XT = 1|Z)

)]
. If we ignore covariates and let s

increase in time, the limit of the prediction error will be P(XT = 1)
(
1−P(XT = 1) with

P(XT = 1) being the prevalence of events of type 1. In a normal survival setting, the

limit of the prediction error would be 0.
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Figure 3: Shape of the prediction error curve for different event ratios. True
prediction error curves (no effect of covariate on event 2). Dotted line: event ratio 50/50,
solid line: event ratio 20/80, dash-dotted line: event ratio 80/20.
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These shapes reflect the complexity of prediction in a competing risk setting. Even

a perfect prediction will result in an inevitable prediction error. Most difficult is the

situation where events are spread evenly between competing risks. Strong censoring is

then more of a challenge than in a simple survival case.

The effect of misspecification was studied in a subset of scenarios with sample size

n = 200, medium censoring (25%) and a random censoring mechanism, as this is an as-

sumption of the proportional hazards model of a competing risk. Results can be found in

Table 5. It is seen that for cause-specific hazard ratios in a magnitude as in our simulated

data example, the prediction error caused by a misspecified proportional hazards model

does not differ markedly from the minimal possible prediction error obtained when a

perfect prediction is made.

Finally, we present selected results of the same simulation study using the estimator

P̂E(s) (cf. Table 6). We see in general that the estimator is comparable to the other

estimator: it is unbiased and centered around the mean with similar width of the 95%

intervals. However, as mentioned the estimator is only easily available in certain censor-
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Table 5: True and estimated prediction error P̂ECR(s) for perfect and misspec-
ified predictions. All figures relate to a sample size of n = 200 and medium random
censoring (βc = 0). True and Mean refers to the integrated prediction error up to time
t respectively. Mean and upper and lower bounds of the 95% interval were calculated
over all N = 500 simulations.

Time Prediction Event ratio No effect Protective effect
True Mean 95% intervall True Mean 95% intervall

t=1 True π 20/80 0.0121 0.0124 [0.0024,0.0250] 0.0076 0.0088 [0.0001,0.0203]
50/50 0.0475 0.0481 [0.0279,0.0698] 0.0394 0.0392 [0.0196,0.0599]
80/20 0.1385 0.1401 [0.1202,0.1639] 0.1276 0.1289 [0.1082,0.1523]

Misspecified π 20/80 0.0121 0.0124 [0.0024,0.0249] 0.0076 0.0088 [0.0001,0.0203]
50/50 0.0475 0.0481 [0.0280,0.0698] 0.0394 0.0392 [0.0196,0.0598]
80/20 0.1385 0.1406 [0.1211,0.1638] 0.1276 0.1291 [0.1080,0.1526]

t=2 True π 20/80 0.0447 0.0467 [0.0176,0.0808] 0.0305 0.0337 [0.0099,0.0647]
50/50 0.1638 0.1652 [0.1223,0.2131] 0.1374 0.1380 [0.0941,0.1889]
80/20 0.3600 0.3613 [0.3273,0.3977] 0.3433 0.3457 [0.3130,0.3853]

Misspecified π 20/80 0.0447 0.0467 [0.0177,0.0807] 0.0305 0.0337 [0.0100,0.0647]
50/50 0.1638 0.1654 [0.1223,0.2130] 0.1374 0.1380 [0.0941,0.1889]
80/20 0.3600 0.3633 [0.3350,0.3939] 0.3433 0.3462 [0.3142,0.3850]

t=3 True π 20/80 0.0946 0.0993 [0.0487,0.1596] 0.0673 0.0731 [0.0287,0.1279]
50/50 0.3226 0.3245 [0.2608,0.3997] 0.2754 0.2778 [0.2113,0.3517]
80/20 NA NA [ NA,NA] NA NA [ NA,NA]

Misspecified π 20/80 0.0946 0.0993 [0.0489,0.1593] 0.0673 0.0731 [0.0289,0.1279]
50/50 0.3226 0.3250 [0.2604,0.3988] 0.2754 0.2777 [0.2110,0.3519]
80/20 NA NA [ NA,NA] NA NA [ NA,NA]

t=4 True π 20/80 0.1594 0.1667 [0.0946,0.2534] 0.1169 0.1251 [0.0555,0.2073]
50/50 0.5069 0.5090 [0.4245,0.6019] 0.4399 0.4442 [0.3584,0.5382]
80/20 NA NA [ NA,NA] NA NA [ NA,NA]

Misspecified π 20/80 0.1594 0.1667 [0.0949,0.2530] 0.1169 0.1252 [0.0556,0.2069]
50/50 0.5069 0.5100 [0.4240,0.6033] 0.4399 0.4442 [0.3584,0.5387]
80/20 NA NA [ NA,NA] NA NA [ NA,NA]

ing situations. Then, however, standard survival methodology is available (Gerds and

Schumacher, 2006).
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Table 6: True and estimated prediction error P̂E(s) (used on improper event
time data) for time point t = 1.5 and perfect prediction π. True and Mean refers
to the integrated prediction error up to time t respectively. Mean and upper and lower
bounds of the 95% interval were calculated over all N = 500 simulations.

Event Censoring Samplesize No effect Protective effect
ratio level True Mean 95% intervall True Mean 95% intervall

20/80 medium n=50 0.0267 0.0296 [0.0008,0.0842] 0.0199 0.0218 [0.0004,0.0687]
n=80 0.0260 [0.0008,0.0658] 0.0194 [0.0004,0.0520]
n=200 0.0270 [0.0075,0.0505] 0.0194 [0.0031,0.0393]

strong n=50 0.0298 [0.0009,0.0858] 0.0220 [0.0004,0.0691]
n=80 0.0259 [0.0009,0.0682] 0.0193 [0.0004,0.0532]
n=200 0.0271 [0.0063,0.0501] 0.0194 [0.0023,0.0395]

50/50 medium n=50 0.1004 0.0997 [0.0334,0.1824] 0.0804 0.0835 [0.0237,0.1642]
n=80 0.0979 [0.0454,0.1546] 0.0812 [0.0304,0.1355]
n=200 0.0997 [0.0662,0.1365] 0.0822 [0.0486,0.1178]

strong n=50 0.0992 [0.0324,0.1849] 0.0831 [0.0203,0.1634]
n=80 0.0976 [0.0404,0.1566] 0.0806 [0.0314,0.1379]
n=200 0.0998 [0.0650,0.1381] 0.0822 [0.0500,0.1190]

80/20 medium n=50 0.2508 0.2462 [0.1967,0.3049] 0.2363 0.2310 [0.1765,0.2951]
n=80 0.2488 [0.2047,0.2969] 0.2342 [0.1882,0.2866]
n=200 0.2493 [0.2214,0.2828] 0.2347 [0.2050,0.2703]

strong n=50 0.2437 [0.1939,0.3032] 0.2291 [0.1735,0.2937]
n=80 0.2481 [0.2004,0.2980] 0.2335 [0.1840,0.2904]
n=200 0.2490 [0.2191,0.2834] 0.2344 [0.2030,0.2706]
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6 Data example

We illustrate our approach on data from a prospective multi-centre cohort study, ONKO-

KISS (Dettenkofer et al., 2005). ONKO-KISS is part of the surveillance program of

the German National Reference Centre for Surveillance of Nosocomial Infections (KISS–

German Hospital Infection Surveillance System; www.nrz-hygiene.de). We concentrate

on 1616 patients with haematologic malignancies and who underwent peripheral blood

stem-cell transplantation, which then enter a high-risk phase called neutropenia. Neu-

tropenia is a medical condition characterized by a low count of white blood cells, which

are the cells that primarily avert infections. For our analyses, we are interested in the

occurrence of blood stream infection (BSI) during neutropenia. The rationale is that

occurrence of BSI is a well known risk factor for subsequent death (Worth and Salvin,

2009; Bailey et al., 2003). Occurrence of BSI during neutropenia may be precluded either

by the end of neutropenia, alive and without prior BSI, or by death during neutropenia,

without prior BSI. Therefore we are in a competing risks setting as described in Fig.

4. Beyersmann et al. (2007) studied the effect of autologous vs. allogeneic transplants

After transplantation,
neutropenious 0

�
���

-

@
@@R

1

2

3

Bloodstream infection (BSI)
during neutropenia

End of neutropenia,
alive without prior BSI

Death during neutropenia

Figure 4: Competing risk model for the occurrence of BSI during neutropenia

on the CIF for BSI. Allogeneic transplants are considered to lead to more bloodstream

infections (e.g., Afessa and Peters, 2006). We are now interested to assess the predictive

performance of this prognostic factor.
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Figure 5: Cumulative incidence functions for bloodstream infections (BSI).
The graph shows estimates based on the stratified nonparametrical Aalen Johansen
estimators together with pointwise log-log transformed 95% confidence intervals.
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In our database of 1616 patients, we observed 319 (19.7 per cent of 1616) events of

BSI, 1260 (78 per cent) events of ’end of neutropenia (alive and without prior BSI)’,

20 (1.2 per cent) events of ’death during neutropenia (without prior BSI)’, and 17 (1.1

per cent) censorings (all purely administrative). This corresponds to an event ratio of

20/80. The transplantation type was evenly distributed with 913 patients (56.5 per cent)

having received allogeneic transplants, and 703 (43.5 per cent) patients having received

autologous, i.e. non-allogeneic, transplants.

As Beyersmann et al. (2007) point out, cumulative incidence functions for the two trans-

plant types cross (see Fig. 5). Therefore, the assumption of the Fine and Gray model

of proportional subdistribution hazards is clearly violated. We compare three different

prediction rules with each other. As a benchmark rule we use the covariate free nonpara-
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Figure 6: Prediction error estimates for the ONKO-KISS data. Transplant type
is used as binary covariate predicting bloodstream infection during neutropenia. Vertical
grey bars with annotation show the percentage of remaining BSI events in the sample.
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metric Aalen-Johansen estimate of the CIF as prediction. If a prediction using covariates

can reach no gain compared to this prediction, we deem the covariate as having no pre-

dictive potential. Also, we form predictions using the transplant type using either the

stratified Aalen-Johansen estimate or the Fine and Gray proportional hazards model.

The model-based CIF estimates captured the plateaus well, but (due the proportional

subdistribution hazards assumption) not the early crossing of the curves. Results can be

viewed in Fig. 6. We observe that the shape of the prediction error curves is as we ex-

pected from our simulation study: increasing steadily and then remaining on a plateau.

As all prediction error curves are virtually the same, we conclude that the covariate does

not seem to have much predictive potential, although there is a visible difference in the

estimated CIF as seen in Fig. 5, see also Beyersmann et al. (2007) for a detailed analysis.

Correspondingly, the misspecification of the model for the subdistribution hazard is seen
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to have no detrimental effect, similar to the simulation study.

An explanation for this behaviour has to consider several aspects. Firstly, we see in Fig.

5 that the pointwise confidence intervals of the Aalen Johansen overlap. Secondly, even

if we had non-overlapping confidence intervals, the difference of the amount observed

in Fig. 5 (which would be for s = 50 about 0.03) would be too small to show up in

prediction error curves. Graf (2005) consider a simple population example where the

five-year survival rate drops from 60% to 30% when a specific risk factor is present which

is evenly spread in the population. She shows that the increase in explained variation

with even such a drastic example amounts to only 9%, which translated in prediction

error difference is 0.0225. This is an example of the fact that significance of a covariate

is not the same as predictive power. Even and although the risk factor considered by

Graf (2005) has an important impact on survival, it is of not much use for individual

predictions. This has been generally noted by Henderson and Keiding (2005) who argue

that ’human survival is so uncertain that even the best statistical analysis cannot provide

single-number predictions of real use for individual patients’. The prediction error as

neutral assessment measure supports this view. Even though allogeneic transplants have

been found to be closely related to BSI (Afessa and Peters, 2006), their predictive value

seems to be low. Having said this, we want to point out that this is a rather extreme

example with only one binary covariate. In a further investigation using a combination

of risk factors (as were reported in Meyer et al., 2007), we could see a slight predictive

improvement of this prediction model over the covariate free prediction (data not shown).

However, the fact remains that it is difficult to outperform the covariate free prediction

and that even the best prediction model cannot eliminate all prediction error - the

variance part will remain (see section 3).

Note that we did not correct the prediction error for overoptimism, which may be sus-

pected since we use a sample based prediction. However, Gerds and Schumacher (2007)
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showed that in a standard regression setting with a limited number of covariates the

apparent error is almost identical to the prediction error.

7 Discussion

In recent methodological research, prediction from transition hazards models has been

prominently studied for competing risks. Methodology to assess the accuracy of these

models has been discussed e.g. by Saha and Heagerty (2010), Wolbers et al. (2009) and

Gail and Pfeiffer (2005). We have taken up one proposal by Gail and Pfeiffer (2005) and

presented prediction error measures and corresponding estimators for use in competing

risk situations.

In our simulation study, we could show that both of our estimators are unbiased and

centered around the mean even for small sample sizes (n = 50). Care is to be taken for

small sample sizes combined with low number of events of interest and strong censoring.

If the observed number of events of interest is too small, the estimators will become less

reliable. This, however, is a well known phenomenon in the context of competing risks,

which, e.g., also leads to requiring increased sample sizes when a competing risk study

is being planned (Schulgen et al., 2005; Latouche and Porcher, 2007).

We see in the simulation study that the absolute level of the prediction error strongly

depends on the event ratio (ratio of no. of events of interest to others) and that the

examined event ratio 80/20 is most closely related to the normal survival case, which is

also mirrored by the shape of the prediction error curve.

Also, we showed how the prediction error could be used as a tool for the evaluation

of misspecification. We showed that in our simulated data, even using a misspecified

prediction model can lead to good prediction performance. This is comforting since

prognostic time to event models with competing risks often are prone to misspecification,

28



as pointed out in the introduction. However, further sensitivity analyses should be done

to get an overview of the prediction error behaviour, when cause-specific hazards are

more extreme.

Our real data analysis illustrated that prediction of a competing event outcome may be

difficult, even if it is based on a well established risk factor, and that this is a general

problem for individual predictions. Our data example is characterized by crossing cu-

mulative incidence functions, which evolve during a similar time span. The curves reach

different plateaus. The difference between the plateaus is relevant, but not dramatic.

These facts help to explain why prediction based on the Aalen-Johansen estimator of

the pooled sample is not worse in terms of prediction than the respective nonparamet-

ric estimates computed within transplant groups. Prediction based on a proportional

subdistribution hazards model, which is misspecified as a consequence of the crossing

cumulative incidence functions, does perform as well as the other two approaches, i.e.

misspecification seems to be less problematic, given the general difficulty of prediction

in this application. The latter finding is of some interest in its own right, since Cox

modelling of the subdistribution hazard has evolved into a major technique in the field

of bone marrow and stem cell transplantation (e.g. Scrucca et al., 2010).

We have presented two estimators: the first one needs known potential censoring times,

as in progressive type I censoring. This could e.g. be circumvented with multiple impu-

tation procedures, but that might add extra variation into the prediction error results.

We deem this quite unnecessary looking at the good performance of the second pro-

posed estimator, which is a correction of the first one with modified weighting scheme

and is universally applicable when the assumption of conditionally independent censor-

ing is met. Therefore we recommend this estimator for general use in competing risks

situations.

Finally, we want to point out that the estimator presented here can be adapted to han-
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dle predictions using time dependent covariates. The task of creating such dynamic

predictions is not trivial and has been discussed for competing risk data in Cortese and

Andersen (2010), who presented some strategies for dealing with prediction problems.

A corresponding adaptation of our estimator is suggested in Schoop (2008, chapter 5)

using the methodology presented in Schoop et al. (2008). Acknowledgment
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A Appendix

The proof uses representation (9) of the estimator and the fact that for complete cases the

event status is observable and equal to I(T̃i ≤ s, X̃T,i = 1), where X̃T,i = ∆i·XT,i denotes

the observed failure cause (0 if T̃i is a censoring time). Also, we consider stochastic

prediction rules πn, i.e. πn is dependent on the sample (e.g. if the prediction rule is

derived in the same dataset than the prediction error is later calculated).

Assumption 1. There exists a prediction rule π(s|Z) with 0 ≤ π ≤ 1, 0 ≤ πn ≤ 1 ∀ n

and sups

∣∣∣
∫

πn(s|Z) − π(s|Z)dPz
∣∣∣ as
−→ 0

Lemma 1. Let PT̃ ,X̃T ,Z be the joint probability distribution of the observations. The

following equalities are true with the assumption of conditional independence of T and

U :

(1) dPT̃ ,X̃T ,Z(t̃, x̃T , z) = [G(t̃ − |z)dPT,XT ,Z(t̃, x̃T , z)]I(x̃T 6=0)

This is white space [P(T > t̃|Z = z)dPU |Z(t̃|z)dPZ(z)]I(x̃T =0)

(2)
∫

I(t > s)dPT̃ ,X̃T ,Z(t, xT , z) =
∫

I(t > s)G(s|z)dPT,XT ,Z(t, xT , z)
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Proof. Similar to Bickel et al. (1993) (pg. 273 (1)) extended for covariates and multiple

failure types.

Lemma 2. If conditional independence of T and U holds, the prediction error in the

presence of competing risks can be written in terms of the observed quantities:

E[I(T ≤ s, XT = 1) − π(s|Z)]2 =
∫

[I(t̃ ≤ s, x̃T = 1) − π(s|z)]2
{I(t̃ ≤ s, x̃T 6= 0)

G(t − |z)
+

I(t̃ > s)

G(s|z)

}
dPT̃ ,X̃T ,Z(t̃, x̃T , z)

Proof. With lemma 1

Theorem 1. If conditional independence of T and U holds and Ĝn and πn are as

described above, an uniformly strong consistent estimator for the prediction error in the

presence of competing risks is given ∀s < τ (τ as before) by

P̂ECR(s) =
1

n

n∑

i=1

[I(t̃i ≤ s, x̃T,i = 1) − πn(s|zi)]
2w(s; t̃i; x̃T,i; Ĝn; zi)

and

w(s; t̃i; x̃T,i; Ĝn) =
I(t̃i ≤ s, x̃T,i 6= 0)

Ĝn(t̃i − |zi)
+

I(t̃i > s)

Ĝn(s|zi)

Proof. Let P
T̃
n denote the empirical distribution of the observed random sample T̃1, . . . , T̃n.

Similarly, let P
T̃ ,X̃T ,Z denote the empirical distribution of (T̃i, X̃T,i, Zi). As shortcut no-

tation, we use wn to denote w(s; t̃i; x̃T,i; Ĝn) and w for w(s; t̃; x̃T ; G), πn for πn(s|z) and
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π for π(s|z).

sup
s≤τ

∣∣∣
∫

[I(t̃ ≤ s, x̃T = 1) − πn]2wndP
T̃ ,X̃T ,Z
n (t̃, x̃T , z)

−

∫
[I(t̃ ≤ s, x̃T = 1) − π]2w dPT̃ ,X̃T ,Z(t̃, x̃T , z)

∣∣∣

≤ sup
s≤τ

∣∣∣
∫ [

[I(t̃ ≤ s, x̃T = 1) − πn]2 − [I(t̃ ≤ s, x̃T = 1) − π]2
]

w dPT̃ ,X̃T ,Z(t̃, x̃T , z)︸ ︷︷ ︸
=dPT,XT ,Z(t̃,x̃T ,z)

∣∣∣

+ sup
s≤τ

∣∣∣
∫

[I(t̃ ≤ s, x̃T = 1) − πn]2

[
wndP

T̃ ,X̃T ,Z
n (t̃, x̃T , z) − w dPT̃ ,X̃T ,Z(t̃, x̃T , z)

]∣∣∣

= A + B

A
as
−→ 0 because of assumption 1, since

A ≤ sup
s≤τ

∣∣∣
∫ [

− 2I(t̃ ≤ s, x̃T = 1)[πn − π] + [πn − π][πn + π]
]
dPT,XT |Z(t̃, x̃T |z)dPZ(z)

∣∣∣

≤ sup
s≤τ

∣∣∣
∫

−2 P(T ≤ s, XT = 1|Z)︸ ︷︷ ︸
≤1

[πn − π]dPZ(z)
∣∣∣

+ sup
s≤τ

∣∣∣
∫

[πn − π] [πn + π]︸ ︷︷ ︸
≤2

dPZ(z)
∣∣∣

≤ 4 sup
s≤τ

∣∣∣
∫

[πn − π]dPZ(z)
∣∣∣ as
−→ 0
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B again is shown to be bounded by C and D:

B = sup
s≤τ

∣∣∣
∫

[I(t̃ ≤ s, x̃T = 1) − πn]2︸ ︷︷ ︸
≤1[
wndP

T̃ ,X̃T ,Z
n (t̃, x̃T , z) − w dPT̃ ,X̃T ,Z(t̃, x̃T , z)

]∣∣∣

≤ sup
s≤τ

∣∣∣
∫

I(t̃ ≤ s, x̃T 6= 0)
[dP

T̃ ,X̃T ,Z
n (t̃, x̃T , z)

Ĝn(t̃ − |z)
−

dPT̃ ,X̃T ,Z(t̃, x̃T , z)

G(t̃ − |z)

]∣∣∣

+ sup
s≤τ

∣∣∣
∫

I(t̃ > s)
[dP

T̃ ,X̃T ,Z
n (t̃, x̃T , z)

Ĝn(s|z)
−

dPT̃ ,X̃T ,Z(t̃, x̃T , z)

G(s|z)

]

= C + D

C and D finally can be decomposed each into two parts that both converge almost surely

to 0:

C ≤ sup
s≤τ

∣∣∣
∫

I(t̃ ≤ s, x̃T 6= 0)

Ĝn(t̃ − |z)︸ ︷︷ ︸
≤ 1

Ĝn(τ |z)

[
dP

T̃ ,X̃T ,Z
n (t̃, x̃T , z) − dPT̃ ,X̃T ,Z(t̃, x̃T , z)

]∣∣∣

+ sup
s≤τ

∣∣∣
∫

I(t̃ ≤ s, x̃T 6= 0)[G(t̃ − |z) − Ĝn(t̃ − |z)]
dPT̃ ,X̃T ,Z(t̃, x̃T , z)

Ĝn(t̃ − |z)G(t̃ − |z)︸ ︷︷ ︸
≤

dPT̃ ,X̃T ,Z (t̃,x̃T ,z)

Ĝn(τ |z)ǫ

= E + F

E
as
−→ 0 since Ĝn(τ |z) and P

T̃ ,X̃T ,Z
n are uniformly strong consistent estimators for G(τ |z)

and PT̃ ,X̃T ,Z (assumption and Glivenko-Cantelli), and

F ≤
1

Ĝn(τ |z)ǫ
sup
s≤τ

∣∣∣G(s − |z) − Ĝn(s − |z)
∣∣∣ as
−→ 0 (assumption)
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D ≤ sup
s≤τ

∣∣∣
∫

I(t̃ > s)

Ĝn(s|z)︸ ︷︷ ︸
≤ 1

Ĝn(τ |z)

[
dP

T̃ ,X̃T ,Z
n (t̃, x̃T , z) − dPT̃ ,X̃T ,Z(t̃, x̃T , z)

]∣∣∣

+ sup
s≤τ

∣∣∣
∫

I(t̃ > s)[G(s|z) − Ĝn(s|z)]
dPT̃ ,X̃T ,Z(t̃, x̃T , z)

Ĝn(s|z)G(s|z)︸ ︷︷ ︸
≤

dPT̃ ,X̃T ,Z (t̃,x̃T ,z)

Ĝn(τ |z)ǫ

= G + H

and convergence of G and H is analogous to E and F .
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