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ABSTRACT

Motivation: Quantitative experimental data is the critical bottleneck

in the modeling of dynamic cellular processes in systems biology.

Here, we present statistical approaches improving reproducibility of

protein quantification by immunoprecipitation and immunoblotting.

Results: Based on a large data set with more than 3600 data points,

we unravel that the main sources of biological variability and

experimental noise are multiplicative and log-normally distributed.

Therefore, we suggest a log-transformation of the data to obtain

additive normally distributed noise. After this transformation, common

statistical procedures can be applied to analyze the data.

An error model is introduced to account for technical as well as

biological variability. Elimination of these systematic errors decrease

variability of measurements and allow for amore precise estimation of

underlying dynamics of protein concentrations in cellular signaling.

Theproposed errormodel is relevant for simulation studies, parameter

estimation and model selection, basic tools of systems biology.

Availability: Matlab and R code is available from the authors

on request. The data can be downloaded from our website

www.fdm.uni-freiburg.de/�ckreutz/data.

Contact: ckreutz@fdm.uni-freiburg.de

1 INTRODUCTION

Studies of protein abundance by immunoblotting have been used
widely for biological as well as biochemical investigations

(Kurien and Scofield 2006). Immunoblotting allows analysis of
protein concentrations in cell populations without enhancing
their basal expression even for low abundant proteins.

Additionally, post-translational modifications, e.g. phosphor-
ylation, can be quantified by immunoblotting. These modifica-

tions are crucial for biological functions of proteins in signaling
pathways. Quantitative analysis of protein phosphorylation

dynamics is therefore essential for the development of systems
biological approaches.
Unfortunately, immunoblotting displays a minor signal-to-

noise ratio and it is difficult to obtain reproducible quantitative
measurements. A further source of noise is biological variability,

especially if, e.g. primary cells are used for experiments. Another

problem is that the common assumption of normally distributed

noise is strongly violated.

Error models describe the distribution of measurements given

experimental parameters. Errormodels can be used to detect and

correct systematic sources of noise in experimental approaches.

Such error reduction procedures are very common for some

other experimental technologies. For example, it was shown that

microarray data should be transformed to fulfill desired

statistical properties (Durbin and Rocke 2003; Huber et al.,

2002; Rocke and Durbin, 2003). It has been shown that log-

transformed microarray intensities have to be corrected for

systematic errors (Bolstad et al., 2003; Yang et al., 2002) and that

error models can be used to estimate differential expression

(Ideker et al., 2000; Pavelka et al., 2004). Statistical analysis of

microarray intensities has been studied extensively. A next

challenging but necessary step is the development of accurate

statistical data processing for other experimental techniques.
Determination of an appropriate error model covers the

following decisions:

� Which background correction procedure is appropriate?

� Which transformation should be applied to background

corrected measurements?

� Which sources of systematic errors exist and should

therefore be accounted in an error model?

� Which systematic errors can be modeled as normally

distributed random variable?

Since these issues depend on each other, they cannot be

answered separately. Therefore, combinations of transforma-

tion, background correction and systematic errors had to be

considered.
We investigated a set of 26 error models. The finally superior

model for log-transformed immunoblotting intensities accounts

for biological as well as experimental noise and shows normally

distributed residuals. It will be shown that this model improves

reproducibility and increases signal-to-noise ratio by more than

a factor of 10 compared to raw background subtracted

intensities.
Additionally, it is demonstrated how error models are

extended to estimate time dependency of protein concentrations
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and their confidence intervals after stimulation. Despite a large
amount of measurement noise, this approach leads to reliable

time courses which can now be further evaluated by dynamic
modeling approaches.

2 EXPERIMENTAL DATA

For our study, we use measurements of 12 observables, e.g.
housekeeping proteins and proteins involved in the insulin

signaling pathway. Time courses of activated (indicated by �)
insulin receptor (IR�) and insulin receptor substrate (IRS-1�) as

well as binding of phosphoinositide kinase (PI3K) to IRS-1 and
activation of extracellular regulated kinase (ERK-1� and

ERK-2�) as functional outcome of the insulin are measured
for different insulin stimulations.

Additionally, total IR, IRS-1, ERK-1 and ERK-2 concen-
trations as well as some housekeeping proteins (glycoprotein

gp96, cellular heat shock cognate hsc70, �-actin) are measured.
Further, one positive control of total activation after pervana-

date stimulation and one negative control without addition of
insulin are performed within each stimulation with insulin.

Total concentrations and housekeeping proteins are not
affected by insulin stimulation and are therefore considered

to be constant. Altogether 3642 data points are analyzed
comprising 2108 measurements of time depending events, 1123

measurements of housekeeping proteins and 411 controls.
A cell preparation consists of primary hepatocytes obtained

from two mice livers. On each gel, 10–20 different probes are
measured in adjacent lanes. Probes are loaded randomized on

gels, e.g. not in chronological order (Schilling et al., 2005a).
Foreground intensities, as well as background intensities are

determined for each spot (see Fig. 1). Details of cell preparation
and stimulation are described in the Supplementary Material.

3 METHODOLOGY

In this chapter, a relationship between measurements and
underlying protein concentrations is introduced for additive

and multiplicative noise. It is discussed how error models are
extended to account for systematic measurement errors.

Afterwards, methods for comparison and assessment of

different error models are introduced.

3.1 Additive and multiplicative errors

Protein concentration as variable of interest cannot be observed
directly. Therefore, other quantities y, e.g. fluorescence

intensities which are related to variables of interest x are
determined experimentally. To avoid saturation effects, experi-

ments are usually optimized to achieve a linear dependency of y

on x. Nevertheless, measurements y are always affected by
measurement noise. Most common measurement errors are

additive. If many independent additive sources ei contribute to
observed noise " ¼

P
i "i, measurements

y ¼ �þ �xþ ", " � Nð0, �"Þ ð1Þ

are normally distributed with SD �". Constant offset �
represents a systematic shift and � denotes a scaling factor.

The variable y on the left-hand side is often called response
variable of a model. Variables on the right-hand side are called

predictor variables.

In accordance to Equation ð1Þ most statistical procedures

assume a linear relationship between measurements and under-

lying variable of interest affected by additive Gaussian, e.g.

normally distributed errors. If these assumptions are violated,

statistical analysis can be refined or, usually the easier way

(Atkinson 1981), measurements have to be transformed.
Under weak assumptions, multiplicative noise � ¼

Q
i "i leads

to log-normally distributed measurement errors � � eNð0, ��Þ.

Multiplicative noise is often observed for non-negative data,

e.g. fluoresence intensities (Limpert et al., 2001).

For measurements ~y with multiplicative errors, it holds

~y ¼ �0 þ �1 x
�2 �, � � eNð0, ��Þ: ð2Þ

According to this model, ~y� �0 is log-normally distributed

with parameters �1, �2 and ��. A log-transformation

y ¼ logð ~y� �0Þ of this data leads to Equation ð1Þ for log(x)

with � ¼ logð�1Þ, � ¼ �2, " ¼ logð�Þ and �" ¼ ��.
After such a log-transformation, all statistical methods

assuming normally distributed noise can be applied, e.g.

averaging can be performed for calculation of expectation

values. Additionally, error bars which are asymmetric for

observations ~y become symmetric on log scale.
For immunoblotting, an error model

�y ¼ �0 þ �1 xð1þ �Þ, � � Nð0, ��Þ ð3Þ

assuming additive errors with an SD proportional to signal

intensities was already introduced (Schilling et al., 2005b;

Swameye et al., 2003). For small multiplicative noise �� � x

this model represents a first-order approximation of the

multiplicative error model ð2Þ for special case �2 ¼ 1. This

approximation shows intensity-dependent error bars. But, in

contrast to model ð2Þ, error bars are symmetric on measurement

scale for model ð3Þ.
Recapitulating, in the case of multiplicative noise log-

transformation can be used to allow application of statistical

methods which assume additive Gaussian errors. The case of

commonly occurring additive and multiplicative noise, is

discussed in Supplementary Material. Our analyses show that

immunoblotting data is dominated by multiplicative noise and

that log-transformation is sufficient to obtain Gaussian errors.

3.2 Mixed effects models

Equation ð1Þ describes a linear relationship of possibly

transformed observations with true underlying constant protein

concentrations x. The model has to be extended for time--

dependent proteins or if systematic errors should be accounted.

Systematic errors are correlated and usually related to

experimental parameters.

Overall systematic errors are considered in Equation ð1Þ by

offset �. Additional errors like a preparation or gel-specific

Fig. 1. Each preparation is repeatedly measured on 8–16 gels.

Foreground intensities of spots correspond to protein concentrations.

Background was determined locally around the spots.
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systematic shift would lead to a biased estimate of underlying

concentrations x. If experimental sources of such influences are

known, they should be accounted by enlarging model ð1Þ.

Auxiliary new predictor variables, so called ‘effects’, can be

added at the right hand side of ð1Þ or in the case of multiplicative

influences, �0 in ð2Þ can be replaced by a product of different

effects. An ‘effect’ represents the amount of influence on

measurements of one experimental parameter. Fitting a suitable

enlargedmodel tomeasurements enables an unbiased estimate of

underlying concentrations.

Discrete experimental parameters are modeled as fixed effects.

For example, gel differences can be accounted by introduction of

a gel effect Gg. Index g ¼ 1, . . . , ngels enumerates different gels

and ngels parameters Gg have to be estimated. More than one

index indicates that the magnitude of an effect depends on more

than one experimental parameter.

For discrete predictor variables, the number of parameters

can be reduced if an effect is interpreted as a random variable.

In contrast to a fixed effect, a normally distributed random

effect requires only one parameter for its variance. In our

example, random gel effects would be described by a total gel-

to-gel variability �gel. Discrete effects should be modeled by

random variables to avoid over-parametrization if the assump-

tion of normal distribution is fulfilled. Statistical models with

fixed and random effects are called mixed effects models

(Pinheiro and Bates 2000). Mixed effects models constitute an

established statistical framework for modeling of multiple

sources of variation.

Influences of a continuous variable like background intensity

are modeled via continuous predictor variables with one

regression parameter. In signal transduction, protein concentra-

tions usually depend on time and stimulation treatment. Since

the exact functional relationship is unknown, time and stimula-

tion cannot be modeled as continuous predictor variables. For

time-dependent protein concentrations, x in Equation ð1Þ has to

be replaced by discrete time effects Tost. Index o enumerates

different observables, e.g. proteins, s ¼ 1, . . . , nsðoÞ enumerates

different stimulation treatment effects and t ¼ 1, . . . , ntðo, sÞ

enumerates different times after stimulation. The number of

applied stimulations ns(o) depends on the observable and the

number ofmeasured times ntðo, sÞ depends on the observable and

the applied stimulation. Matrix notation of considered mixed

effects models is described in Supplementary Material.
Further, a cell preparation effect P is introduced to account

for biological variability and overall difference of observables,

e.g. obtained by unequal specificity of antibodies, is modeled via

an observable effect Oo. Table 1 displays considered effects for

our models. All regarded effects are combined yielding to

different error models which are compared with measurements.

In the next section, several methods are introduced to decide

which effects are required and which effects have to be

considered as fixed or random variables. All models are fitted

using R statistical software environment (www.r-project.org).

3.3 Assessing required effects

Akaike Information Criterion (Sakamoto et al., 1986) and

Bayes’ Information Criterion (Schwarz et al., 1978) are used

to assess the relative fit of competing error models. Akaike

Information Criterion is defined as

AIC ¼ �2 log LðyjMÞð Þ þ 2 npar ð4Þ

where L is the likelihood function, e.g. the probability of the

data y given an error model M with npar parameters. Bayes’

Information Criterion

BIC ¼ �2 log LðyjMÞð Þ þ npar logðnÞ ð5Þ

is similarly defined but takes into account the number of data

points n. Small values of these criteria are preferable and are

obtained by a large likelihood function and a small number of

parameters. Usually, BIC tend to select smaller models than

AIC, especially for large number of data points.
Analysis of Variance (ANOVA) is used to check which fixed

effects are not capable to explain variance significantly. Such

effects should be withdrawn from an error model. Otherwise

overfitting by too many parameters can occur and confidence

intervals of estimated parameters can be increased, especially in

the case of multicollinear effects (Markovitz et al., 2005). For

random effects, likelihood-ratio tests (Pinheiro and Bates 2000)

and confidence intervals of estimated parameters are used to

check significance.
Signal-to-noise ratios

SNR ¼
SDðpredictionsÞ

SDðresidualsÞ
ð6Þ

allow a better interpretation of unexplained variability than

AIC, BIC or P-values of ANOVA and are therefore calculated

for the regarded error models, too. Predictions of a model are

defined as the sum of all predictor variables.
Models leading to an accurate estimation of the dynamics are

preferable. Therefore, standard errors SEðTostÞ should be small

in comparison to estimated responses maxtðTostÞ �mintðTostÞ

after stimulation. For time-dependent proteins, we define a

robust medial time response

TR ¼ medianos
maxtðTostÞ �mintðTostÞ

mediantðSEðTostÞÞ

� �
: ð7Þ

Models leading to a small TR are not useful for the

estimation of time courses.
Although a main purpose of our approach is the determina-

tion of time effects, time response TR is not used to select an

appropriate model. Thereby, underestimation of confidence

intervals by in sample optimization of the model is avoided.

Nevertheless, time response constitutes an important property

to validate the efficiency of a predetermined model.
In addition, a leave one out cross-validation (Efron, 1998)

procedure is applied to determine the predictive power of the

Table 1. Properties of regarded effects

Effect name Type of effect Representation in the models

Observable O Discrete, fixed Always considered

Preparation P Discrete, fixed/random Considered or discarded

Gel number G Discrete, fixed/random Always nested within P

Background B Continuous, fixed Predictor or response variable

Time effect T Discrete, fixed Not required for

housekeeping proteins

The error models differ in the way of accounting for background, protein-,

preparation- and gel-specific effects.

An error model for protein quantification
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models. Here, a model is iteratively fitted to all but one data

points. This data point is then predicted by the fitted model.

Accuracy of ‘out-of-sample’ predictions is measured via correla-

tion of predicted and measured data and is used to evaluate the

generalization error of the model. Under-parameterized or over-

parameterized models would result in poor predictions.
A consistency criterion of an error model is that observed

residuals correspond to assumed distribution of measurement

errors. Differences between observed and theoretical distribu-

tions are assessed by a Kolmogorov–Smirnov test (Conover,

1971). On the one hand such a statistical test provideP-values pks
to assess significance but, on the other hand, every error model

will be rejected by a test asymptotically, e.g. for large sample size

because theoretically assumed distribution will never be realized

exactly. Nevertheless, the order of magnitude of P-values allows

for comparisons between different models.

4 RESULTS

Benefits of log-transformation and multiplicative background

correction are described in Section 4.1. In Section 4.2, models

are fitted to housekeeping protein measurements to determine

the most appropriate error model. The superior model is used

to estimate time courses in Section 4.3 Additionally, it will be

shown that model assessment criteria yield the same preferable

model for time-dependent proteins. Figure 2 gives a schematic

overview of applied analysis steps.

4.1 Background correction and response variables

For measurements of housekeeping proteins underlying protein

concentrations are constant, e.g. independent on time and

stimulation. Frequencies of measured intensities for house-

keeping proteins are in agreement with lognormal distribution

but disagree with normal distribution (Fig. 3). The parameters

of normal and log-normal distribution are estimated by mean

and variance of raw and log-transformed measurements.
A Kolmogorov–Smirnov test leads to pks ¼ 0:22 for testing

against log-normal distribution and rejects hypothesis of

normally distributed noise with pks51E � 19. This result

indicates that main sources of noise are multiplicative.

In the Supplementary Material, comparison with normal and

log-normal distribution is discussed in more detail.
Further, we find that intensity ratios

R ¼ F=B ð8Þ

foreground over background are better reproducible than raw

foreground intensities F or signals

S ¼ F� B ð9Þ

obtained after background subtraction. Raw foreground inten-

sities of repeated measurements show a coefficient of variation

of around 40% within the same cell preparations and 27%

within same preparations and on same gels. This variability is

increased by background subtraction to around 57 and 38%,

respectively. In contrast, ratios (8) reduce coefficients of

variation to around 19 and 14%, for details see Supplementary

material.
Biological, as well as technical noise seems to multiplicatively

affecting foreground as well as background intensities. This

influence is partly eliminated by calculation of intensity ratios.

Emphasizing this hypothesis, foreground and background

intensities are strongly correlated (see Supplementary

Material). Beside raw foreground intensities and signals, we

therefore consider additionally ratios R as well as log(S) and

log(R) as response variables.

In addition to the six response variables shown in the upper

part of Table 2, background can be considered by estimation of

a regression parameter b between foreground and background

intensities (lower part of Table 2). This proportionality constant

can be fitted on intensity scale or on log scale. Special case b¼ 1

corresponds to background subtraction on intensity scale and

coincides with intensity ratios for log-transformed intensities.

4.2 Error model selection for housekeeping proteins

Error models accounting for different systematic influences

on measurements, e.g. observable effectO for different proteins,

preparation effect P accounting for biological variability and gel

effectG are fitted to our data using response variables of Table 2.

Measurements of
housekeeping proteins

Experimental
parameters

Measurements of
dynamic proteins

First analyses
(distribution of intensities,

residuals of replicates)

Set of possible models

Ranking of all models,
superior model

Estimation of time courses,
validation by new ranking

Fig. 2. Overview of applied analysis steps. First, analyses of house-

keeping proteins enhance possibility of log-transformation and ratios

foreground over background. In combination with different experi-

mental parameters, 26 error models are introduced and evaluated. The

superior model is used for determination of time courses.
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Fig. 3. Measured distribution of foreground intensities agrees with

lognormal distribution. Its asymmetry is in contradiction with normal

distribution.
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Altogether, 26 combinations are considered as hypothetical

error models. The different model assessment criteria introduced

in Section 7.3 are displayed in Table 3 for all 26 models. The

superior five values of each criterion are highlighted in bold face

and the best values are underlined.

Akaike InformationCriterion andBayes’ InformationCriteri-

on are superior for log(R) or log(F) with fitted log(B) (models

16–18 and 23–26). This advance does not strongly depend on the

considered fixed and random effects. Additionally, residuals of

these models are more consistent with normal distribution

indicated by orders of magnitude larger P-values obtained by

Kolmogorov–Smirnov tests.

Although both response variables show similar performance

regarding model selection criteria and distribution of residuals,

models with fitted background on log scale (models 23–26) are

also superior concerning signal-to-noise ratio and cross

validation. Therefore, log-transformation of measured inten-

sities in combination with background correction on log–scale

is recommended.
Additionally, there are strong indications that the impact

of background differs from gel to gel. The best performance

concerning Akaike and Bayes’ Criteria as well as signal-to-noise

ratio ð6Þ shows model Number 26

logðF�Þ ¼ Oo þ bþ �ð1Þp þ �ð1Þpg

� �
logðB�Þ þ �ð2Þp þ �ð2Þpg þ "� ,

�ð1Þp � Nð0, �ð1Þ
1 Þ, �ð1Þpg � Nð0, �ð1Þ

2 Þ, �ð2Þp � Nð0, �ð2Þ
1 Þ,

�ð2Þpg � Nð0, �ð2Þ
2 Þ, "� � Nð0, �Þ, ð10Þ

with random preparation and gel effects as well as a random

preparation and gel-specific contribution to background correc-

tion. This model requires only 13 parameters because back-

ground dependency as well as preparation and gel effects are

modeled as random effects, each with only a single parameter.

Table 2. Response variables of considered error models

Response y Abbreviation Background correction

Foreground F none

Signal S F – B

Signal ratio R F/B

log(foreground) log (F) none

log(signal) log (S) log (F – B)

log(signal ratio) log (R) log (F) – log (B)

Foreground, b fitted F-b B

log(foreground), b fitted log (F) – b log (B)

Response variables differ in log-transformation or in the way of accounting for

measured background.

Table 3. Performance of error models for measurements of housekeeping proteins

Model Number Model npar AIC npar pks SNR corCV

1 F*¼ Ooþe* 6 39 100 39 100 5.4E-10 0.34 0.12

2 F*¼ OoþPpþGpgþe* 93 38 500 39 000 3.3E-10 1.1 0.68

3 F*¼ Ooþep þ epgþe* 8 38 500 38 500 1.1E-10 1.0 0.27

4 S*¼ Ooþe* 6 38 000 38 100 3.7E-13 0.41 0.36

5 S*¼ OoþPpþGpgþe* 93 37 600 38 100 5.9E-8 1.0 0.61

6 S*¼ Ooþep þ epgþe* 8 37 500 37 600 3.2E-8 0.93 0.30

7 R*¼ Ooþe* 6 2510 2540 3.7E-7 0.78 0.70

8 R*¼ OoþPpþGpgþe* 93 1990 2460 2.7E-6 1.4 0.79

9 R*¼ Ooþep þ epgþe* 8 2120 2160 1.3E-5 1.3 0.67

10 log (F*)¼ Ooþe* 6 2300 2330 0.38 0.31 0.13

11 log (F*)¼ OoþPpþGpgþe* 93 1450 1920 0.016 1.3 0.78

12 log (F*)¼ Ooþep þ epgþe* 8 1620 1660 0.029 1.2 0.34

13 log (S*)¼ Ooþe* 6 3120 3150 4.8E-4 0.36 0.35

14 log (S*)¼ OoþPpþGpgþe* 93 2580 3050 6E-6 1.1 0.65

15 log (S*)¼ Ooþep þ epgþe* 8 2720 2760 2.3E-5 0.98 0.40

16 log (R*)¼ Ooþe* 6 593 623 0.84 0.78 0.57

17 log (R*)¼ OoþPpþGpgþe* 93 �95 372 0.016 1.6 0.78

18 log (R*)¼ Ooþep þ epgþe* 8 75 115 0.023 1.5 0.43

19 F*¼ Ooþb B*þe* 7 37 600 37 600 7.8E-6 1.8 0.87

20 F*¼ Ooþb B*þPpþGpgþe* 94 37 200 37 600 9.5E-7 2.5 0.95

21 F*¼ Ooþb B*þep þ epgþe* 9 37 100 37 200 3.1E-6 2.5 0.89

22 F* ¼ Ooþ(bþ"ð1Þp þ"ð1Þpg ) B* þ"ð2Þp þ "ð2Þpg þe* 13 36 900 36 900 7.0E-9 3.0 0.84

23 log (F*)¼ Ooþb log (B*)þe* 7 566 601 0.96 2.0 0.85

24 log (F*)¼ Ooþb log (B*)þPpþGpgþe* 94 �93 379 0.015 3.1 0.95

25 log (F*)¼ Ooþb log (B*)þep þ epgþe* 9 83 128 0.032 3.1 0.88

26 log (F*)¼ Ooþ(bþ"ð1Þp þ"ð1Þpg )log (B*) þ"ð2Þp þ "ð2Þpg þe* 13 �98 �33 0.008 3.7 0.90

Abbreviation ‘*’ is used instead of all occurring indices in a model, e.g. indices of all predictor variables and an index for replicate measurements. The superior five values of

eachmodel assessment criterion are highlighted in bold face, best values are underlined. A log-transformation improves the performance of themodels.Model 26 is superior

for 3 out of 5 criteria.
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ANOVA of fixed effects leads to significant P-values.

Additionally, 95% confidence intervals of estimated random

effects are significantly different from zero. Therefore, impact of

preparation and gel effects should be accounted if immunoblot-

ting is used quantitatively. This tendency is obtained for all

regarded response variables.
In addition to discussed experimental parameters, no

improvement could be observed by effects accounting for the

size of spots or for lane-specific differences within gels. Spot size

effects show strong correlations with underlying concentrations

and lead therefore for inflating standard errors of estimated

protein concentrations. Lane effects are partly accounted by

locally determined background and are only badly identifiable

due to limited number of observables within a lane.
For our analyses, we assume exclusively additive or multi-

plicative noise. The case of both, additive and multiplicative

noise is discussed in Supplementary Material.

4.3 Application to time course measurements

To illustrate the benefits of log-transformation and elimination

of systematic noise, error models are now applied to determine

time courses of insulin signaling. Therefore, models for

housekeeping proteins are enlarged by time effects Tost which

depend on observable o and applied stimulation s. Model ð10Þ

which was superior for housekeeping proteins yields

logðF�Þ ¼ Oo þ Tost þ bþ �ð1Þp þ �ð1Þpg

� �
logðB�Þ þ �ð2Þp þ �ð2Þpg þ "�:

ð11Þ

Observable effects Oo are chosen in a way that Tost0 ¼ 0 is

fulfilled. A table with model assessment criteria of all 26 models

for time-dependent proteins is provided in SupplementaryMate-

rial. Affirming the results obtained for housekeeping proteins,

model 26, respeatively. Equation (11), remains the most

appropriate model for time-and stimulation-dependent proteins.

It has superior model selection criteria, shows almost normally

distributed residuals and a preferable signal-to-noise ratio.
The improvement of model assessment criteria by log-

transformation and multiplicative background correction is

illustrated in Table 4. Here, model 260 is compared with three

prominent out of 25 competing other models. In first, model 40,

time effects are estimated from signal intensities without

considering preparation or gel effects. Log-ratios are used for

the second model Number 160. The third selected model 60

corresponds to model 260 but no log-transformation is applied.

Model assessment criteria are clearly improved by the full model

Number 260.

The benefit of model 260 results in a better estimation of time

effects. As an example, estimation of time dependency of

phosphorylated IR� after stimulation with 100 nM insulin and

standard errors are plotted in Figure 4. Using the complete

model (Fig. 4 (d)) leads to reliable estimation of time

dependency and small confidence intervals. In contrast to

this, without log-transformation or if systematic errors are not

regarded (Fig. 4a–c) signal-to-noise ratio and smoothness of

estimated time courses are decreased. Figures for all 26 models

are displayed in Supplementary Material.

5 CONCLUSION

Molecular biology has already made remarkable contribution

to our understanding of biological systems on a cellular level.

However, in recent years it became obvious that screening of all

molecular components is not enough to understand complexity

of cellular processes. Time resolved measurements in combina-

tion with mathematical models have to be used to uncover

dynamics and systems properties of biochemical networks.

Particularly in Systems Biology, integration of both experi-

mental data and mathematical modeling is used to discover

principles of cell biology. Systems Biology approaches are

successfully applied to study signaling pathways in cells

(Bentele et al., 2004; Schoeberl et al., 2002).
Here, we used time resolved data of insulin signaling

pathway. Development and validation of a mathematical

model for dynamics of protein concentrations requires not

only qualitative but also quantitative reproducible measure-

ments. This requirement could only be achieved by

development of an error model for immunoblotting intensities.

Despite development of new experimental techniques, quanti-

tative reliability constitutes a main bottleneck of new experi-

mental approaches.Manymethods show aminor signal-to-noise

ratio and are only limited applicable for time resolved measure-

ments, especially if primary cells are studied. Statistical analysis

of measurement noise by error models has been successfully

applied to some other experimental techniques, e.g. for

Table 4. Model assessment criteria for time-dependent proteins

Model Response variable AIC BIC pks SNR TR

40 Signals 55 345 55 740 3.4E-83 0.3 2.4

160 Log-ratios 807 1202 0.031 0.6 5.1

60 Model for signals 51 691 52 096 9.5E-39 1.6 5.8

260 Complete model 490 923 0.0052 4.2 8.0

Error models for housekeeping proteins are extended by time effects yielding to

models 10 to 260. Here, the performance of a subset of four prominent models is

displayed for the full data set. Again, the complete error model shows preferable

model assessment criteria. Complete table is provided in Supplementary Material.
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Fig. 4. Activation of Insulin receptor estimated (a) from signals, (b)

from log-ratios, (c) from signals with elimination of systematic errors

and (d) for the full model with log-transformation and multiplicative

background correction.
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high-throughput screening techniques (Malo et al., 2006),
analytical chemistry (Rocke and Lorenzato, 1995), microarrays
(Love et al., 2002; Weng et al., 2006) or polymerase chain
reactions Pfaffl et al., 2001). A challenging next step is the

statistical analysis of data obtained by other experimental
techniques.
We introduced and compared error models for data obtained

by immunoblotting. It could be shown by a model selection
procedure that predominant errors are multiplicative. A log-
transformation of measured intensities is required to obtain

desired statistical properties like Gaussian distribution of noise.
These statistical properties are necessary for dynamic modeling
of protein interactions, e.g. in signal transduction. A conse-

quence is that error bars for immunoblotting intensities are not
symmetric. Although outliers towards large values are often
observed, asymmetry of error bars are not considered in practice
so far.

We recommend that background correction procedures are
applied on log scale. Furthermore, a gel-specific background
correction seems preferable.

It is strongly recommended to determine background
intensities carefully. Overestimation of local background by
contamination with signals would lead to a lower signal-to-

noise ratio after correction. To avoid this risk, we checked that
the same results are obtained by using background intensities
determined ‘far away’ from signal spots on our gels.
Furthermore, we revealed strong biological variability

between cell preparations as well as technical noise between
different gels. Elimination of these sources of a bias improves
reproducibility of the data significantly resulting in smaller

error-bars of protein concentration time courses.
In comparison to separate calibration experiments (Schilling

et al., 2005b), our approach does not require additional

experiments. The amount of observational noise is determined
by replicate measurements from time course measurement itself.
The advantage of this approach is that calibration experiments

can be avoided and the error model is developed in exactly the
same experimental setup as time courses, e.g. same cells, proteins
and antibodies. Nevertheless, calibration experiments can be
used to estimate the fraction of systematic errors which are

assumed to be equal in calibration and time course data.
We found a coefficient of variation within gels of around 14%.

For simulation studies generating synthetic data of protein

concentrations, a realistic setting for immunoblotting data
would be obtained by generating log-normally distributed
noise with a similar coefficient of variation.

Modeling of measurements and measurement errors allows
for statistical testing and elimination of systematic errors. The
illustrated mixed effects model approach can be extended to
correct for arbitrary undesired influences, e.g. by different

experimental techniques, different cell types or tissues.
Therefore, mixed effects models constitute an appropriate
approach to perform an analysis of data obtained under various

experimental conditions. This integration of different data
sources is an important and essential step for systems biology.
After all, development of appropriate error models account-

ing for biological inhomogeneity and experimental noise is one
step in the key challenge of systems biology, the generation of
reliable and biologically relevant mathematical models.
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