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I. ERROR CLASSIFICATION

Immunoblotting as a technique for quantitative analy-
sis of protein concentrations has several sources of noise,
which can be divided into three classes:

(i) pipetting errors f(j) change the amount of each
protein in the j-th lane by the same factor, reflect-
ing, e.g., the different amount of lysate loaded on
each gel lane

(ii) blotting errors g(j, m), observed as brighter and
darker areas, arise from inhomogeneities of the gel
and transfer to the membrane. They are highly
correlated for neighboring lanes, j, and rows, m.

(iii) contributions independent from the loaded protein
concentrations. They are modeled as Gaussian
noise, η(j, m).

As shown in the main text, error contributions from
pipetting are small compared to the highly correlated
errors of the blotting technique (see Fig. 2b, main
text). Figure 7 gives an example of a blotting error
and Figure 1 displays the mean autocorrelation function
(ACF) for 13 gels of the normalizer protein βActin and
for 8 gels of the calibrator GST-EpoR depending on the
lane distance.

The effects on the concentration x∗(tj) of a given pro-
tein in the lysate at time tj , resulting in the measured
concentration x(tj), can be described by

x(tj) = [1 + g(j, m)] [1 + f(j)]x∗(tj) + η(j, m). (1)

Here, the time point tj after stimulation corresponds to
lane j, the smooth systematic error g depends on the
lane index j and on the molecular weight m, measured
in kD. The pipetting error f depends only on the lane
number j, since it changes the amount of all proteins in
a lane by the same factor. Errors arising from (i) and
(iii) are uncorrelated among different lanes, resulting in
〈f(j)f(j′)〉 = 0 and 〈η(j,m)η(j′,m)〉 = 0 for j 6= j′.

In the following we use normalizers and calibrators
and a randomized, non-chronological loading of the

lanes, to identify and reduce the highly correlated
blotting errors, g(j,m).

II. ELIMINATION OF THE BLOTTING ERROR

The highly correlated errors arising from the blotting
technique vary gradually over the lanes and make
it difficult to extract the actual values. To elim-
inate the correlations among the lanes we employ
non-chronological gel loading. Here, the subsequent
time-points after stimulation are loaded randomized on
the gel under the condition that consecutive time points
are separated by minimum number of 4 lanes for 20
time points (compare loading example in Figure 7). By
applying this method, the errors between consecutive
time points are uncorrelated. We are able to estimate
the true time-course from the data by rearranging the
time points in chronological order. As shown in Figure
2C, we employ a cubic spline whose smoothness is de-
termined by generalized cross-validation. This technique
demands statistical independent errors as generated
by the randomized gel loading. The estimation of a
time-course from noisy data by smoothing splines has
been worked out in detail in Refs. [1–4]. We emphasize
that a sufficiently dense grid of time-points is necessary
to keep the bias of this method small.

For the case that a normalizer protein, xn(j), can be
measured with a similar molecular weight as the protein
of interest, it is possible to estimate the blotting error
g(j,m) as x∗

n(j) = const by definition. The true signal is
then given by

x̂∗(tj) ≈
xi(tj)
x̄n(tj)

. (2)

Here, x̄n(t), denotes the smoothing spline generated
from the date set {xn(tj)} by keeping the lane ordering
of the randomly loaded gels. Smoothing of the data is
performed in oder to average over error contributions
arising from pipetting, f(j), and other sources of noise,
η(j,m). We further denote by x̃∗(t) and x̃(t) the
time-courses of the smoothing splines generated from
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FIG. 1: Autocorrelation of the normalizer protein βActin (A) and the calibrator protein GST-EpoR (B) in the gel domain.
The two-sided 95% confidence interval for the averaged autocorrelation function of a purely random process is in both cases
not preserved, indicating a strong correlation of neighbored gel lanes.

the chronological ordered data sets {x̂∗(tj)}, {x(tj)}.
The residuals |x̃∗(tj)− x̂∗(tj)|, are expected to be signif-
icantly smaller than the residuals without employing a
normalizer, |x̃(tj) − x(tj)|, as we have readily accounted
for the blotting errors in the first case. This in turn
gives us a reliable measure for the quality of the used
normalizer protein.

III. ERROR REDUCTION VIA
RANDOMIZATION AND NORMALIZERS -

SIMULATION STUDY

Simulations of typical immunoblotting experiments
were performed by generating a simulated signal with
quadratic rise and exponential decay and a maximum
at half lane number, equidistantly sampled (Figure 2B).
This simulates a typical time-course experiment after
stimulation with a hormone. The true signal x∗(tj) was
processed with the two main sources of errors as de-
scribed in the previous section, a pipetting and a blotting
error. In detail:

1. A multiplicative, uncorrelated pipetting error was
applied as shown in Figure 2A representing errors
derived from unequal cell number or errors in pipet-
ting the cellular lysates:

x′(tj) = x∗(tj) · (1 + σε(j)) ε(j) ∈ N(0, 1)).

2. A multiplicative, strongly correlated blotting error
was applied, representing errors from differences in
migration in the SDS polyacrylamide gel or unequal

transfer to the membrane:

x(tj) = x′(tj) · (1 + g(j)),

with the blotting error g(j) represented by a sine
function with mean zero and phase, amplitude and
frequency consistent with experimental observa-
tions.

The processing was applied to a chronological and to
a randomized true signal, x∗

rand and x∗
chron, respectively,

leading to ”measurements” like in Figure 2B. Note that
the chronological signal is rather smooth but changes the
characteristic of the true signal: The maximum occurs
earlier and a new minimum is observed at t = 15. The
randomized signal on the other hand is very noise, but
does not introduce systematic effects. The smoothed
processed randomized signal x̃rand is very close to
the true time-course, whereas the smoothed processed
chronological signal x̃chron still keeps correlated devia-
tions from the true signal (Figure 2C). The correlation
structure of the deviations can be investigated via the
autocorrelation function (Figure 2D). For uncorrelated
errors, the autocorrelation function should drop from 1
at τ = 0 into the 95% confidence interval for τ > 0. This
is not the case for the processed chronologically signal,
which can lead to misleading conclusions if methods are
applied which assume uncorrelated noise.

Besides visual inspection of the autocorrelation func-
tion, the improvement of data quality by means of a ran-
domized gel loading can be quantified by the error reduc-
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FIG. 2: Effect of randomization on immunoblotting data. (A) Simulated uncorrelated pipetting error and highly correlated,
sine-like blotting error. (B) Simulated signal perturbed with the pipetting and blotting error in a chronological and randomized
manner. Only the randomized procedure does not change the characteristics of the true signal, as the smoothed data show (C).
(D) The residuals of the perturbed to the true signal exhibit a strong autocorrelation for the chronological procedure, which is
not agreeable with white noise. This can be achieved by randomizing.

tion factor :

α =

√∑
j (x̃rand(tj) − x∗(tj))

2√∑
j (x̃chron(tj) − x∗(tj))

2

For the illustrated data set the achieved reduction of
the standard deviation was α ≈ 0.4. The reduction
can only be quantified when the actual values are avail-
able, which is not the case in experimental measurements.
Hence, the question arises whether a general error reduc-
tion factor can be established by randomizing or whether
it depends on experimental parameters like the number
of lanes, strength of signal maximum, blotting error or
pipetting error. A simulation study showed that for small
pipetting errors an error reduction factor of 0.45 ± 0.1
could be established independently from other parame-
ters. Details of the study follow in the next section.

A. Quantifying the Error Reduction using
Randomization and Calibrators

To determine the usefulness of randomization for the
improvement of data quality, several parameters were
varied including the number of lanes (10 to 100, Fig.
3A), the number of sine periods of the blotting error (0.8
to 2.2, Fig. 3B), the strength of the blotting error (ratio
of smallest to largest value ranging from 1.5 to 10, Fig.
3C), the maximum signal strength (0.1 to 20, Fig. 3D),
and the strength of the pipetting error (σ ranging from
0 to 1, Fig. 4). During the variation of one parameter,
the other parameters were fixed:

• Number of lanes: 20

• Number of sine periods of the blotting error: 1

• Strength of the blotting error (max/min): 3

• Maximum signal strength: 2



4

10 20 30 40 50 60 70 80 90 100 110
0

0.2

0.4

0.6

0.8

1

Number of Lanes

E
rr

or
 R

ed
uc

tio
n 

F
ac

to
r

Variation of Lane Number

Mean Error Reduction Factor: 0.53 +/− 0.26

A 

0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.2

0.4

0.6

0.8

1

Number of Sine Periods of the Blotting Error

E
rr

or
 R

ed
uc

tio
n 

F
ac

to
r

Variation of Blotting Error Characteristic

Mean Error Reduction Factor: 0.45 +/− 0.13

B 

1 2 3 4 5 6 7 8 9 10 11
0

0.2

0.4

0.6

0.8

1

Strength of Blotting Error (max/min)

E
rr

or
 R

ed
uc

tio
n 

F
ac

to
r

Variation of Blotting Error Strength

Mean Error Reduction Factor: 0.48 +/− 0.14

C 

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Maximum Signal Strength

E
rr

or
 R

ed
uc

tio
n 

F
ac

to
r

Variation of Signal Strength

Mean Error Reduction Factor: 0.47 +/− 0.12

D 

FIG. 3: Reduction of standard deviation of smoothed simulated blotting data by randomization. (A) For gels with more
than 15 gel lanes randomization reduces robustly standard deviation by 50%. This holds also for variation of blotting error
characteristics like number of periods (B) or error strength (C) and for a wide range of signal maximum (D).

• Standard deviation of the pipetting error: 0.1

Figures 3 and 4 display the error reduction factor for all
parameter variations. At least 20 lanes should be used
to achieve an optimal improvement. For the other in-
vestigated parameter ranges no strong effect is observed
for all variations except for the strength of the pipetting
error (Fig. 4). Since pipetting errors are uncorrelated,
they cannot be reduced by randomization - if the frac-
tion of the pipetting errors increases, the randomization
takes less effects. In general, randomization decreases the
standard deviation in quantitative immunoblotting to ca.
0.45 of the value without randomization, as long as the
pipetting error is not too large. An approach to control
the pipetting error in experiments is sampling the same

number of cells for each time point or measuring and
adjusting total protein concentration.

B. Criteria for Employing Normalization with
Normalizers and Calibrators

Calibrators and normalizers possess a constant con-
centration. Fluctuations occur only as measurement
errors. Since the blotting error changes slowly from
lane to lane and other errors like the pipetting error are
rather uncorrelated, the blotting error can be estimated
by smoothing the calibrator or normalizer signal, e.g.
with a smoothing spline. Based on this blotting error
estimate, the protein of interest can be normalized.
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FIG. 4: Reduction of standard deviation of smoothed sim-
ulated blotting data by randomization for variation of the
pipetting error strength. Increasing the pipetting error – blot-
ting error ratio decreases the error reduction factor, since only
blotting errors are tackled by randomization.

However, since the blotting error is a local property of
the gel, normalizers and calibrators are required with
a similar molecular weight as the protein of interest.
If the molecular weight of the normalizer is different
it does not reflect the blotting error for the protein of
interest. We therefore developed criteria for employing
normalizers and calibrators.

Figure 5A shows a simulated blotting error and a good
estimation, corresponding to the smoothed signal of an
appropriate normalizer in a real experiment. Smoothing
the processed randomized signal leads to an acceptable
estimation of the true signal. Smoothing the normalized
signal yields virtually the true signal itself, as shown
in Figure 5C. Even the correlation structure of the
estimation error in the gel domain is improved.

The estimation of the blotting error displayed in
Figure 6A is inaccurate: A strong phase shift can
be observed, corresponding to a skewed gradient of
the blotting error depending on the position on the
blot. In this situation, normalizing the data increases
the deviation of the estimated signal from the true
signal. Hence, a criterion whether a normalization is
applicable would be a decreased standard deviation of
the estimated signal. This, though, requires knowledge
of the true time course, which is not available. Instead,
the smoothed curve of the randomized but not yet
normalized signal is used as preliminary estimator of
the true signal. If the normalizer is applicable, a new
estimate can be calculated based on the randomized and

normalized data, otherwise the former estimate is kept.

The shown simulated data sets have the following stan-
dard deviations:

• Figure 5:

– Randomized (true): 0.533

– Randomized (estimation): 0.722

– Randomized, normalized (true): 0.157

– Randomized, normalized (estimation): 0.515

• Figure 6:

– Randomized (true): 0.533

– Randomized (estimation): 0.722

– Randomized, normalized (true): 1.208

– Randomized, normalized (estimation): 1.068

The estimated error decreases in case of Figure 5 and
increases in case of Figure 6 if a normalizer is used.
Hence, the normalization procedure is only applicable in
the first case, reducing the true standard deviation from
0.533 to 0.157. In the other case it would increase the
standard deviation from 0.533 to 1.208. This procedure
works robustly for normalizers and calibrators, as long as
randomized gel loading is applied.

C. Application to Stimulation Experiment

The randomizing and normalization procedure was ap-
plied on an erythropoietin (Epo)-induced time-course
experiment resulting in phosphorylation of ERK1 and
ERK2. Samples were loaded randomized and separated
on 17.5% SDS polyacrylamide gel, and transferred to
membranes that were developed with chemiluminescent
substrates and quantified with the Lumi-Imager (Figure
7). We calculated the standard deviation of the sig-
nals to their spline approximation to 2.524 for pERK1
and 0.455 for pERK2. Normalization with βActin re-
duced the standard deviation to the spline approxima-
tion to 1.878 for pERK1 and 0.262 for pERK2. The re-
duced lane-correlation for the normalized data confirms
the quality of data processing. In this case the correla-
tion structure of the systematical blotting error could be
disrupted validating the normalization.

IV. CALCULATION OF MOLECULES PER
CELL

A. Linearity of imaging unit

Quantification of a protein P measured by im-
munoblotting is performed via chemiluminescence detec-
tion yielding total intensities Pblu which are proportional
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FIG. 5: Normalization of simulated time-course data depicting a valid procedure according to our criteria. (A) The blotting error
is very well estimated corresponding to a suitable normalization protein. The perturbation of a simulated signal (B) is strongly
reduced after normalization (C). Even the correlation in gel domain of the residuals is improved (D). The autocorrelation, i.e.,
the correlation in time domain, agrees for both randomized signals with white noise (not shown).

to the total number of molecules Ptmlc on the blot (Fig.
8. The linear relationship reads

Ptmlc = a Pblu

with a proportionality factor a and 0 y-axis interception.
The factor a has to be determined for each protein species
and for every blot, since the amount of antibody added
varies for different blots and the antibody affinity differs
for different proteins.

B. Requirements for the standard/calibrator
protein

The reference protein R realized by a standard or cal-
ibrator protein should

• contain the same epitope binding to the antibody
as the protein of interest,

• have a known molecular weight Rmw,

• be added to the lysate with a known amount Rg.

C. Calculation of the proportionality factor

The total number of reference proteins in the lysate is
given as

Rtmlc =
NA Rg

Rmw
,

with Avogadro constant NA = 6.022 · 1023. If the imag-
ing unit measures the intensity Rblu, the proportionality
factor can be calculated as

a =
Rtmlc

Rblu
=

Rtmlc NA Rg

Rblu Rmw
.

If possible, one should measure the reference protein
several times and estimate a by linear regression. This
provides also a standard deviation for a.



7

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3
Pipetting and Blotting Error

Lane

A
rb

itr
ar

y 
U

ni
ts

0 5 10 15 20
0

1

2

3

4

5
Randomized Data

Time

P
ro

te
in

 C
on

ce
nt

ra
tio

n

0 5 10 15 20
0

1

2

3

4

5
Normalized Data

Time

P
ro

te
in

 C
on

ce
nt

ra
tio

n

0 2 4 6 8 10

−1

−0.5

0

0.5

1

Lane−Correlation of Residuals

Lane Distance

C
or

re
la

tio
n

pipetting error
blotting error
blotting error estimate

true signal
data from randomized gel
data spline

true signal
data from rand. gel
normalized data
norm. data spline

only randomized
normalized and rand.
95% conf. interval

A B 

C D 

FIG. 6: Normalization of simulated time-course data depicting a rejected procedure according to our criteria. (A) The blotting
error estimate is phase shifted, corresponding with a too distant normalization protein. The perturbation of a simulated signal
(B) cannot be reduced with normalization (C) and the lane-to-lane correlation is not improved (D).

D. Calibrators

Calibrator proteins harbor the same antibody epitope
as the protein of interest, P , yet possess a different molec-
ular weight than P resulting in a distinct band in the im-
munoblot analysis. If analysis of total cellular lysates are
performed, a few lanes of the immunoblot have to be used
for the standard protein to facilitate parallel detection.

E. Calculation of molecules per cell

Ptmlc is the total number of molecules of the inves-
tigated lysate. If the number of cells in the lysate is

available, the molecule number per cell can be calculated
as

Pmlc =
Ptmlc

# cells
.
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FIG. 7: Randomization and normalization of an Erythropoietin-induced time-course experiment. BaF3-EpoR cells are stim-
ulated with 50 units/ml Epo resulting in ERK phosphorylation. Gel electrophoresis has been applied with a randomized,
non-chronological gel loading with βActin as normalizer protein (upper panel). (A) Smoothed measurements of βActin serve
as estimate of the strong, sine-like blotting error. (C, D) Normalization reduces significantly standard deviation of pERK1/2
measurements compared to a spline-smoothed pERK1/2 signal (cont. line), which serves as first estimate of the true signal.
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FIG. 8: A dilution series of purified ERK2 was separated eight
times by a 10% SDS polyacrylamide gel and transferred to a
membrane that was probed with anti-ERK antibody and sub-
sequently developed with ECL or ECL advance. To determine
linearity, the amount of ERK2 was plotted versus measured
signal strength. Signals were linear up to 4 x 107 BLU.


