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ABSTRACT: A major challenge in systems biology is to evaluate the fea-
sibility of a biological research project prior to its realization. Since ex-
periments are animals-, cost- and time-consuming, approaches allowing
researchers to discriminate alternative hypotheses with a minimal set of
experiments are highly desirable. Given a null hypothesis and alternative
model, as well as laboratory constraints like observable players, sample
size, noise level, and stimulation options, we suggest a method to obtain
a list of required experiments in order to significantly reject the null
hypothesis model M0 if a specified alternative model MA is realized. For
this purpose, we estimate the power to detect a violation of M0 by means
of Monte Carlo simulations. Iteratively, the power is maximized over all
feasible stimulations of the system using multi-experiment fitting, lead-
ing to an optimal combination of experimental settings to discriminate
the null hypothesis and alternative model. We prove the importance of si-
multaneous modeling of combined experiments with quantitative, highly
sampled in vivo measurements from the Jak/STAT5 signaling pathway in
fibroblasts, stimulated with erythropoietin (Epo). Afterwards we apply
the presented iterative experimental design approach to the Jak/STAT3
pathway of primary hepatocytes stimulated with IL-6. Our approach of-
fers the possibility of deciding which scientific questions can be answered
based on existing laboratory constraints. To be able to concentrate on
feasible questions on account of inexpensive computational simulations
yields not only enormous cost and time saving, but also helps to specify
realizable, systematic research projects in advance.
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INTRODUCTION

Mathematical modeling of cellular processes deepens the functional under-
standing of biochemical interaction at the microbiological level.1–5 However,
successful modeling requires high-quality time-resolved quantitative measure-
ments of protein concentrations, which are still difficult to obtain.6,7 Hence,
for a given noise level and set of observable proteins, the question arises as
to which biological hypotheses can be investigated with a reasonable effort.
Several methods were suggested to improve the experimental setting in order
to optimize the estimation of model parameters.8,9 We developed an experi-
mental design approach which suggests an optimal set of required experiments
in order to discriminate competing biological hypotheses for given laboratory
constraints.

METHODS

Statistical Background: Hypothesis Testing

According to the Neyman–Pearson paradigm, a test statistic T(x) with sam-
ple values x can be used to decide whether or not to reject a null hypothesis
H0 in favor of an alternative HA.10,11 The sets of values of T for which H0 is
accepted is called the acceptance region or confidence interval with size of
1 − � and those for which H0 is rejected are called the rejection region of
the test. The critical value determines the border between the two regions. In
applying the paradigm, a type 1 error (i.e., a false positive event) occurs when
H0 is rejected although it is true. Its probability is designated by �. Type 2
errors (i.e., false negative events) occur when H0 is accepted although it is
false. Its probability is �. The power of the test is defined as the probability
that H0 is rejected when it is false and equals 1 − �. An ideal test would
have � = � = 0. Hence, by designing optimal experiments we try to minimize
the overlap between null and alternative distributions in order to improve the
model discrimination power. The interpretation of a test is as follows: If H0

is not rejected, it is either really true or the test had no power to detect the
violation. Otherwise, if H0 is rejected, one can only conclude that H0 is not
true, but the validity of the alternative is not proved.

The Jak/STAT3 Signaling Pathway

We exemplify our approach to the IL-6/Jak/STAT3 signaling pathway of
primary hepatocytes. The null hypothesis model M0 is depicted in FIGURE 1:
The gp130 receptor gets activated via IL-6 ligands and phosphorylates STAT3
monomers. Two pSTAT3 molecules build dimers, are phosphorylated a sec-
ond time, and enter the nucleus, where they act as transcription factors before
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FIGURE 1. Null-hypothesis and alternative models of the Jak/STAT3 pathway. Under
the null hypothesis, the gp130 receptor is activated via IL-6 and phosphorylates STAT3
monomers. Two pSTAT3 molecules build dimers, get phosphorylated a second time, and
enter the nucleus. where they act as transcription factors before leaving the nucleus. M1–M7
represent possible extensions or modifications of the null hypothesis model.

leaving the nucleus again. The corresponding chemical reactions are trans-
lated into ordinary differential equations via mass-action kinetics and fitted
to quantitative measurements in primary hepatocytes. Discrepancies between
model and data and screening of the literature led to several alternative mod-
els, M1–M7. The question arose as to which alternative could be successfully
distinguished from the null hypothesis model for a given set of observable
proteins and a given noise level.
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Laboratory Constraints, Stimulus Control, and System Characteristics

Our iterative experimental design approach requires specification of labora-
tory constraints, characteristic times, and stimulation doses. Depending on the
investigated cell system, technical facilities, and experimental skill, several
constraints are formulated:

• maximum number of possible time points per experiment;
• expected measurement noise level;
• set of observable proteins; and
• realizable stimulations (e.g., dose responses, pulses, ramps).

These constraints have a strong influence on the optimal combination of
experiments and the feasibility of the whole research agenda.

As in control engineering, the properties of a dynamical system can only
be characterized satisfactorily if the system can be controlled or stimulated
with a variety of different input functions. Oscillating inputs—the most often
used input function in control engineering—are currently not applicable to
the biological systems. However, continuous, pulsed, and ramped stimulations
can be applied. This enhances model selection dramatically if methods for
multi-experiment fitting are available.

Different signal transduction pathways may possess a strongly different
temporal behavior and may need different stimulation doses. Our approach
generates a set of basic stimulation experiments which are scaled in time and
dosage to meet a realistic stimulus. Therefore a short, medium, and long time
period must be specified and similarly a low, medium, and large stimulation
dose.

RESULTS

Improved Model Discrimination through Multi-Experiment Fitting

The enormous increase of model discrimination power by use of multi-
experiment fitting is shown for a stimulation experiment with fibroblasts. The
cells were stimulated with erythropoietin (Epo) in one experiment continuously
over 180 minutes and in a second experiment for only 5 min (FIG. 2A,B).
Three models, M1–M3, with increasing complexity were used to describe the
receptor kinetics. Fitting of the simplest model M1 to the activated receptor
time courses shows a strong discrepancy for the continuous stimulation (FIG.
2C). Model M2 can describe both data sets separately (FIG. 2E,F), but only
with different, locally fitted parameter values. Since a model should be able to
describe a system with the same parameter values for different stimulations, a
multi-experiment fit is required where both data sets are fitted simultaneously.
Figure 2G and H show that model M2 is not flexible enough to explain the
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FIGURE 2. Single and multi-experiment fitting. Fibroblasts are stimulated in two ex-
periments with Epo continuously (A) and for 5 min (B). The activated receptor is measured
and fitted with models M1–M3 in single and multi-experiment manner, that is, with param-
eter values depending on each data set or globally unique values. M1 can describe the fast
decay after the pulsed stimulation (D), but not the slow decrease of the continuous one (C).
M2 can explain both data sets, but only with locally fitted parameters (E, F). The multi-
experiment fit explains the pulsed stimulation well (H), but shows strong discrepancies for
the continuous stimulation (G). Only M3 is able to be fitted simultaneously to both time
courses (I, J).
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slow decrease for the continuous stimulation and the fast decrease after the
pulsed stimulation at once. Only model M3, which comprises models M1 and
M2, can explain the data sets for the identical set of parameters (FIG. 2I, J).

Chi-Square Test Statistic

The discrepancy between a fitted model and a data set—the goodness-of-
fit—can be quantified by the chi-square value,

� 2 =
N∑

i=1

(
yi − y(xi ; a1, . . . , aM )

�i

)2

,

for N data points yi measured at xi with standard deviation � i and modeled by
y(xi; a1, . . ., aM ) with M parameters aj.12 For a valid model and Gaussian dis-
tributed errors, the chi-square values are chi-square distributed with k degrees
of freedom with k between N-M and N , depending on the model structure.
If the calculated chi-square value is not compliant with the corresponding
chi-square distribution, the used model can either be significantly rejected to
sufficiently describe the data or the used error model is wrong. Since we are
interested in discriminating the null hypothesis model from an alternative one,
we simulate data from an alternative model and fit the null hypothesis model
to the data. Afterwards, the chi-square value is calculated and compared with
the significance level of the corresponding chi-square distribution.

Iterative Experimental Design

A basic set SB of stimulation experiments is generated based on user-defined
feasible experimental techniques and characteristics of the current cell system.
After specifying an initial set S0 of stimulation experiments (e.g. the empty
set or already applied experiments), new experiments are added iteratively:

1. In iteration i, the current set Si−1 is consecutively combined with one
stimulation experiment ek of the basic set of the feasible stimulations SB.

2. Data from M A are simulated for {Si−1, ek} and the null hypothesis model
M 0 is fitted to the data, leading to the chi-square value dk .

3. The optimal next experiment eopt is determined by the maximum chi-
square value over all dk , since it has the highest power to discriminate
the false null hypothesis from the true alternative.

4. The iteration is stopped if the null-hypothesis can be rejected significantly
or if the maximum iteration number is reached. In the last case, the
null hypothesis cannot be distinguished from the alternative within the
maximal specified experimental effort.
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FIGURE 3. Iterative model discrimination. chi-square distance between data simulated
with alternative model M4 and fitted with null hypothesis model M0. If only one experiment
can be accomplished, it should be setting 4 yielding the highest but not significant chi-square
value (A). In combination with further experiments (B, C), the chi-square value increases
but is still not large enough, to successfully reject the wrong null hypothesis. M0 would be
statistically compliant with the data produced by M4. Only an optimal combination of five
experiments leads to a significant result (D).

The reaction schemes of all models are translated into sets of ordinary differ-
ential equations. By means of an implicit Runge–Kutta Fortran integrator the
systems are integrated during simulation or fitting.13 Parameters are adapted
during the fitting procedure with the trust-region approach, as implemented
in the MATLAB optimization toolbox.14–18 All simulations and fits were applied
within our new developed modeling framework, PottersWheel.19

Application to the Jak/STAT3 Signaling Pathway

Alternative M4 describes a cooperative behavior of the activated receptor.
We will determine the optimal experimental design in order to distinguish M4

from the null-hypothesis M0. FIGURE 3A shows the ordered chi-square values
for nine different stimulations after one hypothetical experiment. Stimulation
4 yields the highest discrimination power, but does not suffice to reject the
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wrong null hypothesis. Iterative combination with further stimulations up to
four experiments is still not sufficient: M4 cannot be distinguished from M0

within four experiments (FIG. 3B, C). Only by combination of five experiments
can a significant rejection be achieved (FIG. 3D).

CONCLUSION

We presented an approach to iteratively create an optimal set of experiments
in order to increase the power to detect a violation of a null hypothesis model
when a specific alternative is realized instead. It takes into account cell-
system and laboratory-specific constraints like feasible stimulation types, set
of observable proteins, and noise levels. The simultaneous fit of one model
to several data sets is a key procedure of our approach. Application to the
Jak/STAT3 signaling pathway of primary hepatocytes shows that the question
of receptor cooperativity cannot be investigated with less than five optimal
combined experiments.
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