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On analyzing data of biochemical reaction dynamics monitored by time-resolved spectroscopy,
one faces the problem that the concentration time courses of the involved components are not
directly observed, but the superposition of their absorption spectra. Furthermore the single
spectra are often unknown, because the corresponding reagents cannot be isolated. We propose
a method based on Bock’s multiple shooting algorithm to estimate the rate constants and in-
dividual spectra simultaneously. Applying this procedure to a biochemical reaction we identify
the specific rate constants characterizing the reaction dynamics as well as the nonobservable
absorption spectra. The results lead to a better understanding of the kinetics of a novel modifi-
cation reaction which was used as trapping reaction in disulfide bond mediated protein folding
reactions.
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1. Introduction

One of the aims of time series analysis is to gain
information about a process by fitting a model of
ordinary differential equations to the experimen-
tally measured data. If the dynamical variables are
not directly observed, one also has to model a suit-
able observation function connecting the dynamical
state variables to the measured data. The estima-
tion of this observation function can provide new

insight into additional characteristics of the inves-

tigated system.

Analysis of data measured by time-resolved

optical absorption spectroscopy of a biochemical

process illustrates this situation: given some non-

linear reaction dynamics modeled by a system of

ordinary differential equations, one measures the

temporal evolution of the absorption spectra of

the solution. These data are a superposition of the
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spectral contributions of the reaction partners.
While the spectra of the involved educts are usu-
ally known from isolated measurements, those of
intermediate products often cannot be measured
isolatedly. In this context, the nonobservable con-
centrations represent the dynamical variables and
the superposition of the spectra represents the non-
parametric observation function connecting the re-
action dynamics to the measured absorption data.
The task is to estimate the parameters of the differ-
ential equation as well as the unknown absorption
spectra.

A standard method to analyze such data is to
use information at specific wavelengths around the
absorption peaks of the individual components. A
first approach linearizes the differential equations
at t = 0 and uses data of the first time steps
to estimate an effective rate constant of the lin-
earized model. An extension uses the full nonlinear
model. Both methods discount all the data at other
wavelengths. For linear reaction dynamics, Hayashi
and Sakamoto [1986] suggested to use data at more
wavelengths than components taking part in the re-
action. We extend this idea and develop a method
for nonlinear dynamics using information at a sub-
set of all measured data. Doing this we are able to
estimate not only the underlying dynamical param-
eters, but also the nonobservable spectra.

In this work we present a detailed analysis of
a biochemical reaction which is used for the study
of disulfide bond-mediated folding pathways of pro-
teins. The trapping agent melarsen oxide (MEL)
is used to trap folding intermediates of proteins
which can then be analyzed by mass spectrometry
and peptide mapping [Happersberger et al., 1998a;
Happersberger & Glocker, 1998]. This “static” ap-
proach can be extended to a dynamical analysis
of the formation or breaking of disulfide bonds by
time-resolved optical spectroscopy [Happersberger
et al., 1998b]. Here we use experimental data of the
reaction with the model peptide glutathione (GSH).
We show that our approach is well suited to deter-
mine rate constants of individual reaction steps and
the optical spectra of transient species which are not
observable individually.

The paper is organized as follows: in Sec. 2 we
describe the proposed method in general. It is ap-
plied to the introduced biochemical model reaction
in Sec. 3. The results are presented in Sec. 4.

2. Methods

Consider a time-continuous, dynamical process de-

scribed by a nonlinear ordinary differential equation

ẋ(t) = f(x(t), k) , with x(t) ∈ R
K , t ∈ [0, T ] .

(1)
Each component of x represents the concentration
of one chemical substance taking part in the reac-
tion dynamics. The setting is characterized by an
unknown parameter vector θ = (k, x(0)) including
the dynamical parameters k, and the initial values
x(0).

Information about the process is gained by
time-resolved spectroscopy, i.e. at each time ti (i =
1, . . . , N) the state vector x(ti, θ) is related to
the noisy measured multivariate time series {(yij)}
by the product with the spectra at wavelength λj

(j = 1, . . . , M) of each substance

yij =

K
∑

k=1

sk(λj)xk(ti, θ) + c(λj) + ηij

= s
T (λj)x(ti, θ) + c(λj) + ηij . (2)

Each row s(λj) of the K×M matrix S contains the
spectral contributions of the K components of x(ti)
to the data points yi at the jth wavelength. c(λj)
is an offset not yet specified and ηij denotes inde-
pendent normally distributed noise with zero mean
and variance σ2

ij .

The aim is to determine those parameters θ̂

and spectra Ŝ for which Ŝx(t, θ̂) + c is closest to
the observed data in a least squares sense. A first
method to solve this optimization problem is the
initial value approach: the objective function

χ2(S, θ)

=

N
∑

i=1

M
∑

j=1















yij −
K

∑

k=1

sk(λj)xk(ti, θ)− c(λj)

σij















2

(3)

is minimized with respect to θ and S using a Gauss–
Newton method [Gill et al., 1981]. Given starting
guesses for θ and S, one integrates the differen-
tial equations numerically and calculates Sx(ti, θ).
A numerical optimization algorithm calculates an
update step (∆p, ∆S) for the parameters by solv-
ing the linearized problem. This procedure is iter-
ated with the new vector until a predefined con-
vergence criterion is satisfied. Applied to nonlinear
ordinary differential equations, this naive approach
often converges to local minima or even diverges,



June 23, 2004 11:46 01047

Identification of Rate Constants and Nonobservable Absorption Spectra 2083

because the nonlinear dependency of x(ti) on θ lets
the estimated trajectories diverge from the data.

The multiple shooting algorithm, developed by
[Bock, 1981], circumvents this problem by reformu-
lating the task as a multipoint boundary value prob-
lem. The fitting interval [0, T ] is partitioned into L
subintervals:

0 = T0 < T1 < · · · < TL = T . (4)

For each subinterval [Tl, Tl+1], local initial values
xl = x(Tl) are introduced as additional param-
eters. The dynamical equations are integrated piece-
wise and the objective functional χ2(S, θ) is evalu-
ated and minimized as in the initial value approach.
While the dynamical parameters k are unique over
the entire interval, the local initial values are opti-
mized separately in each subinterval. This approach
leads to initially discontinuous trajectories which
are, however, always near the data. The finally es-
timated trajectory must of course be continuous,
i.e. the computed solution at the end of the subin-
terval l must finally equal the local initial value of
the following subinterval l + 1:

lim
t→Tl

x(t) = x(Tl) = xl , l = 1, . . . , L− 1 . (5)

Equation (5) are taken into account as equality con-
straints in the optimization procedure. Since only
their linearizations are imposed on the update step,
the iterates will generally be discontinuous trajec-
tories. This freedom allows the method to stay close
to the observed data, prevents divergence of the nu-
merical solution and reduces the problem of local
minima.

More details of the mathematical and imple-
mentational aspects of the method are given in
[Bock, 1981, 1983]. Some applications are given in
[Horbelt et al., 2001; Timmer et al., 2000].

3. Application to a Biochemical

Model Reaction

In this section the presented methods are applied
to time-resolved measurements of a biochemical
reaction: the trapping agent melarsen oxide [p-(4,
6-diamino-1, 3, 5-triazin-2-yl)aminophenylarsonous
acid (MEL)] is able to bridge two cystein residues
of a protein which can adopt a disulfide bond in the
native structure. The basic reaction steps of this
process, i.e. the formation and the stability of the
first and the second thiobonds of the bridge are al-
ready visible in the reaction of MEL with the tri-
peptide glutathione (GSH, cf. Fig. 1) according to
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Fig. 1. The reaction: When MEL reacts with GSH, one of
the hydroxyl groups is replaced by the sulfur, and water is
produced.

the model

MEL + GSH
k1−−→←−−

k
−1

MEL ·GSH

MEL ·GSH + GSH
k2−−→←−−

k
−2

MEL ·GSH2 .

(6)

The reaction is described by the system of non-
linear ordinary differential equations

ẋ1 = −k1x1x2 + k−1x3

ẋ2 = −k1x1x2 + k−1x3 − k2x2x3 + k−2x4

ẋ3 = +k1x1x2 − k−1x3 − k2x2x3 + k−2x4

ẋ4 = +k2x2x3 − k−2x4 ,

(7)

where x1 represents the MEL-concentration [MEL],
x2 = [GSH], x3 = [MEL ·GSH] and x4 = [MEL ·
GSH2]. MEL and GSH are below called educts,
MEL ·GSH and MEL ·GSH2 products. The
vector k = (k1, k−1, k2, k−2)

T comprises the rate
constants, a positive index denotes an on-rate, a
negative an off-rate.

Data were obtained by time-resolved optical
spectroscopy. The reaction was measured in a
stopped-flow device by a single-beam photo meter
(see Fig. 2). Experiments with initial concentra-
tions of [MEL]0 = 45 µmol/l, different initial GSH
concentrations of around 60 µmol/l, 120 µmol/l,
240 µmol/l and 720 µmol/l and vanishing ini-
tial concentrations of MEL ·GSH and MEL ·GSH2

were recorded. The length of each measurement is
T = 2055 ms, sampled in 5 ms steps.
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solutions
(MEL, GSH)

mixer

UV-lamp detector

valve

cuvette

step motors

Fig. 2. Stopped-flow device: the two educts are injected by
step-motors into the mixer, where the reaction starts. The
mixture flows through the cuvette until the residua of former
experiments are washed out. At t = 0 the flow is stopped by
a valve and the reaction proceeds in the cuvette. The optical
pathlength in the cuvette is 1 cm.

The measured wavelengths range from 240 nm
to 350 nm with a resolution of 1 nm. Since the ab-
sorption spectra are smooth, they can be described
sufficiently by a small subset of wavelengths. Be-
cause of observational noise, one should use as much
information as possible also from the wavelengths
not taken into account. This can be achieved by
smoothing the data by a cubic spline. We observed
that a spline with 16 knots results in an approx-
imation of the underlying curve which is accurate
to within the error bars of the data. Ten of these
knots were at equidistant wavelengths from 247 nm
to 327 nm. These were evaluated for the dynamical
fit. The remaining six knots had to be placed around
a knee at 300 nm to obtain an unbiased approxima-
tion. The reduction affects an increased numerical
efficiency because only a ten-dimensional time series
has to be analyzed instead of one with 111 dimen-
sions. Wavelengths with λ > 320 nm were discarded
because they were corrupted by additional effects,
e.g. bubbles with a different density of the soluted
components causing a lower or higher absorption.
Moreover data at t > 2055 ms were ignored because
they showed systematic drifts not captured by the
suggested model. Figure 3 shows a typical dataset.

The transmission I of the UV-light passing a
substance with extinction coefficient ε and concen-
tration c in a cuvette with optical pathlength d is

0

500

1000

1500

2000
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wavelength λ [nm]

0.0

0.4

0.8

1.2

1.6

total absorption y(t,λ)

Fig. 3. Measured absorption spectra ([GSH]t=0 =
720 µmol/l): sampling rate: 5 ms, spectral resolution: 1 nm.
The maximum absorption shifts from 270 nm to 300 nm
due to a decreasing concentration of the educts MEL and
GSH and an increase of the concentration of the products
MEL · GSH and MEL · GSH2. Contours are plotted in the λ–
t-plane to visualize the three-dimensional shape of the data.

described by Beer’s law of absorption:

I(λ) = I0(λ)10−εcd . (8)

The absorption is defined as A(λ) := log10(I0(λ)/
I(λ)), where I0 is a reference measurement with-
out absorbing reagents. This leads to the obser-
vation function Eq. (2). The spectra of MEL and
GSH, i.e. the columns s1 and s2 of the matrix S,
are known with high precision from independent
measurements of the respective components. The
spectra of MEL ·GSH and MEL ·GSH2 have to be
estimated, because these substances cannot be iso-
lated. Since we have only heuristic ideas of the shape
of these spectra, we investigated the dependency of
our results on the starting guesses for the spectra.
Simulation studies showed that the algorithm con-
verges even without any a priori information about
the spectra, i.e. taking a wavelength independent
constant as initial guesses. To optimize the compu-
tational effort we used the resulting spectra of these
fits as starting guesses for the product spectra for
all following fits.

The initial concentrations [MEL]0 and [GSH]0
are not known exactly and thus have to be esti-
mated. The initial concentrations of the products
MEL ·GSH and MEL ·GSH2 vanish in the begin-
ning of the reaction. However we decided to fit
the first of them: a delay between the beginning
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Fig. 4. Standard deviation of the data estimated with Rice’s method for different datasets at t = 0. The cyan line shows the
minimum error that is chosen, when the estimated value drops below this bound. The horizontal tic marks denote the values
of the evaluated wavelengths.

of the reaction in the mixer and the first observed
data point in the cuvette has to be taken into
account. Thus the starting point of the reaction
has to be estimated. We circumvented this non-
trivial problem by fitting the initial MEL ·GSH
concentration: the time of the first observed data
point t = 0 corresponds to the beginning of a
reaction with slightly lower concentrations of the
educts and a nonvanishing initial concentration of
the product MEL ·GSH. Therefore the initial value
[MEL ·GSH]0 is included as a fit variable. The con-
centration [MEL ·GSH2] increases quadratically in
the beginning of the reaction and thus can be ne-
glected for short times. Therefore its initial concen-
tration is fixed to [MEL ·GSH2]0 = 0. Treating this
parameter in the same way as [MEL ·GSH]0 led to
unreasonable results.

The offset c(λj) accounts for small variations
of the true intensity I0 during every experiment
in relation to its reference measurement recorded
only once for all experiments. It is modeled by a
quadratic function c(λj) = a0 + a1 · λj + a2 · λ

2
j .

The standard deviation of the data σij is esti-
mated using Rice’s method [Rice, 1984]. In order
not to overemphasize data with very low estimated

errors, we defined a fixed minimum error bound of
around 10% of the maximum estimated standard
deviation. Figure 4 shows some examples for the
estimated standard deviation.

We aim to estimate the underlying rate con-
stants k1, k−1, k2, and k−2 and the nonobserv-
able spectra of MEL ·GSH and MEL ·GSH2. To re-
duce the estimation error and to cover a sufficiently
large area of the state space, we performed a multi-
experiment fit. In this context, the initial con-
centrations and offset parameters are fitted indi-
vidually for each experiment, while spectra and
rate-constants are forced to be the same for each
group of experiments.

The concentration of the product [MEL ·GSH2]
scales with the initial concentration of GSH.
Therefore one should use initial GSH concentra-
tions of 240 µmol/l and higher to estimate the
[MEL ·GSH2] spectra accurately. However under
these conditions the product MEL ·GSH appears
only for a short time. Thus, one has to obtain infor-
mation about the MEL ·GSH spectra by using addi-
tional experiments with [GSH]0 around 60 µmol/l,
where [MEL ·GSH] stays on a high level.
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Twelve experiments, i.e. three datasets (a–c)
for each of four different initial GSH concentrations
(60, 120, 240, 720 µmol/l), were analyzed. We fit-
ted groups of three different concentrations (triples)
simultaneously. Using quadruples would have for-
bidden to discover systematic errors resulting from
different initial concentrations. All 4 · 33 = 108 pos-
sible triples were fitted. To reduce the probability
of converging to local minima further, each triple
was fitted eight times with different initial guesses
of the rate constants. From these replicates the one
with the minimum χ2 was evaluated. An appropri-
ate selection criterion discriminating between reli-
able results and local minima will be defined in the
following section.

For the optimization process we used the multi-
ple shooting algorithm. A simulation study showed,
that this method converges to the global minimum
twice as often as the initial value approach.

4. Results

This section presents the estimated rate constants
and absorption spectra. As local minima of the

objective function always occur when dealing with
nonlinear optimization, we had to define a criterion
for the goodness of fit to select reliable results for
further analysis. For this purpose we plotted the
rate constants versus the χ2 values of the objec-
tive function for all 108 fits. Several clusters are
noticeable in these plots, as shown in Fig. 5 for the
case of k−1. Two of these can be identified as lo-
cal minima, one with χ2 ≈ 40000, the other one
with χ2 > 50000. These were excluded from further
analysis. The other clusters each have a consistent
estimate of k−1, while their χ2 is between 11000
and 17000. Thus we considered these clusters to de-
scribe the global minimum. The splitting into four
clusters for different initial GSH-concentrations is
caused by a slight misspecification of the model that
is discussed later.

4.1. Estimated time courses

Figure 6 shows the time courses of four represen-
tative wavelengths of a fit with a medium χ2 value
of 16466. The first time course shows an increasing
absorption during the whole measurement, starting
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Fig. 5. Rate constant k−1 versus χ2 value for all fits. The combinations of different initial concentrations are coded into the
symbol types and colors. Several clusters are revealed. Two of them can be identified as local minima, one with χ2 ≈ 40000,
the other one with χ2 > 50000. The other clusters are considered to reflect the global minimum.



June 23, 2004 11:46 01047

Identification of Rate Constants and Nonobservable Absorption Spectra 2087

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0 500 1000 1500 2000

ab
so

rp
tio

n 
y

time t [ms]

λ=247nm

1.15

1.20

1.25

1.30

1.35

0 500 1000 1500 2000

ab
so

rp
tio

n 
y

time t [ms]

λ=271nm

1.20

1.22

1.24

1.26

1.28

1.30

0 500 1000 1500 2000

ab
so

rp
tio

n 
y

time t [ms]

λ=279nm

0.0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 500 1000 1500 2000

ab
so

rp
tio

n 
y

time t [ms]

λ=319nm

Fig. 6. Measured absorption (red crosses) and estimated time courses (solid lines) of one experiment at four representative
wavelengths. The initial GSH-concentration was estimated to be 225.6 µmol/l. For details refer to the text.

with a zero slope at t = 0 and ending in saturation.
The absorption only increases by less than 15%.
This fact points to a superposition of the spectra
of the educts and products cancelling their contri-
butions at this wavelength: the initial concentra-
tions of the educts decline overlaid by the increas-
ing concentrations of the products. The upper right
time course corresponds to a wavelength near the
maximum of the MEL spectra. This suits to the
monotonous decline of the absorption. The third
time series shows a steep ascent at t = 0, a sat-
uration after 400 ms and a slight decrease after-
wards suggesting the maximum absorption of the
first product MEL ·GSH lying near the wavelength
of this time course. At the fourth time series, the
small slope at t = 0 and the steady increase by a
factor of seven correspond to the expected course
of the MEL ·GSH2 concentration. Thus the spec-
tral contributions of the other components seem to
be negligible at this wavelength.

4.2. Estimated spectra of the

individual components

The form of the estimated spectra can be used
to check the quality of our method: our nonpara-
metric model of the spectra does not assume any

special shape whereas physics postulates smooth
spectra. Also, the estimated spectra should be con-
sistent for all different fits. To check this consistency

requirement, all spectra are displayed in Fig. 7.
The algorithm yields smooth spectra varying only
in a narrow band for different experiments. Fur-

thermore they correspond with the assumptions de-
duced from the time courses (cf. Sec. 4.1).

With these results it is easy to estimate the

shape of the spectra in the original resolution: The
observation function Eq. (2) is linear in the spec-
tral parameters S, i.e. when the time courses x(t)

are known, the minimization of the objective func-
tion Eq. (3) can be solved analytically. This leads
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values do not vary by more than a factor of two. The variance is small enough to reveal a slight systematic dependency on the
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to a simple matrix inversion for each wavelength.
Based on the estimated rate constants, initial con-
centrations and offsets of the fit with the minimum
χ2-value, we simulated the time courses of the con-
centrations of all reaction partners and estimated
the spectra. Figure 8 shows these high resolution
spectra.

It is of note that the maximum of the MEL
spectrum appears to be red-shifted in two consec-
utive steps, from 272 nm to 278 nm upon bind-
ing of the first and to ≈ 284 nm upon binding of
the second GSH molecule. Furthermore, both shifts
are accompanied by a broadening of the absorption
band. These effects on the MEL chromophor upon
formation of the mono- and bis-cysteinyl products
MEL ·GSH and MEL ·GSH2 may be interpreted
tentatively. Both oxygen ligands of the arsen atom,
when replaced by the more electropositive sulphur
ligand, contribute replace by an additive red-shift
by about 6 nm and replace by a slight broadening
of the absorption band.

4.3. Estimated rate constants

Figure 9 shows the estimated (a) on-rate and
(b) off-rate constants plotted versus the combina
tion of simultaneously fitted datasets. For each rate
constant, the estimated values do not vary by more
than a factor of two. The variance is small enough
to reveal a slight systematic dependence on the ini-
tial concentration of GSH, that was already shown
for k−1 in Fig. 5.

This bias is related to [GSH]0 in the follow-
ing way: For experiments with high concentrations
of GSH, the initial GSH-concentration tends to be
underestimated in relation to the assumed value.
However the dynamical model Eq. (7) contains only
products of the on-rate constants and the educt
concentrations. Thus an underestimation of [GSH]0
leads to an overestimation of the on-rate constants
k1 and k2. As a consequence, Fig. 9(a) shows a slight
increase of the on-rate constants for fits containing
experiments with high [GSH]0. The overestimation
of the on-rates may lead to the slight decrease in the
off-rates k−1 and k−2 which is visible in Fig. 9(b).
This effect may necessitate extensions to the sug-
gested model and remains to be analyzed in more
detail.

For the left-most set of data in Fig. 9 the rate
constants are not affected by this bias. Therefore
we use the parameters obtained from these 18 fits
as best estimates in the following discussion. Table 1

Table 1. Mean and sample standard error of
all estimated parameters for selected multiexper-
iment fits with [GSH]0 = 60, 120, 240 µmol/l.

Rate Standard
Constant [Unit] Mean Deviation

k1 [104 l/(mol·s)] 1.36 0.11

k2 [104 l/(mol·s)] 1.08 0.09

k−1 [s−1] 2.62 0.09

k−2 [s−1] 0.288 0.009

shows the mean estimates and the standard devi-
ations calculated from their sample variance. The
confidence limits calculated from the covariance ma-
trix at the convergence point were much smaller.
However, the former are supposed to reflect more
realistically the uncertainties arising from varying
experimental conditions.

From the rate constants we can draw a more
detailed description of the overall reaction. The for-
mation of the first MEL ·GSH bond (k1) is slightly
faster than that of the second (k2) by a factor of
about 1.3. This small effect may reflect a steric hin-
drance of binding of the second molecule of GSH
by the first one. The difference in the dissocia-
tion rates of the first and the second GSH is more
pronounced: the stability of the bis-cysteinyl is ten-
fold higher than that of the mono-cysteinyl com-
plex. This reflects the selectivity of MEL in modify-
ing bis-cysteinyl residues over modification of single
cysteins. This stabilization may originate from non-
covalent interactions between the two GSH peptides
which contribute to a chelating effect. The stabiliza-
tion may be even more pronounced in proteins when
the tertiary structure provides geometric restriction
for the disulfide bond.

5. Discussion

For the analysis of nonlinear biochemical reaction
dynamics by time-resolved optical spectroscopy, a
standard method, which is often used, regards the
information at specific wavelengths around the ab-
sorption peaks of the single components. This ap-
proach is intrinsically not able to reveal information
about nonobservable absorption spectra. The sim-
ple version of this method linearizes the differential
equations at t = 0. Using the first time steps of
the data this method estimates an effective over-all
rate constant of the linearized model, but does not
regard the individual on- and off-rate constants.
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Table 2. Reagents applied for the chemical modification of
cysteinyl thiol groups in proteins and their respective re-
action rates, if known. The reaction rates were determined
at the following pH values: VP, pH 8 (pseudo first order)
[Griffith, 1980]; NTCB, pH 7.4 [Degani et al., 1970]; IAM,
pH 8 [MacQuarrie & Bernhard, 1971; Nelson & Creighton,
1994; Oesterhelt et al., 1977]; NEM, pH 6 [Brubacher &
Glick, 1974; Gorin et al., 1966; Oesterhelt et al., 1977].

Reagent Reaction Rate

4-Vinylpyridine (VP) (pseudo 1st order) 0.04 s−1

2-Nitro-5-thiocyanobenzoic acid (NTCB) 3 M−1s−1

Iodoacetamide (IAM) 5 M−1s−1

Iodoacetic acid (IAA) not known

N-Ethylmaleinimide (NEM) 154 M−1s−1

1-Cyano-4-dimethylaminopyridine
not known

tetrafluoroborat (CDAP)

Starting from the multiple shooting algorithm,
we developed a method integrating the full system
of nonlinear differential equations during the opti-
mization process. This approach is able to identify
the entire set of on- and off-rate constants charac-
terizing the detailed nonlinear model of the reac-
tion dynamics. Based on the idea of considering the
absorption spectra as a multivariate nonparamet-
ric observation function, we can use nearly all spec-
tral information of the data. This procedure reduces
the estimation error in comparison to the standard
method. But first of all it allows to estimate the ab-
sorption spectra of reaction products, that cannot
be isolated and measured individually.

Understanding of protein folding pathways re-
quires the determination of thermodynamic and ki-
netic properties of folding reactions and the char-
acterization of intermediate structures. In order
to analyze intermediates in disulfide bond medi-
ated protein folding reactions it is necessary to
modify irreversibly the cysteine thiol groups (trap-
ping) in otherwise transient folding intermediates.
Mono-thiol selective modification reagents (Table 2)
are widely used in folding [Creighton et al., 1995;
Weissman & Kim, 1991] and unfolding [Li et al.,
1995] reactions as they quantitatively form sta-
ble thiol modified protein derivatives. In order to
distinguish reduced cysteinyl residues from such
cysteine residues involved in disulfide bonds the
reaction rate of the trapping reaction should be
significantly higher than the reaction rate of the
thiol/disulfide exchange reaction. Reaction rates
of intermolecular thiol/disulfide exchange reactions

between (low molecular weight) mono thiols, such
as GSH, and cysteinyl thiol groups in proteins were
assumed in the range of 10–20 M−1s−1 [Creighton &
Goldenberg, 1984; Gilbert, 1997]. Both competitive
reactions, thiol/disulfide exchange reaction and cys-
teinyl thiol modification (Table 2), showed reac-
tion rates in the same order of magnitude. There-
fore, in the absence of a high surplus of trapping
reagent disulfide bond scrambling was possible dur-
ing the trapping reaction [Weissman & Kim, 1991].
In contrast to the mono-thiol selective modification
reagents, MEL exhibited several advantageous fea-
tures that make it particularly useful as a trapping
reagent.

We have determined the rates of both the
formation and the dissociation of the complexes
between MEL and GSH. Our results show that
the stability of the bis-cysteinyl complex (dissoci-
ation rate k−1) is about tenfold higher than that
of the mono-cysteinyl complex (dissociation rate
k−2). This further emphasizes the ability of MEL
to rapidly and selectively modify those cysteins of a
protein which are arranged in pairwise close contact
during a certain folding state of a protein. The ap-
proach of dynamical estimation is sensitive enough
to discover a slight bias of the results for high GSH
concentrations. This misspecification of the model
remains to be studied in terms of slight extensions
either of the spectral or the dynamical model.

A further result of this work is the identifica-
tion of the absorption spectra of MEL ·GSH and
MEL ·GSH2, i.e. transient species that cannot be
isolated and analyzed as pure compounds as they
are not stable. This observation also opens the
door to distinguish between mono- and bis-cysteinyl
modifications of proteins during in vitro folding
reactions.
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