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Summary:

We briefly discuss reasons that suggest limitations with probabilistic
modeling and in particular with indiscriminated stochastic modeling.

We briefly outline how one can obtain a price interval for options in a
trajectory based (non-probabilistic) setting.

We point out about the broad generality of such trajectorial
framework.

We spend most of the talk describing a trajectorial operationally
based market model and its construction.
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Some Deficiencies of the Present Stochastic Modeling Framework

Non Justified Randomness

We ask: is there a methodology that identifies market conditions
implying a specific probability distribution for future asset’s values?

In other words: is there an objective method to justify the assumption
of a definite probability model? Or, at least to identify when an
assumed probability law is not being satisfied?

The answer, it seems to me, is a clear NO.
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Some Deficiencies of the Present Stochastic Modeling Framework

Statistical Justification

The implicit justification of stochastic models is based on statistics.

It is difficult to judge the seal of approval for a specific model given
by statistics. There are many judgement calls in the application of
statistics, e.g. is model 1 better than model 2 (for example when
models are not nested)? What changes in market conditions will
invalidate the estimated parameter values? Should I assume some
ambiguity on my probability distribution?
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Some Deficiencies of the Present Stochastic Modeling Framework

Pletora of Models

In practice models are proposed in multitude and with no objective
criteria to discriminate among them.

In the last decade or so, this situation has been challenged by
Econophysics which places more emphasis on empirical fallibility of
models.

The issues are difficult and deal with the notions of: objectivity,
validity, certainty, i.e. the foundations of science. It seems that at
present, the number of unjustified hypothesis implicit in stochastic
asset’s models may be too large to develop a fallible theory.

There are not many studies on the limitations of stochastic modelling
in finance (and elsewhere). I refer to: Chameleons: The Misuse of
Theoretical Models in Finance and Economics By Paul Pfleiderer
March 2014 Working Paper No. 3020. Stanford University (Revista
de Economia Institucional, 16, 31, 23− 60).

We return to this topic when we introduce operational models.
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A General Trajectorial Framework

Trajectorial Setting

A process X = {Xt} can be thought as: X : (Ω,F = {Ft})→ R[0,T ]

. The process’ measure P is used to pick up a set of trajectories
J = X (Ω′) where Ω′ is a set of full measure. There may be several
measures Q with same null sets (i.e. equivalent measures).

We propose to start with a set of trajectories J and a set of
portfolios H that provide a Non Probabilistic (NP) model
M = J ×H which is free of arbitrage in a trajectorial sense.

The theory is developed from first principles in discrete time (but the
number of transactions can be unbounded and there are no
cardinality restrictions)
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Discrete Market Models and Arbitrage

Discrete Setting: Trajectories and Portfolios

Trajectory set:

J = J (s0) = {S = {Si}∞i=0 : Si ∈ R}, S0 = s0 ∀S
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Portfolio set:

H = {H = {Hi}∞i=0 : Hi : J → R}
the portfolio functions are non anticipative Hi (S) = Hi (S0, . . . ,Si ) and
there exists NH(S) such that Hi (S) = 0 for all i ≥ NH(S)
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Discrete Market Models and Arbitrage

Discrete Setting: Portfolio Values

Portfolio value, just before trading at instance n, is given by:

VH(n,S) = Hn−1(S)Sn + Bn−1 = VH(0, S) +
n−1∑
k=0

Hk(S)(Sk+1 − Sk)

so we are imposing a self-financing condition on the portfolio
Φ = {(Hi ,Bi )} where Bi are the holdings in the bank account.
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Discrete Market Models and Arbitrage

Conditional Sets of Trajectories

For S ∈ J and j ≥ 0 define

J(S,k) = {Ŝ ∈ J : Ŝj = Sj , 0 ≤ j ≤ k}. (1)
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Discrete Market Models and Arbitrage

Conditional Up Down Property

J is said to satisfy the conditional up down property if for S and j fixed

sup
Ŝ∈J(S,j)

(Ŝj+1 − Sj) > 0, and inf
Ŝ∈J(S,j)

(Ŝj+1 − Sj) < 0, (2)

or:

sup
Ŝ∈J(S,j)

(Ŝj+1 − Sj) = inf
Ŝ∈J(S,j)

(Ŝj+1 − Sj) = 0, (3)

for any j ≥ 0 and any S ∈ J
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Discrete Market Models and Arbitrage

No Arbitrage

The conditional up down property is the analogue for trajectory sets of the
martingale property for processes.

It is a necessary condition for the trajectories to be paths of a martingale
process (for some measure).

Theorem

Any discrete market M = J ×H such that J satisfies the up down
property is arbitrage-free.
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Pricing in Trajectory Markets

Pricing in Trajectory Markets

In the usual, risk neutral approach, the price of a European option
Y (T ,w) is given by an expectation (consider interest rates r = 0)

EQ(Y (T , ·)). (4)

where Q a chosen risk neutral measure (there are many in the
incomplete case).

In a trajectory based approach, it follows that one is required to use a
minmax optimization.
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Pricing in Trajectory Markets

Minimax Bounds

• Let M = J ×H and Z a function defined on J , define:

V (ZT ) ≡ inf
H∈H

sup
S∈J

[Z (S)−
N(S)−1∑
i=0

Hi (S) (Si+1−Si )]. And V (Z ) = −V (−Z )

Explanation: given a portfolio Φ ∈ H, with zero initial value, we look for
the trajectory with the worst error for the final portfolio value. This worst
error gives the needed shift (initial capital) to superhedge (for all
trajectories). Then, we look for the best portfolio, the one where this shift
(initial capital) is smallest.
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Pricing in Trajectory Markets

0-Neutral And Pricing Interval

We will say that M is 0-neutral if:

V (0) ≡ inf
H∈H

sup
S∈J
−

N(S)−1∑
i=0

Hi (S) (Si+1 − Si ) = 0. (5)

Proposition

If M is arbitrage free then M is 0-neutral.

Theorem

If M is 0-neutral then
V (Z ) ≤ V (Z )
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Pricing in Trajectory Markets

Meaning of Model M = J ×H for Pricing

• It can happen that the bounds are too wide as they are worst case based.

• Hopefully, in our example, you will see why one can not make an a-priori
judgement on the meaning of worst case.
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Pricing in Trajectory Markets

Properties:

1 V (Z ) and V (Z ) are the minimum and maximum initial capitals
required, respectively, to superhedge and underhedge uniformly in a
trajectory based sense.

2 The superhedge and underhedge mentioned above are tight, namely,
if a portfolio has initial value smaller that V (Z ), there is at least one
trajectory x∗ ∈ J such that the portfolio is below the payoff at x∗. A
dual statement also holds for V (Z ).
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Pricing in Trajectory Markets

Example
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Notice that (in principle) the approach permits to study the dependency of
the superhedging gap as a function of the trajectories (i.e. which
trajectories inflate, in a biased way for the seller, the price interval)
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Pricing in Trajectory Markets

Example
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Model Construction Based on Observable quantities and Investor
Operations

Main Obstruction for Rigurous Model Falliability Analysis

1 From our point of view a main issue with “out of the can” stochastic
modeling is the lack of identification of the driving process (say BM)
and observable market features.

2 It is this lack that precludes an analysis of changing market conditions
and modeling assumptions.

3 As the asset unfolds how could we know if the BM assumptions are
not being fulfilled?
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Model Construction Based on Observable quantities and Investor
Operations

General Features of Example

1 One single risky asset and one riskless bank account. The setting and
example are constructed to illustrate a general methodology.

2 The goal is to define models based on observable quantities that
relate directly to a class of investors interested in gauging the price of
an European option Z written on the asset.

3 Trajectories emerge as a result of constraints that correspond to how
a class of investors sample a financial chart and how they rebalance
their portfolios as a response to changes of their data summaries. We
allow for all possible trajectories satisfying the said constraints (we
call this a combinatorial definition).
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Model Construction Based on Observable quantities and Investor
Operations

General Features of Example

For fixed δ > δ0 > 0,∆ > 0:

1 Charts x are sampled at dynamic times rl according to δ0.

2 Time intervals have a lower bound resolution ∆ in the sense that
(rl+1 − rl) ≥ ∆ > 0.

3 Times ti , for the i-th portfolio rebalance, satisfy ti ∈ {rl} and are
given by an investor prescribed threshold δ.

4 Sampled variation w(x , t) is accumulated for the samples x(rl).
5 There is a dynamical number of portfolio rebalances N(x) that take

place in [t0, t0 + T ].

Hence, we deal with a class of investors that will react to chart changes of
size δ and could observe chart values at a certain time resolution ∆ and
space resolution δ0. From this perspective, these portfolio managers want
to evaluate investment opportunities related to an European option. They
want to compare market prices relative to their operational investment
setup.

Sebastian Ferrando and collaborators Trajectory Based Market Models with Operational AssumptionsOctober 28, 2017 22 / 44



Model Construction Based on Observable quantities and Investor
Operations

General Features of Example

For fixed δ > δ0 > 0,∆ > 0:

1 Charts x are sampled at dynamic times rl according to δ0.
2 Time intervals have a lower bound resolution ∆ in the sense that

(rl+1 − rl) ≥ ∆ > 0.

3 Times ti , for the i-th portfolio rebalance, satisfy ti ∈ {rl} and are
given by an investor prescribed threshold δ.

4 Sampled variation w(x , t) is accumulated for the samples x(rl).
5 There is a dynamical number of portfolio rebalances N(x) that take

place in [t0, t0 + T ].

Hence, we deal with a class of investors that will react to chart changes of
size δ and could observe chart values at a certain time resolution ∆ and
space resolution δ0. From this perspective, these portfolio managers want
to evaluate investment opportunities related to an European option. They
want to compare market prices relative to their operational investment
setup.

Sebastian Ferrando and collaborators Trajectory Based Market Models with Operational AssumptionsOctober 28, 2017 22 / 44



Model Construction Based on Observable quantities and Investor
Operations

General Features of Example

For fixed δ > δ0 > 0,∆ > 0:

1 Charts x are sampled at dynamic times rl according to δ0.
2 Time intervals have a lower bound resolution ∆ in the sense that

(rl+1 − rl) ≥ ∆ > 0.
3 Times ti , for the i-th portfolio rebalance, satisfy ti ∈ {rl} and are

given by an investor prescribed threshold δ.

4 Sampled variation w(x , t) is accumulated for the samples x(rl).
5 There is a dynamical number of portfolio rebalances N(x) that take

place in [t0, t0 + T ].

Hence, we deal with a class of investors that will react to chart changes of
size δ and could observe chart values at a certain time resolution ∆ and
space resolution δ0. From this perspective, these portfolio managers want
to evaluate investment opportunities related to an European option. They
want to compare market prices relative to their operational investment
setup.

Sebastian Ferrando and collaborators Trajectory Based Market Models with Operational AssumptionsOctober 28, 2017 22 / 44



Model Construction Based on Observable quantities and Investor
Operations

General Features of Example

For fixed δ > δ0 > 0,∆ > 0:

1 Charts x are sampled at dynamic times rl according to δ0.
2 Time intervals have a lower bound resolution ∆ in the sense that

(rl+1 − rl) ≥ ∆ > 0.
3 Times ti , for the i-th portfolio rebalance, satisfy ti ∈ {rl} and are

given by an investor prescribed threshold δ.
4 Sampled variation w(x , t) is accumulated for the samples x(rl).

5 There is a dynamical number of portfolio rebalances N(x) that take
place in [t0, t0 + T ].

Hence, we deal with a class of investors that will react to chart changes of
size δ and could observe chart values at a certain time resolution ∆ and
space resolution δ0. From this perspective, these portfolio managers want
to evaluate investment opportunities related to an European option. They
want to compare market prices relative to their operational investment
setup.

Sebastian Ferrando and collaborators Trajectory Based Market Models with Operational AssumptionsOctober 28, 2017 22 / 44



Model Construction Based on Observable quantities and Investor
Operations

General Features of Example

For fixed δ > δ0 > 0,∆ > 0:

1 Charts x are sampled at dynamic times rl according to δ0.
2 Time intervals have a lower bound resolution ∆ in the sense that

(rl+1 − rl) ≥ ∆ > 0.
3 Times ti , for the i-th portfolio rebalance, satisfy ti ∈ {rl} and are

given by an investor prescribed threshold δ.
4 Sampled variation w(x , t) is accumulated for the samples x(rl).
5 There is a dynamical number of portfolio rebalances N(x) that take

place in [t0, t0 + T ].

Hence, we deal with a class of investors that will react to chart changes of
size δ and could observe chart values at a certain time resolution ∆ and
space resolution δ0. From this perspective, these portfolio managers want
to evaluate investment opportunities related to an European option. They
want to compare market prices relative to their operational investment
setup.

Sebastian Ferrando and collaborators Trajectory Based Market Models with Operational AssumptionsOctober 28, 2017 22 / 44



Model Construction Based on Observable quantities and Investor
Operations

General Features of Example

For fixed δ > δ0 > 0,∆ > 0:

1 Charts x are sampled at dynamic times rl according to δ0.
2 Time intervals have a lower bound resolution ∆ in the sense that

(rl+1 − rl) ≥ ∆ > 0.
3 Times ti , for the i-th portfolio rebalance, satisfy ti ∈ {rl} and are

given by an investor prescribed threshold δ.
4 Sampled variation w(x , t) is accumulated for the samples x(rl).
5 There is a dynamical number of portfolio rebalances N(x) that take

place in [t0, t0 + T ].

Hence, we deal with a class of investors that will react to chart changes of
size δ and could observe chart values at a certain time resolution ∆ and
space resolution δ0. From this perspective, these portfolio managers want
to evaluate investment opportunities related to an European option. They
want to compare market prices relative to their operational investment
setup.
Sebastian Ferrando and collaborators Trajectory Based Market Models with Operational AssumptionsOctober 28, 2017 22 / 44



Example, More Detailed Specification

Sampling Times

Assume
x(t) ∈ {kδ0 : k ∈ Z}, δ = Z δ0, Z ∈ N.

Definition (dynamic sampling times)

Given δ0 > 0, a chart x and interval [t0, t0 + T ]; a sequence of increasing
dynamic sampled times is given by r = r(x) = {rl}Ll=0 ⊆ ∆ Z, L = L(x),
r0 = t0, satisfying:

δ0 ≤ |x(rl+1)− x(rl)|, 0 ≤ l < L− 1, rL = t0 + T ,

notice that δ0 ≤ |x(rL)− x(rL−1)| may or may not hold. We also require
the times rl to be tight, namely: if rl < t < rl+1, t ∈ ∆ Z, then
δ0 > |x(t)− x(rl)|.
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Example, More Detailed Specification

Rebalancing Rimes

Definition (dynamic rebalancing times)

Given δ > 0, a chart x and interval [t0, t0 + T ], a sequence of increasing
dynamic rebalancing times is given by t = t(x) = {ti}Ni=0 ⊆ {rl}Ll=0,
N = N(x), t0(x) = t0, satisfying:

δ ≤ |x(ti+1)− x(ti )|, 0 ≤ i < N − 1, tN = t0 + T ,

The times ti are chosen in a greedy way, namely given ti = rli , ti+1 is the
smallest element rli+1

in {rl} satisfying the above equation if such element
exists, otherwise rli+1

= T and N = N(x) = li+1.
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Example, More Detailed Specification

Implied Constraints

We can then write for 0 ≤ i ≤ N(x)− 1:

∆ix =

si−1∑
j=0

(x(rli+j+1)− x(rli+j)) = δ0

si−1∑
j=0

pj = mi δ0

so
si−1∑
j=0

pj = mi .

where ti = rli < . . . < rli+si = ti+1.

Also,
∆i t ≡ ti+1 − ti = rli+si

− rli ≡ qi ∆ ≡ (ni+1 − ni ) ∆.

Therefore

si ∆ ≤
li+si∑
l=li

(rl+1 − rl) = qi ∆, i.e. 1 ≤ si ≤ qi ≤ MT .
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Example, More Detailed Specification

Implied Constraints

Moreover, given that times ti are chosen in a greedy fashion we also have
for any 1 ≤ R < si

|
R−1∑
j=0

pj | < Z , 1 ≤ |pj | < 2 Z , 0 ≤ j ≤ si − 2, |psi−1| ≤ (|mi |+ Z ).

Given that mi δ0 ≡ x(ti+1)− x(ti ), hence |mi |δ0 ≥ δ is guaranteed for
i < N(x)− 1 and so

|mi | ≥ Z , for 0 ≤ i < N(x)− 1.

∆iw ≡ w(x , ti+1)− w(x , ti ) ≡
si−1∑
j=0

|x(rli+j+1)− x(rli+j)| ≡

δ0

si−1∑
j=0

|pj | ≡ (ji+1 − ji ) δ0, so w(x , ti ) =

li−1∑
l=0

|x(rl+1)− x(rl)|.
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Example, More Detailed Specification

Example Summary

To summarize the above:

rl are the sampling times,

ti ∈ {rl} will denote portfolio rebalancing times,

si is the number of chart samples in between two portfolio rebalances,

qi the possible number of time intervals of size ∆ in between two
consecutive portfolio rebalances,

mi the possible number of δ0 chart units in between two consecutive
portfolio rebalances,

pj the possible number of δ0 chart units in between two consecutive
samples,

N(x) total number of portfolio rebalances in [t0, t0 + T ].

We will rely on si ≤ qi , that is we are taking an upperbound.
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Example, More Detailed Specification

δ0-Continuity, Jumps and In-Between Variation Changes
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Example, More Detailed Specification

Extreme Case, Model Upcrossings
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Example, More Detailed Specification

Definition of Trajectory Set

Actually we work with vector valued trajectories i.e.
Si → Si ≡ (Si ,Ti ,Wi ), so we construct S with elements S ∈ S, S = {Si}.
We just define a set of trajectories satisfying the previous constraints (we
do introduce, later, external, empirical constraints on parameters). In
other words: (Si ,Ti ,Wi ) is defined by the obtained constraints obeyed by
(x(ti ), ti ,w(x , ti )).

Given a triple (ki , ni , ji ) we allow for all possible (ki+1, ni+1, ji+1) satisfying
the previous constraints; for each such admissible triple we set:

∆iS ≡ (Si+1 − Si ) = (ki+1 − ki )δ0 = mi δ0,

∆iW ≡ (Wi+1 −Wi ) = (ji+1 − ji )δ0 =

si−1∑
j=0

|pj |δ0,

∆iT ≡ (Ti+1 − Ti ) = (ni+1 − ni )∆ = qi ∆, where mi , pj ∈ Z.

1 ≤ |pj |, 1 ≤ qi ≤ MT , 1 ≤ si ≤ qi , si , qi ∈ N

Sebastian Ferrando and collaborators Trajectory Based Market Models with Operational AssumptionsOctober 28, 2017 30 / 44



Example, More Detailed Specification

Definition of Trajectory Set

Actually we work with vector valued trajectories i.e.
Si → Si ≡ (Si ,Ti ,Wi ), so we construct S with elements S ∈ S, S = {Si}.
We just define a set of trajectories satisfying the previous constraints (we
do introduce, later, external, empirical constraints on parameters). In
other words: (Si ,Ti ,Wi ) is defined by the obtained constraints obeyed by
(x(ti ), ti ,w(x , ti )).
Given a triple (ki , ni , ji ) we allow for all possible (ki+1, ni+1, ji+1) satisfying
the previous constraints; for each such admissible triple we set:

∆iS ≡ (Si+1 − Si ) = (ki+1 − ki )δ0 = mi δ0,

∆iW ≡ (Wi+1 −Wi ) = (ji+1 − ji )δ0 =

si−1∑
j=0

|pj |δ0,

∆iT ≡ (Ti+1 − Ti ) = (ni+1 − ni )∆ = qi ∆, where mi , pj ∈ Z.

1 ≤ |pj |, 1 ≤ qi ≤ MT , 1 ≤ si ≤ qi , si , qi ∈ N
Sebastian Ferrando and collaborators Trajectory Based Market Models with Operational AssumptionsOctober 28, 2017 30 / 44



Example, More Detailed Specification

Definition of Trajectory Set

Moreover, define
N(S) = i where Ti = T , (6)

we remark that N(S) exists as ∆iT ≥ ∆ for any i ≥ 0.
For the case i < N(S)− 1 we also will require |mi | ≥ δ

δ0
= Z . Also, for

any 1 ≤ R < si ,

si−1∑
j=0

pj = mi , |
R−1∑
j=0

pj | < Z , |pj | < 2 Z , 0 ≤ j ≤ si−2, |psi−1| ≤ (|mi |+Z ).
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Example, More Detailed Specification

Empirical Restrictions Via Worst Case Estimated
Parameters

Let N(x∗, [t, t + T ]) be the number of δ-moves. Let N1 be the
minimum of N(x∗, [t, t + T ]) over historical data x∗(t). Let N2 be
the analogous maximum.

Let NE ≡ {(m, q) = ( x
∗(ti+1)−x∗(ti )

δ0
, ti+1−ti

∆ ) :
collecting pairs over historical data x∗(t)}
N1,N2 and NE are used in the construction of the trajectory set: we
require N1 ≤ N(S) ≤ N2, ( ∆iS

δ0
, ∆iT

∆ ) ∈ NE .

Similarly, for 0 ≤ ρ ≤ T define

Vρ(x∗, [t, t + T ]) ≡
rl+1≤t+ρ∑

l=0

|x∗(rl+1)− x∗(rl)|,
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require N1 ≤ N(S) ≤ N2, ( ∆iS

δ0
, ∆iT

∆ ) ∈ NE .

Similarly, for 0 ≤ ρ ≤ T define

Vρ(x∗, [t, t + T ]) ≡
rl+1≤t+ρ∑

l=0

|x∗(rl+1)− x∗(rl)|,
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Example, More Detailed Specification

Moreover, define

V ∗ρ ≡ ∪[t,t+T ]⊆T {Vρ(x∗, [t, t + T ])},

and require
WTi

∈ V ∗Ti
. (7)

A global constraint such as the above is what blocks a local extreme
parameter (say (mmax , q)) of being available at all nodes (if that is
the case there will be a trajectory with too large a value of variation).
Therefore, global constraints, in this case, tame the effect of worst
case estimation on the price option bounds.
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Numerical Output

The two sources of data used for calibration and estimation are:

A 6 month long stretch of hourly data ticks for Facebook Inc (FB).
At the end of this period, call option ask prices were captured across
a variety of strikes for comparison with an expiration of 9 days into
the future.

A 6 month long stretch of hourly ticks data for Biogen Inc (BIIB). At
the end of this period, call option ask prices were captured across a
variety of strikes for comparison with an expiration of 15 days into the
future.
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Numerical Output

FB Price Bounds using observed conditional set
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Numerical Output

FB data (without using variation constraint).
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Figure : Observed Conditional set
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Numerical Output

Price Bounds using observed conditional set BIIB Data
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Numerical Output

BIIB observed conditional set without variation constraint
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Numerical Output

FB QV data
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Numerical Output

BIIB QV data
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Numerical Output
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Numerical Output
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Numerical Output

One can think that the trajectory approach gives priority to the
support of a process (as opposed to its distribution). Usually, the
support results as an offshoot from an assumed probability
distribution (Kolmogorov construction of stochastic processes).

The framework allows to establish empirical conditions for the model
to be fallible. In other words, one can empirically check if the model
assumptions are satisfied as the chart unfolds.

One can trade risk and reward by removing some infrequent pairs
(m, q) or by making N1 larger or N2 smaller or by restricting the set
V ∗ρ .

One can then bet on some rewards and on a risk that is worst case
reliable.
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Numerical Output

Thank you!
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