Uni-Logo
Sie sind hier: Startseite Seminar Hanna Sophia Wutte

Hanna Sophia Wutte

— abgelegt unter:

How implicit regularization of Neural Networks affects the learned function

Was
  • FDM-Seminar
Wann 06.12.2019
von 12:00 bis 13:15
Wo Ernst-Zermelo-Straße 1, Raum 404, 4. OG
Termin übernehmen vCal
iCal

Today, various forms of neural networks are trained to perform approximation tasks in many fields. However, the solutions obtained are not wholly understood. Empirical results suggest that the training favors regularized solutions.
These observations motivate us to analyze properties of the solutions found by the gradient descent algorithm frequently employed to perform the training task. As a starting point, we consider one dimensional (shallow) neural networks in which weights are chosen randomly and only the terminal layer is trained. We show, that the resulting solution converges to the smooth spline interpolation of the training data as the number of hidden nodes tends to infinity. This might give valuable insight on the properties of the solutions obtained using gradient descent methods in general settings.

« August 2020 »
August
MoDiMiDoFrSaSo
12
3456789
10111213141516
17181920212223
24252627282930
31
Benutzerspezifische Werkzeuge