

Facility Genomics

versatile genome or transcriptome analyses

based on quantifiable highthroughput

data ascertainment

Collaboration with Harald Binder and Clemens Kreutz

Project:

Microarray Validation of Cardiovascular Risk Factors (NGFN)

Principal Investigator: Prof. Dr. G. Walz

Collaborator: Prof. Dr. R. Baumeister / Prof. Dr. J. Timmer

Technologies and application spectra of the Core Facility Genomics

(Sample processing / Data analysis (QC) / Statistical analysis)

Study Population

Collecting blood samples from <u>324 patients</u>

RNA Isolation

Follow up study Data acquisition of all relevant clinical data

Printing and Hybridization

Printing of the human Unigene Set - RZPD 3.1 (RZPD-Nr. 983) 37 358 human cDNA clones → two slides

> Amplification of the RNA samples using the Ambion Kit (aRNA)

Sample RNA labelling = Cy3 (green) Universal Reference (Human) = Cy5 (red) ↓ log-ratio of measured Cy3/Cy5 intensities

Stringency Criteria

Clemens Kreutz, Institute of Physics

Starting with ≈ <u>12 103 992 data points</u>

Normalization and flagging based on the Genedata Software (Refiner)

Filter criteria (stringent):

- Rejection of saturated data points / genes (Intensity > 65 000)
- Rejection of genes with more than 50% missing data (samples)
- Signal / Noise Ratio > 2 (Foreground > Background)
- Maximum relative Error < 0.2 (standard deviation / mean x number of pixels)

2882888 data points do not fulfil the stringency criteria

Grouping based on clinical covariates

<u>Group-1</u> living (221) versus died (100)

<u>Group-2</u> no coronary heart disease (117) versus coronary heart disease (160)

<u>Group-3</u> living with no coronary heart disease (97) versus died by coronary heart disease (30)

Number of regulated Genes

Group-1 (living versus died)

fold < 1.5 = 15 p-value < 0.05 and fold < 1.5 = 9

fold > 1.5 = 20 p-value < 0.05 and fold > 1.5 = 14

Group-2 (no CHD versus CHD)

fold > 1.5 = 9	fold < 1.5 = 11
p-value < 0.05 and fold > $1.5 = 2$	p-value < 0.05 and fold < $1.5 = 5$

Group-3 (living with no CHD versus died by CHD)

fold > 1.5 = 96 p-value < 0.05 and fold > 1.5 = 78 fold < 1.5 = 17 p-value < 0.05 and fold < 1.5 = 13

Comparing different kinds of Cases!!!

Cardiovascular Disease (CVD) Polygenic Multifactorial Disease Dialysis Patients Population with high risk for CVD

One and the same clinical phenotype in two patients (e.g. CHD) but different history !!! Different history could lead to inhomogeneous expression profile within two patients with the same clinical phenotype

Predictive Modeling / Harald Binder, FDM

Subdivision of the study population based on risk strata into low risk (25%), middle risk (50%) and high risk (25%) individuals

low risk (81) versus high risk (81)

fold > 1.5 = 602	fold < 1.5 = 281
p-value < 0.05 and fold > 1.5 = 579	p-value < 0.05 and fold < 1.5 = 276
p-FDR < 0.05 and fold > 1.5 = 567	p-FDR < 0.05 and fold < 1.5 = 276

Grouping based on survival analyses lead to more homogenous groups !!!

Technologies and application spectra of the Core Facility Genomics

Printing microarrays

Agilent InkJet Printing Technology breakthrough - Sensitivity and Flexibility

Advantages • Free content selection • High sensitivity • Cost efficient

Agilent Platform

Genome Analysis

- Tiling Arrays: 1 x 244K, 2 x 105K, 4 x 44K, 8 x 15K
- Comparative Genomic Hybridization (CGH)
- Copy Number Variation (CNV)
- ChIP-on-chip (e.g. DNA methylation, transcription factor binding sites)
- Custom Arrays

Trancriptome Analyses

- Whole Genome Expression for every known or partly known genome
- Micro RNAs
- Splice Variants
- Custom Arrays

Agilent InkJet Printing Technology breakthrough - Sensitivity and Flexibility

Advantages • Free content selection • High sensitivity • Cost efficient

Agilent Platform

Scanner upgrade

Scanner resolution after upgrade: <u>2µm, 3µm</u> + 5µm, 10µm

Available tiling arrays formats after upgrade:

<u>1 x 1M, 2 x 400K, 4 x 180K, 8 x 60K</u>

+ 1 x 244K, 2 x 105K, 4 x 44K, 8 x 15K

<u>iScan</u> (BeadStation) Illumina

Genome Analysis

- Comparative Genomic Hybridization (CGH)
- Copy Number Variation (CNV)
- ChIP-on-chip (e.g. DNA methylation, transcription factor binding sites)
- Custom Arrays

Trancriptome Analyses

- Whole Genome Expression
- Micro RNAs
- Splice Variants
- Custom Arrays

<u>iScan</u> (BeadStation) Illumina

SNP Genotyping

SNP-CGH: Loss of Heterozygosity (LOH) Copy neutral LOH (e.g uniparental disomy)

÷

Flexible custom genotyping for fine mapping studies or diagnostics: 96, 384, 768, 1536, 3072 60.000 SNPs per sample

Whole Genome Association Studies with up to 1 Million SNPs

Haplotype tag (tag) SNPs capture most of the

haplotype structure / variation

within an haplotype block

New England Journal of Medicine; Medical Uses of Statistics; 3"Edition; Identifying Disease Genes in Association Studies (Dan L. Nicolae, **Thorsten Kurz**, and Carole Ober). International HAPMAP Project:

tag SNPs that uniquely identify common haplotypes

INCREASE STATISTICAL POWER

Barrett JC, Cardon LR (2006) Evaluating coverage of genome-wide association studies. Nat Genet 38:659-62

Genome Analyzer IIx Illumina (Solexa)

Deep Sequencing

Genome Analyzer II<u>x</u> Illumina (Solexa)

Deep Sequencing / Dimensions

Flow Cell 17mm x 66mm 1.4mm wide channels

1000 molecules per 1µm cluster = up to 150.000 clusters per tile = 120 tiles per lane

Per Flow Cell:

8 lanes = 960 tiles = 1 50.000.000 clusters = 120.000.000 reads = 14 - 18 GB high-quality output (2x75bp) = 5TB raw data = 9.5 days run time

Genome Analyzer II<u>x</u> Illumina (Solexa)

Deep Sequencing / Applications

Category	Examples of applications
Complete genome resequencing	Comprehensive polymorphism and mutation discovery in individual human
	genomes
Reduced representation sequencing	Large-scale polymorphism discovery
Targeted genomic resequencing	Targeted polymorphism and mutation discovery
Paired end sequencing	Discovery of inherited and acquired structural variation
Metagenomic sequencing	Discovery of infectious and commensal flora
Transcriptome sequencing	Quantification of gene expression and alternative splicing; transcript annotation;
	discovery of transcribed SNPs or somatic mutations
Small RNA sequencing	microRNA profiling
Sequencing of bisulfite-treated DNA	Determining patterns of cytosine methylation in genomic DNA
Chromatin immunoprecipitation – sequencing	Genome-wide mapping of protein-DNA interactions
(ChIP-Seq)	
Nuclease fragmentation and sequencing	Nucleosome positioning
Molecular barcoding	Multiplex sequencing of samples from multiple individuals

The <u>Core</u> of the Core Facility Genomics

