Parameter estimation in ordinary differential
equations for biochemical processes using
the method of multiple shooting

M. Peifer and J. Timmer

Abstract: In silico investigations by simulating dynamical models of biochemical processes play
an important role in systems biology. If the parameters of a model are unknown, results from simu-
lation studies can be misleading. Such a scenario can be avoided by estimating the parameters
before analysing the system. Almost all approaches for estimating parameters in ordinary differen-
tial equations have either a small convergence region or suffer from an immense computational
cost. The method of multiple shooting can be situated in between of these extremes. In spite of
its good convergence and stability properties, the literature regarding the practical implementation
and providing some theoretical background is rarely available. All necessary information for a
successful implementation is supplied here and the basic facts of the involved numerics are
discussed. To show the performance of the method, two illustrative examples are discussed.

1 Introduction

The central idea of systems biology to learn about biological
systems by the analysis of mathematical models of these
systems is hampered by the fact that parameters like rate
constants are not known. The challenging problem of esti-
mating parameters in ordinary differential equations
(ODEs) from partially observed noisy data appears there-
fore in systems biology. Since most of the ODEs are non-
linear, all methods regarding parameter estimation are
showing an interplay between simulating the trajectory
and optimisation. The simulation of the trajectory is
usually done by convenient ODE solvers; whereas the
optimisation differs drastically and can be classified into
global or local optimisation procedures. Methods based on
global minimisation routines are for example random
search and adaptive stochastic methods [1—4], clustering
methods [5], evolutionary computation [6] and simulated
annealing. A detailed discussion of these methods with
respect to parameter identification in ODEs is given in the
work of Banga ef al. [7]. The disadvantage of stochastic
optimisers is mainly their immense computational cost
which is the price for the flexibility and stability of these
methods.

On the other side, local optimisation procedures such
as sequential quadratic programming (SQP), Newton
methods, quasi-Newton methods and so on are computa-
tionally efficient, but they tend to converge to local
minima. In the case of parameter identification in ODEs,
the problem of convergence to local minima is predominant
if the so-called initial value approach is considered.
This approach utilises the fact that the trajectory is uniquely
determined by the parameters and initial values. Minimising
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a maximum-likelihood functional with respect to parameters
and initial values should therefore solve the inverse problem.
The situation stated earlier further suggests that there is a
trade-off between computational efficiency and stability for
estimating parameters in ODEs. In comparison to the initial
value approach, multiple shooting provides enhanced stab-
ility with only a slight increase of the computational
cost. The method was introduced by Stoer and Bulirsch
in the early seventies [8] and was substantially enhanced
and mathematically analysed by Bock [9—11]. Here, some
of the well-elaborated mathematical details are presented,
but always in scope of practically implementing these ideas.
Keeping track on the algorithmic issues can be regarded as
the major intension of this article. Since this aspect is
neglected in the literature so far, the accessibility and
re-implementation of multiple shooting is currently limited.

2 Estimation problem

Suppose that a dynamical system is given by the
d-dimensional state variable x(f) € R? at time 1 € [ =
[t0, td, which is the unique and differentiable solution of
the initial value problem

x(t) =f(x(1). t,p)  x(ty) =x, (M

The right-hand side of the ODE depends on some par-
ameters p € R™. It is further assumed that f'is continuously
differentiable with respect to state x and parameters p.
Let Y; denote the data of measurement i =1,..., n and
of observable j=1,..., obs, whereas n represents the
total amount of data and obs is the number of observables.
Moreover, data Y; satisfy the following observation
equation

Y, =gt p) + o€ j=1,...,0bs 2)
for some observation function g: RY — R°®, d > obs,
o; > 0, and €5 are independent and standard Gaussian dis-
tributed random variables. Sample points ¢; are ordered such
that fo < < ... <t, < trand observation function g(-) is
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again continuously differentiable in both variables. The
generalisation of (2) to more than one experiment, possibly
under different experimental conditions, reads

11k gj(x(tl/) P) +o0 /kez/k k= 1 exp (3)

where 7.y, is the number of experiments performed. Certain
parameters may be different for each experiment, but the
treatment of these local parameters and different exper-
iments requires only minor modifications of the described
procedures and therefore only the one-experiment design
Nexp = 1 18 considered.

On the basis of measurements Y;;, the task is now to
estimate the initial state x, and parameters p. The principle
of maximum-likelihood [12] yields an appropriate cost
function which has to be minimised with respect to par-
ameters x and p. Defining x(¢;; xy, p) as being the trajectory
at time ¢;, the cost function is then given by

n obs

ZZ

i=1 j=

g,(x(t,’ xo, p.p))

L(xg, p) = 4)

A direct minimisation of £ with respect to x, p leads to the
so-called initial value approach.

2.1 Initial value approach

The development of the initial value approach has a long
history [7, 13—16]. Again, one can distinguish between
local and global optimisation methods. If global optimis-
ation procedures are used for minimising the likelihood,
(4), the computational cost is rather high. On the other
hand, local optimisation algorithms have a small domain
in parameter space for which the method converges to the
global minimum. These problems are due to the following
difficulties:

1. The optimisation problem is highly nonlinear such that
local optimisation routines tend to converge to local
minima.

2. The solution of the differential equation can become
unstable such that the trajectory diverges before the last
time point, t,, is reached.

An efficient and robust method minimising these effects
therefore needs a modification of the optimisation scheme.
One possibility of such a modification is multiple shooting.

2.2 Multiple shooting

A detailed mathematical analysis of the multiple shooting
method was performed by Bock [9-11]. Besides the
example given in Section 5, some applications of the
method to measured data are for example the works of
Richter et al. [17], Timmer et al. [18], Stribet et al. [19],
Horbelt et al. [20] and von Griinberg et al. [21].

The basic idea of multiple shooting is that the parameter
space is enlarged during the optimisation process. This
offers the possibility to circumvent local minima because
the procedure has more flexibility for searching the par-
ameter space. It is realised by subdividing time interval
I = [ty, t] into n,,; < n subintervals /; such that each interval
contains at least one measurement. Each of the intervals is
assigned to an individual experiment having its own initial
values (x)— I,...,n, but sharing the same parameters p.
The only difference in cost function (4) is that trajectory
x(t; xo, p) 1s replaced by the interval dependent trajectory
x(t;; x5, p) for all k=1, ..., n,, Since the over-all
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trajectory for each r€ /=17 U --- U, is usually dis-
continuous at the joins of the subintervals, the fitted curve
would not satisfy the smoothness assumption of the model,
(1). To enforce smoothness of the final trajectory, the optim-
isation is constrained such that all discontinuities are
eventually removed which therefore leads to a constrained
nonlinear optimisation problem. This has the advantage
that further equality and inequality constraints, such as
parameter bounds or conservation relations can easily be
implemented.

For each k=1, ..., n,, let tf = max{l}}, #; = min{l}}
and 6, = (x5, p). The optimisation problem can then be
formulated in the following manner

obs My

LO,.....6, ZZZ Y R(6))

Jj=1 k=1 {i:t,EL}

subject to
x(tj';Oi)—x(t;_l;OiH):O i=1,...,n, —1
R_/?(OI,...,O%):O j=1,
R‘,f(Ol,...,O,lm)zO k=1,....,n

S
®

®)
g

where the continuity constraints are given at the first row of
the constraints-part followed by some optional constraints
R;, R%, to include for example conservation laws or par-
ameter bounds. Cost function £(6y, ..., 6, ) is equivalent
to (4) if the continuity constraints are satlsﬁed hence

Y — gV (x(t; 6,), p)

Oy

ljk(ok) -

This nonlinear programming type of problem can only be
solved iteratively. We use the generalised-quasi-Newton
method for solving (5), where the cost function is expanded
up to the second order with respect to some initial guess
0° = (0(1), e, 02m). All contributions depending on the
second derivative of R{j; are neglected afterwards. This is
possible because these contributions to the Hessian of £
are vanishing asymptotically, n — oo, if the model assump-
tions are correct [11, 22]. From the quadratic approximation
an update step for /th iteration A@' = (A@Y, ..., Aﬂflmv) can
be calculated by solving the linear programming problem

obs My,

> Z DD (RG] + dyRG(0)A0') = min

j=1 k=1 {i:t,EL}

subject to
x(67: 0)) — x(t7, 11 0/,) + dy x(67: 6)A6)]

B URE 0;,)A0; =0 ©
R{(0") + dyR(6") A0' =0

RE(0") 4 d,RS(0") AG' > 0

where dg denotes the derivative with respect to parameters 6
of the corresponding function. Setting "' = 0’ + A6’
I=1,..., and iterating (6) until A@'~0 yields a
minimum of (5) under the condition that all parameters are
identifiable and the constraints are not contradictory. These
extra assumptions are necessary to fulfil the so-called
Kuhn—Tucker conditions for the solvability of constrained,
nonlinear optimisation problems [11, 23]. In Section 4, a
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regularisation approach is discussed for weakening these
restrictions if non-identifiable parameters are present.

In combination with multiple shooting, the generalised-
quasi-Newton approach has three major advantages:

1. The optimisation is sub-quadratically convergent.

2. A transformation of (6) can be found such that the trans-
formed equations are numerically equivalent to the initial
value approach, which is called condensing.

3. Due to the linearisation of the continuity constraints, they
do not have to be fulfilled exactly after each iteration, but
only at convergence. This allows discontinuous trajectories
during the optimisation process, reducing the problem of
local minima.

Properties 1 and 2 are yielding the desired speed of conver-
gence whereas 3 is mainly responsible for the stability of
multiple-shooting. This is gained by the possibility that the
algorithm can circumvent local minima by allowing for dis-
continuous trajectories while searching the minimum. The
main disadvantage results from the linearisation of the cost
function. It can easily happen that despite the update step
A@' pointing in the direction of decreasing £, the proposed
step is too large. Such an overshooting is common to any
simple optimisation procedure based on the local approxi-
mation of the cost function. A suitable approach to cure
this defect is to damp the proposed step, which is realised
by relaxing the update scheme to "' = 6’4+ \'A@' for
some A’ € (0, 1]. Both the condensation algorithm and the
damping method are necessary for building up a fast and
stable parameter estimator for ODEs. These procedures
as well as the main program flow are the subject of the
following section.

3 Detailed description of multiple shooting

In the previous section, the basic idea and some aspects of
the performance of multiple shooting were displayed
without emphasising any algorithmic details of the
method. To fill this gap, each module, starting from the
initialisation and ending in the output of the procedure, is
discussed in detail. The different stages of the described
method can be extracted from the flow chart (Fig. 1).
Beginning at the initialisation, where for example the mul-
tiple shooting mesh as well as the initial values of each
interval are set, a first trial trajectory has to be integrated.
Using these data, linearised problem (6) can be formulated
for the initial iteration and condensed in order to accelerate
the minimisation process. To prevent overshooting, the
relaxation or damping of the obtained update step is done.
Then one decides whether the procedure is converged or a

initialisation integration condensation

A Y

minimisation

Y
Y

n0|

converged ?

A

yes

Y

output

Fig. 1 Main program flow
All stages of the algorithm described in Section 3 are displayed
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further iteration has to be taken into account by integrating
a new trail trajectory, applying a convergence criterion,
such as [|A@'|| ~ 0. After convergence, output such as the
parameter estimates, the estimates for the initial values as
well as the covariance matrix for a statistical analysis of
the solution is provided. The first non-trivial stage in the
program flow is the integration of a trial trajectory.

3.1 Integration

The choice of the numerical integrator depends on the class
of ODE given in (1) or its numerical stability. There are four
major groups to consider:

1. Non-stiff ODEs,

2. Stiff problems,

3. Delay differential equations (DDEs), and
4. Differential algebraic equations (DAEs).

For non-stiff ODEs, standard numerical integrators such as
the Runge—Kutta method [22] with an appropriate step size
control can be used. Whereas, if the solution of the ODE has
at least two different time scales which differ by orders of
magnitude, only stiff integrators are useful. Especially, in
the case of multiple shooting, we propose to use ODESSA
[24, 25], because the code is optimised for simultaneously
solving the sensitivity equations. The significance of the tra-
jectory’s sensitivity is due to the linearisation given in (6)
and will be discussed later. DDEs cannot be represented
by (1). Although DDEs are not ODEs, it is possible to
adapt multiple shooting to this class of differential equations
[26—28]. Since the right-hand-side of a DDE depends on the
time delayed trajectory or a delay distribution, specially
suited integrators are needed. A widely used DDE integrator
is for example RETARD [29], for a deeper discussion of
DDE we refer to the work of Bellen and Zennaro [30].
DAEs are differential equations in which algebraic relations
between the state variables are present. In some cases, the
algebraic relations can be formulated as equality constants
and are thus treated like constrained ODEs. Sometimes,
this kind of separation is not possible such that special
DAE integrators have to be considered [31].

Besides the choice of the integrator, the solution of the
sensitivity equations has to be obtained, because Jacobian
ng;},,(02) or dgx(t;r;ﬂ?) in (6) contains derivatives of the
trajectory with respect to the initial values and parameters

ax(t; 6,) ax(t; 6,)
Bxlgm ap
i=1,...,d,

tEIk,

k=1,...,n

ms?

In order to calculate these quantities numerically, three
approaches are feasible:

1. Finite differences, called external differentiation [10, 11],
2. Differentiation of the integration scheme, called internal
differentiation [10, 11, 29], and

3. The simultaneous solution of the sensitivity equations
[26].

The approximation of the derivatives by finite differences
such as

ox(t; 0 _
ﬁ ~ ! (x(t; 0, + e h) — x(1; 6,))

for some 4 < 1 and e;,, being the ith unit vector with
respect to the initial value leads to numerical difficulties.
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Due to the numerical integration, trajectory x(¢; ;) is cor-
rupted by numerical noise. Since an adaptive integration
step size is used, the maximal noise strength can be prede-
fined by some constant eps < 1. Consequently, / cannot be
chosen arbitrarily small without destabilising the method.
Arguments based on the expansion of x(¢; 6;) reveals that
the optimal choice is

h = O(/eps) %)

see for example the work of Kelly [32]. Unfortunately, the
constant of proportionality in (7) depends on the second
derivative and is therefore not known. Furthermore, a
high integration accuracy is needed for achieving a suitable
derivative. Thus, external differentiation should be avoided
because of unknown parameter 4 and the high compu-
tational cost.

Differentiating the integration scheme is considerably
faster than external differentiation [10, 11] and the
problem of adjusting a parameter does not occur. On
the other hand, internal differentiation depends highly on
the used integrator and has to be adapted whenever one
decides to try another integration scheme.

A more flexible and quite efficient approach is the simul-
taneous integration of the sensitivity equations. Consider
again a trajectory x(¢; xo, p) = x(t; 0) of (1) and derivative
dg, where the subscript indicates the variables to be differ-
entiated. The time evolution of the sensitivities S(z; ) =
dgx(t; 0) is then given by solving

d
&S(f; 0) = (dy/)(x(t; 0), ¢, p) + (d,./)x(z; 0), 1, p)S(t; 0)
So = S(t; 0) = (1554 045n) (8

where 1,.; is the d x d-unity matrix, 0y, the
d x n,-matrix of zeroes, and f'is the right-hand side of the
ODE as introduced in (1). Simultaneously integrating (1)
and (8) yields the trajectory as well as the desired sensi-
tivities. It is further sufficient to restrict the step size
control to the main ODE, (1). Doing this, the speed and
the accuracy is comparable to the internal differentiation.
It is therefore a matter of taste using either the internal
differentiation or the simultaneous solution of the sensitivity
equations (8).

The procedure requires the calculation of derivatives like
d, f, d, fand so on. Calculating such derivatives by hand can
be very time consuming and error-prone for big systems.
Therefore automatic differentiation should be applied.
One possibility is to generate the derivatives at runtime by
using program packages like ADIFOR or ADOLC [33, 34].
Since the derivatives have to be recalculated for every func-
tion evaluation, this approach slows down the method
significantly. The calculation of the Jacobians should there-
fore processed before the program is executed which can
be realised by using symbolic computation software, for
example GinNaC [35].

3.2 Condensation

All information is now available for setting up (6). Suppose
that h; = x(t7) — x(t1), AOL=(Ax), Ap) for all
i=1,..., ny—1 and because of (8), dif'x(t;11) =1,
dx(t;31) =0 then the continuity constraints can be
written as

h; + dyx(6)Axy + dx(5h)
Ap=Axi i=1,...,n,, —1 9)

ms
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According to (9), all initial value update steps at the mul-
tiple shooting intervals can therefore be related to Ax{ by
backward elimination. Inserting the increments AxS, ...,
Ax{™ obtained by (9) into (6) yields a system to be solved
only for Ax} and Ap. Let R be the 1 - 1,y - nops-dimensional
vector with components R and R, R®, respectively the
condensed problem is thus

|lu§ + Ef Axg + P{ Ap||> = min
Ax,,Ap

subject to
u +ESAx)+ P Ap =0

(10)
uf + E5 Axg + P§ Ap > 0
where 1$/¢/¢ and matrices E¢/¢/%, P%/¢/% are determined by
the recursion [10, 11]
Initialisation: ”Z/I f/ & = RU/els EUClE = dxng“/ °/g,

PyelE = d R/
For i =, ...,2: u?ﬁ/g — u;z/e/g _’_E;z/e/g h,_,
E?igl/g — dx3—1Ra/6/g +E?/e/gdx;;1hi71

P =P L BT A, (1)
The condensation algorithm eliminates (9) such that problem
(10) is of lower dimension than the original, (6). Since (11)
involves only matrix multiplications, the desired increase in
speed is achieved by solving only the condensed problem.
After the solution of (10) is determined, the actual full
update step A@' is obtained by the recursion given in (9),
which involves again only matrix multiplications.

3.3 Minimisation

The solution of the linear programming problem (10) can be
obtained by calculating the generalised inverse G(0") at 0.
Since the condensation procedure removes the continuity
constraints by partially calculating the generalised inverse
using the transformation given earlier, we concentrate on
uncondensed problem (6) in the following. The general
inverse then solves

—d,R(6"A0" = R“(0") (12)

subject to all equality and inequality constraints of (6),
where R“ is again the 7 - n,, - no,e-dimensional vector of
the actual residuals. Therefore A@' = G(0")R*(0’) and by
multiplying the system to solve (12) with G(8’), we
obtain —G(0")deR*(@") = 1. Note that since (12) is over-
determined, the solution as constructed earlier only yields
the minimum quadratic norm solution, as desired.
Moreover, the equality and violated inequality constraints
are handled by projections onto the resulting sub-manifold
using Lagrange multipliers.

In practice, any appropriate minimisation algorithm
for solving constrained linear optimisation problems, for
example the routine EO4NCF from the NAG library, LSEI
[36] or the method of Stoer [37], can be used.

3.4 Damping

Damping or relaxation of the update is essential for the stab-
ility of the whole method. To judge if the proposed update
step is descendant, some kind of level function has to
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be chosen. Such a level function must share the same mon-
otony properties of the cost function close to the global
minimum. In case of unconstrained problems, it is feasible
to use cost function £ directly, whereas some modifications
are necessary for constrained problems, such as multiple
shooting. These modifications are due to the constraints
entering the level function via Lagrange multipliers. A poss-
ible level function is then

M, +n,—1

ms.

TO=LO+ Y. RO+ Blmin(0, K(O)]
i=1

i=1

equality constr. inequality constr.

(13)

where «; and 3; are bounded below by their corresponding
Lagrange multipliers. Based on this level function, a down-
hill procedure can always be constructed by some one-
dimensional line-search algorithm. According to Bock
[9—11], it turns out that the performance of using 7(6) is
rather bad. This inefficiency is because

1. Line-search has a high computational cost since a new
trajectory has to be integrated for each evaluation of (13)
and

2. The local geometry of the minimisation problem is not
adapted to the level function, leading to extremely small
steps for badly conditioned problems.

To surmount these problems, Bock [9—11] proposed to
replace the line-search by some predictor-corrector
method and the level function is changed to include the
local geometry. As prototype for constructing such a level
function, we consider the following ideal level function

Ty ¢(0) = [|G(6")R* ()| (14)

where 6 is minimum of the cost function £, G is the gen-
eralised inverse as defined in Section 3.3 and R“ the vector
of residuals at the corresponding point in parameter space.
Expanding R“(6) about 6" up to first order and substituting
the obtained expression into (14) yields 7; o (0) = || G(6")
(R(6") + dgR(6*)(0 — 6°) + O(]|0 — 6°|*))|1>. Since we
assume that the Kuhn—Tucker conditions are fulfilled,
as described in Section 2.2, G(6")R*(6*) = 0 and by the
properties of the generalised inverse — G(@ hdeR(0") =1,
according to Section 3.3, we obtain

Ty.e(0) =110 — 6"+ 010 — 6°|°)

In conclusion, ideal level function Ty, measures the
squared Euclidean distance to the optimum up to third
order. Therefore Ty g is in vicinity of 6%, a distance
measure in a Euclidean space which does not depend on
application specific geometric properties of the parameter
‘landscape’. Moreover, it shares the same monotony proper-
ties of the cost function close to the global minimum, as
desired. Unfortunately, the knowledge of the minimum 6*
is needed for constructing Ty, ¢+. In order to obtain an appli-
cable level functlon which has similar properies as Ty, ¢+, We
replace @ by @'. The resulting level function

T4(0) = ||G(0)R“(0)|)* (15)

is called natural level function which provides an efﬁc1ent
criterion for determining the relaxation coefficient A’ for
the /th iteration.

Again, finding an appropriate X for which the minimis-
ation scheme is descendant involves some kind of
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line-search to guarantee that Th(0'+ A'A@') < T\(0") is
satisfied. Since the evaluation of the natural level function
involves the integration of the trajectory and in addition
the solution of the whole minimisation procedure, calcu-
lating Ty is quite expensive. To prevent line-search, an
upper bound for the level function evaluated at the
relaxed update step Tn(0'+ A'A@’) can be derived, as
shown in the work of Bock [11] and in Section 9.1.
This bound reads

2
Al
Ty(0' + N'A0") < (1 —A’+7w(0’,)d)) 73(0") (16)

where the function w is given by

(0 )= IG(8')(dyR(8' +5A0") — d,R(6)A0 }

SE€(0, )\’]{ S||A01||2

(17)
Now, for some arbitrarily chosen n € (0, 2], every XNe (o,

A*] yields a descending step 7, W0+ AN'A0") < T(0"), where
A" can be obtained from the solution of

U } (18)

A=minll,———M
mm{ " (07, X [|A0T]

This is because A’ < A* < n(w(0'1%)||A0]) !
using (16)

and by

/ 2
T(0'+ ) A0") < (1 =X +%n> (0"
=(1-XN({1—n/2)T}(0") < T},(0"

For a given 7€ (0, 2], the maximal relaxation
parameter leading to a descendant step is therefore A*.
Moreover, if the relaxation coefficient is chosen to be
N E X (1), A*(mn)], for 0 < <m, <2, the damped
generalised-quasi-Newton method converges to a full-step
procedure, A =1, when the parameters are approaching
the minimum. This requires the local identifiability of all
parameters and the boundedness of the second derivative
dZR" in the vicinity of the minimum, as shown in Section
9.2.

Since w(0', A) is a-priori not known, a suitable estimation
or approximation is necessary. Demandlng the coincidence
of the estimator with (17) in the limit A’ — 0 automatically
guarantees an appropriate relaxation scheme whenever a
massive damping is needed. The estimator

[IG(OHR(O' + X' AG) — (1 — AHAG'||
[IA'A67|

&0 \)y=2 (19)
satisfies this desired property [11]. Replacing w with @ in
(18), a predictor-corrector procedure can be constructed to
find a suitable 0 < A’ < A*. Assuming that &(@'~', A’ )
from the previous Gauss—Newton iteration is approx1mately
constant the damping parameter for the actual iteration can be
determined by

. o
AN = min 1, 20
{ 6)(0“,)\”)||A0’I|} (@)

for some 0 < my < 2. If the assumption is violated such that
decreasing of the method cannot be guaranteed @ has to be
recalculated from (19) but now using X , given in (20). This
procedure has to be repeated until a suitable relaxation
coefficient has been obtained. For some 0 < 1y < 1, <2,
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7€ [0.5, 1] and 0 < 7,3, K 1, the damping procedure can
be described by the following algorithm:

1. Set j = 0 and calculate the predictor py = 7o/ (&(0' 1,
G, N HI1A6).

2. The predicted relaxation step is then given by

Apred _ : T <'uj <
oo =N Tmin = =T
Tmin /Jj/' < Tmin

3. If &6, /\pred)||A0 ||/\1°red < 7, then the proposed step
)\pred A yields a descendmg update and is therefore
accepted Whereas, if the above statement is violated,
j=j+1and

4. Prediction AP™' is corrected by

_ Mo
SRV ey

5. Steps 2, 3 and 4 are repeated until a sufficient relaxation
coefﬁment A is found or the minimal step length 7., is
reached.

In order to ensure the numerical stability of the damping
algorithm, a predefined minimal relaxation 7,,;, must be
provided An upper threshold 7 is also given, which deter-
mines the transmon from a damped procedure to a full
step approach, A’ = 1. Finally, 7, 1, are controlhng the
correction (step 4). Inserting @(0', AP)|AO'|| AP} > 1,
into (21) and suppose that w; > 7Tmin, we have
N4 < (/M) AP, Thus, the minimal correction factor
is given by the ratlo No/7M2. A suitable choice of these
control parameters is for example 7,;, = 0.01, 7=0.5,
mno = 1 and m, = 1.8. Since there is no information about
@ for the first Gauss—Newton iteration, one can chose ®
such that A attains the lower bound 7.,

The described damping algorithm reflects the advan-
tageous geometrical properties of the natural level function.
Furthermore, correction step (21) is rarely activated such
that in most of the cases only one extra integration is
needed to achieve an appropriate damping. Unfortunately,
there are no rigorous proofs that this damping strategy
always yields a descending method, which is due to the
approximation of w. But the algorithm provides excellent
results in practice, we can therefore highly encourage the
use of this damping scheme.

3.5 Output

Besides the pure estimation of parameters and initial values,
statistical information such as standard errors or confidence
intervals for these values is essential in practice. In the case
of maximum-likelihood estimators, the statistical properties
can be derived in the asymptotic limit. Under mild con-
ditions, the estimator is converging to the ‘true’ parameters
and the parameters are normally distributed [38]. The
covariance matrix of the estimates can be obtained from
the Fisher information matrix which can be approximated by

P L)

IF(8), = 90,

(22)

where £ is the negative logarlthm of the likelihood.
Inverting IF(0) then yields covariance matrix C for
estimated parameters 6.
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The described procedure for estimating parameters in
ODEs is a maximum likelihood approach, such that (22)
provides a sufficient approximation of C~'. Most of the mini-
miser [36] simultaneously calculate this covariance matrix
within the quadratic approximation discussed in Section 2.2.

All described stages, integration, condensation and so on
define the basic algorithm of multiple shooting which are
valid in case of identifiable problems. As explained, the
restriction of having only identifiable parameters is of
great importance for the convergence of the algorithm, the
damping strategy and the statistical analysis. To judge if
the system of interest contains only identifiable parameters,
several methods can be applied [39—42]. Since these
methods can involve extremely tedious calculations even
for small models, it is often a-priori not feasible to decide
whether the system is identifiable. Alternatively, the mul-
tiple shooting method can be modified to obtain parameter
estimates even if some parameters cannot be identified.
A possible implementation of such a strategy is described
in the next section.

4 Regularisation

If some parameters are not identifiable in a certain domain
of the parameter space, matrix Py’ of condensed system (10)
does not have its full rank whenever the algorithm tries to
enter this region. The central idea of the regularisation
approach is to manipulate the estimation process such that
modified matrix P{ attains its full rank. The manipulation
we propose can be regarded as heavily damp a specific
parameter set such that they appear to be fixed.

A singular Value decomposition [22] of Pi =
Udiag(wy, ..., w, )V is calculated first to determine if
Pl has its full rank. Both matrices U and V" are orthogonal,
V" is the transposed matrix of V, and diag(wy, ... Wy) is a
diagonal matrix contalnmg the positive (by conventlon)
singular values wy, ..., . It is further assumed that the
singular values are in descendmg order wy > «+- > w, .
The rank criterion is said to be violated if the condition
number Wy, /wy is below a given threshold 0 < €. < 1.
Introducmg a threshold is necessary because the numerical
error prevents the condition number to vanish exactly.
Therefore the value of €. should be close to the machine
accuracy. In order to judge which parameters contribute to
the violation of the rank criterion the set M. = {i: w, /
w; < €.} of all singular directions is regarded. Let

I1, = Zei(X)eiT

€M,

be the projection onto the space of all singular directions,
the regularisation can be realised by enlarging the corre-
sponding singular values. For this reason, let us choose
some A > w. The regularised matrix P{ is then given by

P| = U(diag(w,, ..., w, )+ ALV (23)
For a well-adjusted value of A, all parameters contributing
to the singular directions are almost kept fixed if P{ is
replaced by P{ in (10). Since the described regularisation
method is similar to the classical damping procedure of
Levenberg and Marquardt [43, 44], regularisation can also
be regarded as an individual damping of ill-conditioned
directions. If the regularisation is turned off at the last iter-
ation, the singular directions of the covariance matrix can
help to find the unidentifiable parameters. Note that if
some initial values are not identifiable, the same procedure
can also be applied to matrix E{ in (10).
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5 Examples

To display how multiple shooting performs, we present
two examples in the following. The first dataset consists
of a simulated trajectory from a model for oscillations in
calcium signalling which is also capable of showing
complex or chaotic behaviour [45]. For this model, a small
simulation study is presented to show superior performance
of multiple shooting compared to single shooting as claimed
in Section 2.2. As second example measured data obtained
form the online material of [46] are considered. Here,
biochemical data of the STATS pathway are modelled.

5.1 Example 1: simulated data

Calcium ions are an important second messager substance in
eucaryotic cells. Thereby, Ca>" is a substantial part of the
cellular information processing system. It has been observed
that the concentration of the cytoplasmatic calcium ions
may exhibit oscillations [47]. A mathematical model of
these oscillations is developed in the work of Kummer ef al.
[45] which shows for a specific set of parameters complex
or chaotic behaviour. The main stages of the calcium signal-
ling pathway are activation of the phospolipase C (PLC)
enzyme by the activated G, unit of a G-protein linked recep-
tor. This enzyme is attached to the plasma membrane and itself
catalyses the hydrolysis of the membrane lipid phosphatidyl
inositol-4,5-bisphosphate to build inositol-1,4,5-trisphosphate
(IP3) and diacylglycerol. Then, IP; may bind to specific
ion-channels in the endoplasmatic reticulum which lead to a
massive out-flux of Ca®" from intra-cellular stores.

For the following simulation study we used the most
complex mathematical model presented in the work of
Kummer et al. [45]. This model consists of four state vari-
ables representing the concentrations of: (1) the active G,
unit, G}, (2) the active PLC, PLC*, (3) the free calcium in
the cytoplasm, Ca,y, and (4) the calcium in the endoplas-
matic reticulum, Ca,,. For sake of simplicity, the dynamics
of the IP3 is assumed to follow the dynamics of the active
PLC. The dynamics of the remaining state variables is
then given by the following differential equation

d * * * GZ
—k,Ca.  ——a
4Byt G + Km,
d PLC*
—PLC* = e ——————
¢ =k Oa kg Km,
d Ca
—Ca,,, = k,PLC*Ca ., ———=— + kPLC" + koG,
dr cyt 7 cyt Caer + Km4 8 9
4 CaCyt 4 Cacyt
10 CaCyt + Km; 1 Cacyt + Kmy,
d " Ca
acaer = —k7PLC Cacthasz‘
er
Ca
ey ——% 24
+ 11CaCy1_{_Km6 (24)

where the 17 parameters are chosen in the following manner:
k1 =009, k=2 k=127 k=373, k=127,
k6 == 3224, k7 == 2, kg = 005, kg == 1358, klO = 153,
kll = 485, Km1 == 019, sz = 073, Km3 = 2909,
Kmy = 2.67, Kms = 0.16 and Kmg = 0.05. For this specific
parameterisation the solution of (24) shows a limit cycle.
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As initial values we use Ga(0) = 0.12, PLC*(0) = 0.31,
Cacy(0) = 0.0058 and Ca.(0) =4.3. As sampling time
domain we choose interval [0, 20] and the sampling interval
is set to Az = 0.1. This leads to 200 data points. We chose
a biological reasonable noise model where the standard
deviation of each observed variable is proportional to the
concentration of its noise free state. This leads to an
overall mean noise-to-signal ratio of 6.5% .

For comparing multiple shooting with single shooting,
we aim to estimate the parameters ki, ..., ky;. The initial
guesses of these parameters are randomly selected from an
uniform distribution over [0, 1]. Note, that some of the true
parameters, for example ks, kg and k¢, are far of this interval
of initial guesses for the parameters, rendering the estimate
to a difficult one. A snapshot of the initial trajectory, after
the eighth multiple shooting iteration and the final trajectory
is shown in Fig. 2. Here, 17 multiple shooting intervals are
used, leading to a rather rough initial trajectory (Fig. 2a).
These discontinuities are still present after eight iterations
(Fig. 2b) and are completely removed at convergence,
(Fig. 2¢). The estimated 11 parameters are compatible with
real parameter values stated earlier (data not shown). To
compare the performance of multiple shooting to the initial
value approach, a simulation study has been carried out.
To achieve the most comparable results, a sample of 250
initial guesses are randomly selected. The performance for
both multiple shooting and initial value approach is com-
pared in terms of stability and computational load using
the same initial guess for each sample. The results are sum-
marised in Table 1. These results clearly support the state-
ments about the superior stability of multiple shooting,
since only 16% of fits converged for the initial value
approach whereas 94% for multiple shooting. This picture
does not change if only the fits to the global optimum are
considered. Here, a significant drop of the percentage of con-
verged fits is visible, 4% for single shooting and 49% for
multiple shooting. This significant drop is a matter of fact
that some of the initial guesses are more than two orders of
magnitude away from the true parameters. If one compares
the ratio of these values, it turns out that about twelve
times as many convergent fits converged to the global
optimum for multiple shooting than for the initial value
approach. In terms of computational load, single shooting
is substantially faster than multiple shooting if all convergent
fits are considered. But if only convergent fits are taken into
account, the computational effort is basically the same for
both methods. Therefore for this particular problem, the con-
densation algorithm is highly efficient since the condensed
problem is computationally equivalent to the initial value
problem as discussed in Section 3.2. In addition, the high
computational cost for converged fits to a local optimum in
the case of multiple shooting indicates that the objective
function around these minima is rather flat. This is due to
the fact that the presented damping algorithm often hits the
lower bound in these regions and therefore more iterations
have to be taken into account. However, this property can
be used to monitor the convergence of the algorithm.
Moreover, the high standard deviation of the computational
load for both methods indicates that the needed compu-
tational effort to find an optimum of the cost function
highly depends on the used initial guess.

5.2 Example 2: measured data

So far, only simulated data have been considered where the
model structure is completely known. If measured data are
modelled, the choice or selection of a parameterised model
which properly captures the underlying dynamics
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Fig. 2 Identification of the presented calcium signalling pathway using multiple shooting

For sake of clearness, three snapshots of the identification procedure is shown only for the state variables G, and Ca,y,
a Due to the large amount of multiple shooting intervals, the initial trajectory is highly discontinuous

b After 8 iterations the trajectory is significantly smoother

¢ Since the discontinuities are removed by the algorithm, the trajectory turns out to be continuous at convergence (38 iterations)

complicates the situation significantly. For the considered
data, the model selection procedure is thoroughly described
in the works of Swameye et al. and Timmer ef al. [46, 48].
Here, we only concentrate on the identification of the
model. Before doing this, it is necessary to provide a brief
description of the model. The biochemical reaction starts
at the activation or phosphorylation of the STAT5 molecule.
This reaction is driven by the EPO receptor located at the
cell membrane. Then, two activated STAT5 molecules
can undergo a dimerisation. Only STATS dimers enter the
cell-nucleus and can trigger the transcription of target
genes. After that, the dimer separates and the STATS5 mol-
ecule is dephosphorylated. Finally, these single STATS
molecules are able to re-enter the cytoplasm and can
again be activated by the receptor.

Assuming that the transport mechanisms from the cell
membrane to nucleus are sufficiently fast, such that no con-
centration gradients can occur, the dynamical behaviour of
the pathway can be approximated by an ODE. Since no

Table 1: Comparison of multiple and single shooting
(initial value approach) in terms of stability, convergence
to the global optimum and computational load

Single Multiple
shooting shooting
Convergent fits 16% 96%
Needed computational load (31 + 26) s (102 + 123) s
Fits converged to the global 4% 49%
optimum
Needed computational load (44 + 16) s (48 + 58) s

in vivo measurements inside of the nucleus are possible, all
nuclear processes are condensed into a single step containing
a time delay. Let x; be the concentration of unphosphorylated
STATS, x, the activated STATS5 and x5 the STATS5 dimer. The
receptor activity is denoted by EpoR 4(¢) and x4 is the concen-
tration of STATS5 molecules staying in the nucleus.
Unfortunately, no concentration of the reaction components
could be measured directly. Instead, up to a priori unknown
scaling parameters s;, s,, the total amount of activated
STATS, y; = s1(x» + x3) and the total amount of STATS
Y = $5(x1 + x5 + x3) in the cytoplasm are accessible. For a
given set of observations, the most simple identifiable
system capturing all the properties stated earlier is

%, = —k,x,EpoR (1) + kyxs(t — 7)
%, = —x3 4 k;x,EpoR ,(¢)
X4 = —kyx;(t — 7) + kyxs (25)

where k&, k» are rate constants and 7 is a delay parameter.
Here, the rate constant of the x3 term is set equal to one
because it can be absorbed into the scaling parameter s;
thus such a parameter would not be identifiable. Instead of
using a ‘hard’ delay in (25), we decided to use a delay chain
approach. A delay chain of length N is a linear ODE of type

iy =" n) — )

N
9> —;(ql - q2)

The results are obtained from 250 runs using a randomly gen-
erated initial guess for each sample. For sake of comparability,
the same initial guess is used for single and multiple shooting
within the sample. For the simulations a computer with a
2.6-GHz Pentium 4 processor is used.
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. N
dN-1 = ;(%v-z —qn-1)

. N
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Fig. 3 Total activated STATS, y,; and total STATS, y,, in the cytoplasm of the cell

Trajectory of the best fit is indicated by the solid line

Here, in(7) is the input and out(¢) the output of the delay chain.
It can be shown that such a chain generates a delay distribution
having a mean delay of 7and a variance of 7%/N. In the case of
STATS, we set in(f) = x3(t), out(t) = x3(t — 7) and N = 8.

Now, all model ingredients are available for fitting the
dataset shown in Fig. 3. According to the experimental
design outlined in the work of Swameye et al. [46], it
is known that all state variables except x; are initially
zero, these values are therefore kept fixed throughout the
optimisation. In addition, the scaling parameters si, s,
are not identifiable from a single experiment. Fixing them
to sy =0.33 and s, =0.26, the remaining parameters
as well as the initial value of x; are now identifiable.
They turn out to be k= (2.12 + 0.22) min~ ' mol !,
k, = (0.109 + 0.015) min~'mol ™!, 7= (5.2 + 0.6) min
and x1(0) = (3.71 £+ 0.07) mol. The corresponding trajec-
tory is displayed in Fig. 3. As can be seen, the fitted
model yields a good description of the data.

6 Summary

The parameter estimation procedure for ODEs, multiple
shooting, is reviewed and described in detail. In contrast
to other attempts of estimating parameters in differential
equations, this procedure does not suffer heavily from the
attraction to local minima and the speed of convergence is
considerably higher than global optimisation methods can
achieve. Besides the general idea of embedding the
problem into a higher dimensional parameter space, the
speed of convergence as well as the stability can only be
achieved by sophisticated numerical methods. Especially,
the condensation algorithm and the damping strategy can
be considered as landmarks of this issue. These aspects
are thoroughly explained within the remaining issues of
the method, such as integration of the ODE, minimisation
and the statistical analysis of the estimates. Identifiability
of the parameters can be regarded as central assumption
for a successful operation of most of the numerical com-
ponents. A regularisation procedure to weaken this assump-
tion is included to the discussion of multiple shooting.
The regularisation can further help to remove all
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unidentifiable parameters. Two examples have been pro-
vided to demonstrate the performance of multiple shooting.

Moreover, the extension of multiple shooting to partial
differential equations is also possible [49, 50]. Additionally,
the method can also be used to find an optimal experimental
design [51, 52]. This broad applicability of the multiple shoot-
ing method marks the relevance of such a tool for a vast range
of applied sciences and engineering. Especially for estimating
parameters in complex reaction networks, as they often
appear in systems biology, multiple shooting can substantially
assist the modelling procedure. We hope that this article
allows an easy re-implementation of the presented ideas and
therefore propagating the availability of the method to a
larger community.

Availability of the code: The code is available upon request.
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9 Appendices
9.1 Appendix A

In this section, an estimate for the natural level function
T4 evaluated at @'+ MA@’ for some A € (0, 1] is
derived. Provided that the second derivative d3 R* for the
vector of residuals R? exists in a sufficiently large domain
containing @', the following estimate holds

2 2
)\l
T3(0' + X80 < | 1— X +Z-w(0'. X)) 74(8") (26)

where for each A’ € (0, 1], the function w is given by

{ IG(8")(dyR(6' +5A6")—d,R*(8)A0'| }
s|AQY|?

(@', \)= sup
s€(0,A1

< o0
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Therefore on the basis of Th a descendent step can
always be found, if A’ is correctly adjusted. In order
show (26), consider the following estimates for

a= J(TiO'+NA0)) — (1 — X)(Ti(0%)

a< ’ TL(0'+ N A0 — (1)) /TL(6)

<IG(0"R*(0' +\'A0") — (1 - A)G(OHR* (0|  (27)

Since G(0)R“(0") = A@’, and inserting —G(0")d,R*(0") =
1 into (27), we arrive at

a< H G(OH[R* (0" +\'A0")—R“(6')— \'d,R"(6')A0']

JAI G(0'){d,R%(0' +5A0") —d,R*(0")} A0
0 NECAE

A
xsIA0 Iy T(0)) | <= (8. X)I A0\ T (6')

which proves (26).
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9.2 Appendix B

In the following, the convergence of damping parameter A’,
(Section 3.4) to A’ = 1 whenever the method approaches the
minimum is shown. Suppose that for all initial guesses
0, € D, where D is a convex set, the undamped generalised
quasi-Newton converges to @  which minimises £
(local convergence). Moreover, let the norm of the second
derivative d3R“ be bounded by @ on D. Then, for all
s € [0, 1]

IG(0")(dyR*(0' + sA0") — d,R*(6))A0'|
= ||G(0’)J dZR(0' +tA0")(AG', AG")dr|]
0
< |G(8")|I sup [|dGR* () |Is| A0 ||
xED
< as| A0

by the continuity of G on D. According to (17), w(6’,
MN)y<@<oo and therefore w(0’, A)|AQ'| < @||A6’
— 0 for / — co. Due to (18), the maximal possible
damping parameter leading to descending quasi-Newton
steps converges to 1.

IET Syst. Biol., Vol. 1, No. 2, March 2007



