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The supplement is divided into sections entitled in acaocdavith In the following, we separately calculate the two expeotatialues occur-
the sections in the main text. First, the threshold valueheftest  ring in Equation (14).

function are calculated analytically. We then discuss #pgetidence NoB

of optimal transformations on the level of noise and app#y tést E [Bk(prr)?] = Z E [ai (prr)oc, (ka)]

function to a number of representative examples. The dlganpro- i,j=1

posed is depicted in form of a flowchart. The biological maitiion NoB

of the main example is given in the last section. = > E[oh(per)a(prr)]
i=1

METHODS Nob _ .

N + E | ot (prr) g, (Prer
Determination of Threshold Values iyj:;#j [ (per)er )]
In the following we calculate the expectation value of thegmsed NoB
test function Equation (8) for a parameter, which is either = > E[of(per)a(prr)]

=1
e independent of the response variable, or NoB
e functionally related with the response variable + Z E [a} (pr)] E [ai(pkr)] (15)
i,j=1,i#]

These two cases correspond to the two types of curves dépicte 1
the inset of Figure 2. We show, that the dependence of théutest = NoB:-vy+ (NoB)(NoB —1) - 1
tion on the number of bootstrap samples can be stated forate ¢

of an error-free estimation of optimal transformations. with
Suppose a parameter with no functional relation with the cur v = Elak (prr ) (prr)]
rent response variable; thus its estimated optimal tramefon
equals gaussian noise which is smoothed by the kernel sewoth B Noorn2 1 6
in the ACE algorithm. Hence the estimated optimal transfdiom - Z <*> ‘N (16)
is similar to Figure 1(c), and it can be described by =t
1 N
r’:r-‘—wl = — 7‘2
plper) = D € (12) Ne 2::1
r'=r—w;

1
— (N(N+1)(2N +1)/6
Hence, the test functiofd}, is N3 (N X )/6)

NoB The second term in Equation (15) holds, because ranks ofmgdea
Z ok (Prr) estimates at in different bootstrap samples are independent. In Equa-
i tion (16) we used the explicit form of the estimated optinmahsformation

(cf. Equation (12)).

1 NiB ?
(pkr)> N 2
NoB i E <Z 5k(Pkr)>
1 N NeB 2 r=1
- (N > Nob - mm) (13) [

H, = var

I
z| =
WE
— &

N N
r=1 i=1 = Z pkr Z 6r’:| Z E /Gk(pk'r /Gk(pkr )]
( ) N 2 =1 r/=1 ryor/=1
= 5 Zﬁk(pkr - <Z ﬁk(pkr)> ) , N N
NoB N2\ =3 Z [Br (prr)?] + Z E Bk (prr) Br (Prer )]
with By (prr) = NP al (pgr). Thus, its expectation valus [Hy] is ! nrEhe
N

E [B(prr)] + Z E Bk (Prr) B (Prrr)] (A7)

2 N.
E[Hk] N0B2 ( ZE ﬁk pkr - _E |:<Z ﬁk Pkr > :|> (14) r,r'=1,r#r!
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E Bk (pr) B (Pror)] We can calculate the value of the variance analytically.
NoB ) ) NoB ) ) 1 NoB
= 3 Bloie)od )]+ 32 B g (pwr)od, (s He = var S az(pkr)}
i= i i=1,i%4] NoB “—
i=1 i,j=1,i#j i—1
NoB ' ' 1 NoB 2
= E o o )] + NoB(NoB —1) - = - = i
; [ (P ) (Prer )] ( ) 1 Z <NoB z ak(pm)>
= NoB - E [}, (Pkr) o, (Pkr )] + NoB(NoB —1) - — NoB
[ k\Pkr ) Pkr ] 4 Z NoB Z ak (prr) (21)
E [0‘2 (pkr)a?c (pkr’)} 1

=2

N 2
oo = > (ake)’ - <Zak(pkr> (22)
. . r=1
= E (Olz( r)_ r+ T)'(Oél( 7")_ r+ T)
> Elekr) —pr+p (D) — i+ )] ) ZN:( ) l(i.N(NJrl))z
= N 2

= E [(ak (prr) = 1r) - (0 (Prorr) = )] + 17 N=
_ i i 1 1 1 (N4+1)2
=F [(O‘k(pkr) - MT) . (ak(pkr’) - Mr)] + Z (18) = FN(N + 1)(2N + 1)/6 — FT
We now calculate an upper bound for the correlation term inafign (18). - Ltau-dy (23)
Consider Equation (17), thus 12 N2
Z E [(a}; (prer) — ) - (0 (pporr) — )] Equation (22) holds, bgcaua«% (Pkr) is_ independent of. The expectation
S S, value of a real number is the number itself, thus
gaas | Bl = (- <5 (2
= Z > E[(cah(prr) — i) - (@ (Prrr) — )]
r=lr=r/—w;
 tw; Identifiability of Identifiability
= N Z E (o (prr) = pr) - (0 (Prp) = pir)] After having determined which parameters of a given set tzave
r=rl—w functional relation, the explicit analytical expressioould be of
< N.2uFE [(ai(pkr) — ) - (@ (Pperr) — fir)] interest. In theory, transformation function of non-idéabilities
often can be expressed by simple functions like the expaiemt
N/2 N/2-1 - : ) X
< N-2uw N N logarithmic function. Thus, analytic expression can benfbipy

fitting subsequently a set of standard functions to the d@ogiy
= w (ﬁ - 1) determined transformation functions and selecting ks fitting
2 one. In a different setting this has been done by Wang and thWurp
Together with the factorl; in the second term of Equation (18) and with (2005), based on the Bayesian Information Criterion (BIOjrider

w, increasing less thaV, e.g.w; ~ VN, we conclude that the overall 0 compare the different fits. In practice, hOWG‘Ver3 protsemay
contribution of the correlation term t& [H,,] decreases at least as fast as arise from the non-uniqueness of determined optimal toaurs-

ﬁ, and hence, tions, as we will demonstrate with an example suggested éseth
) ) ) ) ) authors.
E[H — _—— J|NoB 4y NoB2 — NoB)-| Consider
[H] NOBQ{|: oB(3+ o5 T g T (e 0)4]

11 1 2 1 log(y) = VT + ¢, (25)
|:N0B(3+2N+6N2)+(NOB NoB)LJ
1 1 where ¢ denotes gaussian noise. The transformg @nd = are
- [N(N —1) (NoB 1t (NoB? — NOB)Z)} linearly related, but same is true for
_NoB-E(N)}, (19) y = exp(v/T + ¢), (26)

whereE(N) € O( J_) denotes the overall contribution of the correlation

term to expectation value. If we neglect all terms of or(#rand smaller,
we yield

where we just applied the exponential. In Figure 7 we showttiea
estimated transformations depend on the level of noiseeieigl,
optimal transformations estimated for a two parameter egecy
E[H,] = (i _ )) 1 20) are unique qnly upFo.nonIinear transformationg; this rm'depqs-
12 NoB sible to define a finite set of standard functions. Note that th

We now calculateH,, for the case that the estimated transformation is a variability is largely compensated in our algorithm. Fitste boot-

monotone function in the estimated parameter replicatésceSwe rank  Strap approach ensures that sources of noise are equal dor ea
transform estimated transformation all monotone tramsétions are map-  bootstrap sample. Second, the estimated optimal tranafans

ped on a straight line starting from zero with slope one. Fatrang are ranked within the test function before the mean transdition
functional relation the straight line is the same for all tstiap samples. s calculated.
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< © 0 /f Fig. 8. Simplified flowchart of proposed algorithm. We start withgraeter
p; as response. LB denote the set of all parameters assigned to be func-
tionally related withp;, and A the set of all other parameters. Thus, at first,

_20 5 10 15 _20 1 2 3 B = {p;}. Every parameter ofl is tested if it is functionally related with
all parameters irB, and if so, it is added t@. Successively, more and more
parameters are added B®until a strong functional relation is assigned. We
stop adding parameters 8 either if there is no parameter in supposed
Fig. 7. Optimal transformations depend on strength of noise, heneodt-  t0 have a strong functional relation with the respopgeor if there are no
strated with the exampliog(y) = v/ + € as discussed by Wang and Parameters left.

Murphy (2005). A)(D) x versus y, (B)(E) estimated transfation of x,

d(z), versus x and (C)(F) estimated transformation @ ¢y) versus y. On

the left (A-C)e € N(0, 1). Onthe right (D-F) € 0.1-N (0, 1). Comparing

left and right hanq side show; that estimateq transformsastrongly depend The Algorithm

on the level of noise and are in general nonlinear transfafreach other. In

(B), the estimated optimal transformation ofd(x), can best be described Figure 8 shows a simplified flowchart of the proposed algonith
by fitting v/ to data, because it yields the lowest BIC score. Thus the leftFor clarity, control steps and break conditions that aranecessary
column (A-C) corresponds to Eg. (25). In (F), the estimatptineal trans-  for the understanding of the algorithm are omitted.

formation of y in the low noise cas&(x), is estimated to be of the form

a -y + b, thus the right column corresponds to Equation (26). Thislees

impossible to define a finite set of standard functions whigh lbe com-  Tagt Settings

pared to estimated transformations, because it dependsarotse, which | hort list of . leshvii
representative of the equivalence class of possible optimasformations ~ B€lOW we present a short list of representative examplesiwiere

is estimated. Note, we chose to exemplify the problem witbrg tow noise ~ 9enerated as follows. An x k) matrix K, uniformly d.istribu-
example, but it also occurs with considerable higher neise0.5- N(0,1).  ted on the interval0 5], was drawn and functional relations were

introduced as indicated.

, 1 = p2+02-p3-pa
For more than two parmaters, the freedom of nonlinear toansf
mations is reduced to linear transformations. However rattice, be = Pp7 @7)
the ACE-algorithm which estimates optimal transformadigBrei- ps = 5-sin(po) +pio
man and Friedman, 1985) restricts the freedom of possibéati
transformations by settin@(px) = HZZH as initial value. Hence,
estimated optimal transformations for more than two patarse pi = 1/5-(exp(p1) + p3)
may only vary in scale and location. Thus, due to the rankstran
formation, all possible optimal transformations are majppeato the pe = 5-(ps+pr) (28)
same value of the test function. ps = 1/ps+0.3-pg
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Fig. 9. Histogram showing the distribution df/; for Equations (27) for
three different combinations of parametefs; was taken as response in
all three cases. Values df;, below T} indicate that no functional rela-
tion exists. Values in the intermediate region betw&gnand 7% indicate
that additional parameters have to be added to establistplete functio-
nal relation. The test-function as well as the proposedrilgo is robust
concerning a violation of the assumption of an additive fiomal relation.

p1 = log(p2) +0.1 ps
ps = (1—exp(—ps))— 0.1 ps+ 100 (29)
b1 = Pp2-p3-Pp4
1
ps = g'(3'p6+3~p7+Ps+P9) (30)
Additionally, Gaussian noise was added to account for ifieger

data and to test robustness of our algorithm. With thresthaldes
(Ty = 0.01, 7> = 0.07) all functional relations could be recovered
with no false positive results. Note that usageAGE implicitly
assumes that the underlying functional relation can betewriin
an additive form, which is not always true, cf. Equation (23ur
studies confirmed that the proposed algorithm is robusteroitog
violations of the assumption of additivity, see Figure 9.

RESULTS
Guidelines

Here we provide a list of guidlines which summarize statemsen
the main text and mirror experience gathered with the algorand
identifiability analysis applied to simulated and biolagidata:

1. The model size should always reflect the amount and qua-
lity of data at disposal, as well as the current biological

2. Distinguish between practically and structurally non-
identifiable parameters. The latter may be fixed at arbi-
trary values in parameter space without loss of flexibility i
the model’s dynamics. Practically non-identifiable parame
ters, however, require considerable care and may demand new
experiments or values from the literature.

3. Iterate identifiabilty analysis and fixation of parameters
until all free parameter are rendered identifiable.

4. Check always if a practical non-identifiablity is relevant,
e.g., practically non-identifiable parameters may conepds
functional relation, but may nevertheless be determinehimvi
a small enough intervall.

5. The number of fits necessary for the algorithm to work pro-
perly depends on the underlying functional relations In our
simulations we were able to detected linear relations dawn t
15 points. We found that 50 points and more yield stable tesul
with reasonable sensitivity.

6. All parameter sets employed for identifiability analysis
should in principle yield the same value of the cost-functio,
e.g.x2-value. In practice, with only limited number of fits, it
suffices to take parameter sets with comparable values of the
cost function below a certain threshold.

7. The choice of the cost-function may inherently introduce
non-interpretable non-identifiabilities which can not be eli-
minated even by perfect measurements. Von Dassoual.
(2000) propose and discuss a model for the segment polarity
network in drosophila and introduce a cost function which
includes an user defined threshold level above which genes
are considered to be switched on. This cut-off criteriautiio
justified, projects a lot of different parameter sets on tmae
expression profile. The set of sources of non-identifiabilty
might therefore be extended by the choice of the cost functio

Endocytosis Model

Endocytosis is the process of engulfing substances outsidesl|
with a membrane and transporting them into the cytoplasne Th
endocytosis of the erythropoietin receptor (EPO recep®Bup-
posed to consist of a constitutive part and an EPO-inducey] pa
which accelerates the overall degradation of the receftaction

of EPO bound to the internalized receptor is recycled to #ime
cellular medium, the rest is degraded and then exported ks we
The model in the main text is an effective model supposeddadte
only the essential steps in the endocytosis of the EPO recdfur
example: The EPO receptor is a homodimer whose two domains
dimerize upon stimulation of EPO. This reaction, howewsekniown

to be fast and may thus be neglected on the timescale of etudoxy

Itis assumed, that the internalized EPO receptor is dedrafter
dissociation from the vesicle. The details of the degradgpirocess
are not known, however, it is assumed that degraded recegtor
not interfere with the dynamic of the system. Additionallyth the

research focus A completely overparametrizied model results employed measurement techniques (see below), dissocetep-

in a great fraction of non-identifiable parameters most attvh

tors can not be observed, neither separately nor in conibmadth

would require to be fixed in order to render the model iden-other species. Hence, the pool of degraded receptors mayitied
tifiable. Thus, one should start the analysis with the sreglle in the formulation of model. In fact, with respect to the daai
model that explains all the data with a minimum amount of ble observables, the introduction of an additional ratestammt for

parameters.

the degradation of the receptor would yield an over-parepeet
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model. The non-identifiabilities as disccued in the main éeg not REFERENCES
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the curve of receptor-bound EPO in dependence of freelysliffy using the ACE algorithmJournal of Applied Statistics, 32(3), 243-258.

EPO is a hyperbola (Kitamust al., 1989):

Bmax - EPO

EPO EPOR] = .
[ ] Kp + EPO

(CHY)

The parametermax and Kp may be determined by fitting a
hyperbola to dataBmax may be interpreted as the total amount
of EPO receptors at the cell surface without stimulatiore €gua-
tion for the unstimulated EPO receptor without EPO in the ioned

is EPOR = —k;EPOR + k1 Bmax Thus for the steady state,
EPOR = 0, we yieldEPOR = Bmax.

In order to reveal howK p is incorporated in the model, we rewrite
Equation (31) like follows

[EPOEPOR]
EPO

1 Bmax
—K—D~[EPO EPOR] + K (32)

If we consider the differential equation f&PO in the model and
if we neglect the fraction of internaliz¢ePO, we may write

EPO = +ky K p[EPO EPOR] — k;EPO EPOR.

Thus, for the steady state of EPERO = 0) we get

[EPO EPOR] 1
=23 - __ .EPOR
EPO Kp
— 1 (Bmax— [EPOEPOR)
Kp
1 Bmax

=~ " [EPOEPOR + =%

We choos€EPOR(¢ = 0) = Bmax = 1000 and Kp = 100, which
corresponds approximately to the values measured by Satabla
(1988) with concentrations given ol /L.

The particular combination of species to observables dipen
on the measurement technique. We assume EPO to be radiolabe-
led with 12%1. The quantification is then achieved by measuring the
emission rate of a probe. The three observables correspotie t
three reaction compartments, i.e. the extracellular nmagibe pro-
teins bound on the surface of the membrane, and the intwéaell
medium. The separation of the three compartments is a standa
procedure and is described, e.g, in (Broatgl., 1988).




