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The supplement is divided into sections entitled in accordance with
the sections in the main text. First, the threshold values ofthe test
function are calculated analytically. We then discuss the dependence
of optimal transformations on the level of noise and apply the test
function to a number of representative examples. The algorithm pro-
posed is depicted in form of a flowchart. The biological motivation
of the main example is given in the last section.

METHODS

Determination of Threshold Values
In the following we calculate the expectation value of the proposed
test function Equation (8) for a parameter, which is either

• independent of the response variable, or

• functionally related with the response variable

These two cases correspond to the two types of curves depicted in
the inset of Figure 2. We show, that the dependence of the testfunc-
tion on the number of bootstrap samples can be stated for the case
of an error-free estimation of optimal transformations.

Suppose a parameter with no functional relation with the cur-
rent response variable; thus its estimated optimal transformation
equals gaussian noise which is smoothed by the kernel smoother
in the ACE algorithm. Hence the estimated optimal transformation
is similar to Figure 1(c), and it can be described by
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Hence, the test functionHk is
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In the following, we separately calculate the two expectation values occur-
ring in Equation (14).
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The second term in Equation (15) holds, because ranks of parameter
estimates att in different bootstrap samples are independent. In Equa-
tion (16) we used the explicit form of the estimated optimal transformation
(cf. Equation (12)).
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We now calculate an upper bound for the correlation term in Equation (18).
Consider Equation (17), thus
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wl increasing less thanN , e.g.wl ∼
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whereΞ(N) ∈ O( 1√
N

) denotes the overall contribution of the correlation

term to expectation value. If we neglect all terms of order1
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We now calculateHk for the case that the estimated transformation is a
monotone function in the estimated parameter replicates. Since we rank
transform estimated transformation all monotone transformations are map-
ped on a straight line starting from zero with slope one. For astrong
functional relation the straight line is the same for all bootstrap samples.

We can calculate the value of the variance analytically.

Hk = var
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Equation (22) holds, becauseαi
k
(pkr) is independent ofi. The expectation

value of a real number is the number itself, thus
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Identifiability of Identifiability
After having determined which parameters of a given set havea
functional relation, the explicit analytical expression could be of
interest. In theory, transformation function of non-identifiabilities
often can be expressed by simple functions like the exponential or
logarithmic function. Thus, analytic expression can be found by
fitting subsequently a set of standard functions to the empirically
determined transformation functions and selecting thebest fitting
one. In a different setting this has been done by Wang and Murphy
(2005), based on the Bayesian Information Criterion (BIC) in order
to compare the different fits. In practice, however, problems may
arise from the non-uniqueness of determined optimal transforma-
tions, as we will demonstrate with an example suggested by these
authors.
Consider

log(y) =
√

x + ǫ, (25)

where ǫ denotes gaussian noise. The transforms ofy and x are
linearly related, but same is true for

y = exp(
√

x + ǫ), (26)

where we just applied the exponential. In Figure 7 we show that the
estimated transformations depend on the level of noise. In general,
optimal transformations estimated for a two parameter dependency
are unique only up to nonlinear transformations; this renders impos-
sible to define a finite set of standard functions. Note that this
variability is largely compensated in our algorithm. First, the boot-
strap approach ensures that sources of noise are equal for each
bootstrap sample. Second, the estimated optimal transformations
are ranked within the test function before the mean transformation
is calculated.
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Fig. 7. Optimal transformations depend on strength of noise, here demon-
strated with the examplelog(y) =

√
x + ǫ as discussed by Wang and

Murphy (2005). A)(D) x versus y, (B)(E) estimated transformation of x,
Φ(x), versus x and (C)(F) estimated transformation of yΘ(y) versus y. On
the left (A-C)ǫ ∈ N(0, 1). On the right (D-F)ǫ ∈ 0.1·N(0, 1). Comparing
left and right hand side shows that estimated transformations strongly depend
on the level of noise and are in general nonlinear transformsof each other. In
(B), the estimated optimal transformation of x,Φ(x), can best be described
by fitting

√
x to data, because it yields the lowest BIC score. Thus the left

column (A-C) corresponds to Eg. (25). In (F), the estimated optimal trans-
formation of y in the low noise case,Θ(x), is estimated to be of the form
a · y + b, thus the right column corresponds to Equation (26). This renders
impossible to define a finite set of standard functions which can be com-
pared to estimated transformations, because it depends on the noise, which
representative of the equivalence class of possible optimal transformations
is estimated. Note, we chose to exemplify the problem with a very low noise
example, but it also occurs with considerable higher noiseǫ ∈ 0.5 ·N(0, 1).

For more than two parmaters, the freedom of nonlinear transfor-
mations is reduced to linear transformations. However, in practice,
the ACE-algorithm which estimates optimal transformations (Brei-
man and Friedman, 1985) restricts the freedom of possible linear
transformations by settingΘ(pk) = pk

||pk|| as initial value. Hence,
estimated optimal transformations for more than two parameters
may only vary in scale and location. Thus, due to the rank trans-
formation, all possible optimal transformations are mapped onto the
same value of the test function.
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Fig. 8. Simplified flowchart of proposed algorithm. We start with parameter
pi as response. LetB denote the set of all parameters assigned to be func-
tionally related withpi, andA the set of all other parameters. Thus, at first,
B = {pi}. Every parameter ofA is tested if it is functionally related with
all parameters inB, and if so, it is added toB. Successively, more and more
parameters are added toB until a strong functional relation is assigned. We
stop adding parameters toB either if there is no parameter inA supposed
to have a strong functional relation with the responsepi, or if there are no
parameters left.

The Algorithm
Figure 8 shows a simplified flowchart of the proposed algorithm.
For clarity, control steps and break conditions that are notnecessary
for the understanding of the algorithm are omitted.

Test Settings
Below we present a short list of representative examples which were
generated as follows. A(n × k) matrix K, uniformly distribu-
ted on the interval[0 5], was drawn and functional relations were
introduced as indicated.

p1 = p2 + 0.2 · p3 · p4

p6 = p7 (27)

p8 = 5 · sin(p9) + p2
10

p2
4 = 1/5 · (exp(p1) + p3

2)

p6 = 5 · (p3 + p7) (28)

p8 = 1/p5 + 0.3 · p9
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Fig. 9. Histogram showing the distribution ofHk for Equations (27) for
three different combinations of parameters;p1 was taken as response in
all three cases. Values ofHk below T1 indicate that no functional rela-
tion exists. Values in the intermediate region betweenT1 andT2 indicate
that additional parameters have to be added to establish a complete functio-
nal relation. The test-function as well as the proposed algorithm is robust
concerning a violation of the assumption of an additive functional relation.

p1 = log(p2) + 0.1 · p3

p5 = (1 − exp(−p4)) − 0.1 · p6 + 100 (29)

p1 = p2 · p3 · p4

p5 =
1

5
· (3 · p6 + 3 · p7 + p8 + p9) (30)

Additionally, Gaussian noise was added to account for imperfect
data and to test robustness of our algorithm. With thresholdvalues
(T1 = 0.01, T2 = 0.07) all functional relations could be recovered
with no false positive results. Note that usage ofACE implicitly
assumes that the underlying functional relation can be written in
an additive form, which is not always true, cf. Equation (27). Our
studies confirmed that the proposed algorithm is robust concerning
violations of the assumption of additivity, see Figure 9.

RESULTS

Guidelines
Here we provide a list of guidlines which summarize statements in
the main text and mirror experience gathered with the algorithm and
identifiability analysis applied to simulated and biological data:

1. The model size should always reflect the amount and qua-
lity of data at disposal, as well as the current biological
research focus.A completely overparametrizied model results
in a great fraction of non-identifiable parameters most of which
would require to be fixed in order to render the model iden-
tifiable. Thus, one should start the analysis with the smallest
model that explains all the data with a minimum amount of
parameters.

2. Distinguish between practically and structurally non-
identifiable parameters. The latter may be fixed at arbi-
trary values in parameter space without loss of flexibility in
the model’s dynamics. Practically non-identifiable parame-
ters, however, require considerable care and may demand new
experiments or values from the literature.

3. Iterate identifiabilty analysis and fixation of parameters
until all free parameter are rendered identifiable.

4. Check always if a practical non-identifiablity is relevant,
e.g., practically non-identifiable parameters may comprise a
functional relation, but may nevertheless be determined within
a small enough intervall.

5. The number of fits necessary for the algorithm to work pro-
perly depends on the underlying functional relations. In our
simulations we were able to detected linear relations down to
15 points. We found that 50 points and more yield stable results
with reasonable sensitivity.

6. All parameter sets employed for identifiability analysis
should in principle yield the same value of the cost-function,
e.g.χ2-value. In practice, with only limited number of fits, it
suffices to take parameter sets with comparable values of the
cost function below a certain threshold.

7. The choice of the cost-function may inherently introduce
non-interpretable non-identifiabilities which can not be eli-
minated even by perfect measurements. Von Dassowet al.
(2000) propose and discuss a model for the segment polarity
network in drosophila and introduce a cost function which
includes an user defined threshold level above which genes
are considered to be switched on. This cut-off criteria, though
justified, projects a lot of different parameter sets on the same
expression profile. The set of sources of non-identifiabilty
might therefore be extended by the choice of the cost function.

Endocytosis Model
Endocytosis is the process of engulfing substances outside the cell
with a membrane and transporting them into the cytoplasm. The
endocytosis of the erythropoietin receptor (EPO receptor)is sup-
posed to consist of a constitutive part and an EPO-induced part,
which accelerates the overall degradation of the receptor.A fraction
of EPO bound to the internalized receptor is recycled to the extra-
cellular medium, the rest is degraded and then exported as well.
The model in the main text is an effective model supposed to include
only the essential steps in the endocytosis of the EPO receptor. For
example: The EPO receptor is a homodimer whose two domains
dimerize upon stimulation of EPO. This reaction, however, is known
to be fast and may thus be neglected on the timescale of endocytosis.

It is assumed, that the internalized EPO receptor is degraded after
dissociation from the vesicle. The details of the degradation process
are not known, however, it is assumed that degraded receptors do
not interfere with the dynamic of the system. Additionally,with the
employed measurement techniques (see below), dissociatedrecep-
tors can not be observed, neither separately nor in combination with
other species. Hence, the pool of degraded receptors may be omitted
in the formulation of model. In fact, with respect to the availa-
ble observables, the introduction of an additional rate constant for
the degradation of the receptor would yield an over-parametrized

4



Data-Based Identifiability Analysis

model. The non-identifiabilities as disccued in the main text are not
affected by the effective modelling of the receptor degradation.
As we highlight in the main text, even the effective, highly conden-
sed model exhibits non-identifiabilities under the given experimen-
tal conditions. Therefore, a further extension of the modelwould
lead to a total overparametrization with respect to available data.
In the following we motivate the two constantsBmax and KD

included in the model: The two constants are derived from a
Scatchard-analysis (Scatchard, 1949), i.e., we measure specificly
bound EPO at various concentrations of EPO in the medium. The
experiments are conducted at temperatures far below the physio-
logical body temperature of 37 degrees Celsius, often at room
temperature or4◦C. All cellular processes are therefore assumed
to be stopped or at least to be slowed down considerably. We can
thus neglect the process of constitutive and enforced endocytosis.
At very high concentrations of EPO, all receptors are saturated and
the curve of receptor-bound EPO in dependence of freely diffusing
EPO is a hyperbola (Kitamuraet al., 1989):

[EPO EPOR] =
Bmax · EPO
KD + EPO

. (31)

The parametersBmax and KD may be determined by fitting a
hyperbola to data.Bmax may be interpreted as the total amount
of EPO receptors at the cell surface without stimulation. The equa-
tion for the unstimulated EPO receptor without EPO in the medium
is ˙EPOR = −k1EPOR + k1Bmax. Thus for the steady state,

˙EPOR = 0, we yieldEPOR = Bmax.
In order to reveal howKD is incorporated in the model, we rewrite
Equation (31) like follows

[EPO EPOR]

EPO
= −

1

KD

· [EPO EPOR] +
Bmax
KD

. (32)

If we consider the differential equation forEPO in the model and
if we neglect the fraction of internalizedEPO, we may write

˙EPO = +k2KD[EPO EPOR] − k2EPO EPOR.

Thus, for the steady state of EPO (̇EPO = 0) we get

[EPO EPOR]

EPO
=

1

KD

· EPOR

=
1

KD

· (Bmax− [EPO EPOR])

= −
1

KD

· [EPO EPOR] +
Bmax
KD

.

We chooseEPOR(t = 0) = Bmax = 1000 andKD = 100, which
corresponds approximately to the values measured by Sawadaet al.
(1988) with concentrations given inpMol/L.

The particular combination of species to observables depends
on the measurement technique. We assume EPO to be radiolabe-
led with 125I. The quantification is then achieved by measuring the
emission rate of a probe. The three observables correspond to the
three reaction compartments, i.e. the extracellular medium, the pro-
teins bound on the surface of the membrane, and the intracellular
medium. The separation of the three compartments is a standard
procedure and is described, e.g, in (Broudyet al., 1988).
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