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ABSTRACT

Motivation: Mathematical modelling of biological systems is

becoming a standard approach to investigate complex dynamic,

non-linear interaction mechanisms in cellular processes. However,

models may comprise non-identifiable parameters which cannot be

unambiguously determined. Non-identifiability manifests itself in

functionally related parameters, which are difficult to detect.

Results: We present the method of mean optimal transformations,

a non-parametric bootstrap-based algorithm for identifiability

testing, capable of identifying linear and non-linear relations of

arbitrarily many parameters, regardless of model size or complexity.

This is performed with use of optimal transformations, estimated

using the alternating conditional expectation algorithm (ACE).

An initial guess or prior knowledge concerning the underlying

relation of the parameters is not required. Independent, and hence

identifiable parameters are determined as well. The quality of data at

disposal is included in our approach, i.e. the non-linear model is

fitted to data and estimated parameter values are investigated with

respect to functional relations. We exemplify our approach on a

realistic dynamical model and demonstrate that the variability of

estimated parameter values decreases from 81 to 1% after detection

and fixation of structural non-identifiabilities.

Availability: Our algorithm is written in Matlab and R. It is available

from the authors on request. An implementation of ACE, written in

Matlab as well as in C, is available online at www.stefanhengl.de

Contact: hengl@fdm.uni-freiburg.de

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

In the fast-growing field of Systems Biology, biological

processes like signal transduction pathways and metabolic

networks are often modelled mathematically based on systems

of differential equations. They comprise parameters such as

reaction rates, which have to be determined in accordance to
measured data, e.g. by fitting to time course or dose response

experiments. However, even for the simplest case of a reversible

reaction of two species, A�B, only the ratio of forward and

backward reaction rate can be determined, if only steady state

information is available. For more complex models there may

even exist several groups of functionally related parameters,

which may consequently, as a matter of principle, not be

determined unambiguously. Parameters for which no unique

solution exists are called non-identifiable.

Two conceptually different sources for non-identifiability

exist: first, the model structure itself may cause parameters to

be functionally related. Second, since parameter values are

estimated by fitting the model structure to experimental data

even a structurally identifiable model may exhibit practical

non-identifiabilities, because of an insufficient amount or

quality of measurements. The noisier measurements are, and

the lower the sampling frequency, the less information is

contained in the measurement. Moreover, the dynamical

response of the model depends on the input applied in the

experiment, e.g. variable and constant stimuli may cause

completely different dynamics. Therefore, the type of input

may be decisive for parameters estimation (Faller et al., 2003).
Identifiability, however, is a necessary prerequisite for

mathematical analysis of a model. Thus, the following question

arises: how can non-identifiabilities be detected? Basically two

approaches are used to handle non-identifiability: first,

the model structure itself is investigated with respect to non-

identifiabilities. If non-identifiabilities exist, they must be

removed analytically by introduction of new parameters,

representing, e.g. an identifiable combination of two non-

identifiable parameters. This approach is referred to as a priori

identifiability analysis, since the model is examined before

simulating or fitting procedures. Second, a non-identifiable

model structure manifests itself in functionally related para-

meters. Thus, non-identifiabilities may be detected by fitting a

model repeatedly to data and investigating parameter estimates.

Ideally, both methods are applied successively.

Numerous methods have been presented to deal with a priori

identifiability analysis of linear and non-linear models. The

Laplace transform or transfer function approach which may

only be applied to linear models is thoroughly discussed in,

Jacquez and Greif, 1985 and Godfrey and DiStefano 1987.

However, when modelling biological systems, non-linear differ-

ential equations are ubiquitous, e.g. in Michaelis Menten

kinetics and cooperative phenomena. The Similarity

Transformation Approach (Vajda et al., 1989), the Power

Series Expansion, (Pohjanpalo, 1978), the Volterra and

Generating Power Series Approaches (Lecourtier et al., 1987)

as well as identifiability tests derived from differential algebra*To whom correspondence should be addressed.
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(Ljung and Glad, 1994; Saccomani et al., 2003) are also

applicable to non-linear models. Unfortunately, these methods

become mathematically intractable with increasing model

complexity. If we want to investigate which kind of non-

identifiabilities of a model occur under realistic experimental

conditions, a data based-method is to be applied. However,

available data-based approaches for a posteriori identifiability

analysis of non-linear models, like multivariate regression,

require prior knowledge concerning explicit linear or non-

linear functional relations (Quinn and Keough, 2002; Seber and

Wild, 1988). In our approach, this is not necessary.
With our method, we provide a solution for following yet

unsolved problems:

(1) structural identifiability analysis of large and complex

non-linear dynamical models within reasonable time.

(2) automatic detection of non-linear dependencies between

arbitrarily many parameters.

(3) practical identifiability analysis under consideration of

the quality of data at disposal.

The article is organized as follows. First, we provide a

definition of identifiability and introduce briefly the alternating

conditional expectation (ACE) algorithm which estimates

optimal transformations. Then, the test-function is introduced

and its are discussed. Subsequently, we propose the algorithm

which detects non-identifiabilities with help of the before

defined test-function and apply it to a biological example of a

non-linear dynamical model.

2 BACKGROUND

2.1 Identifiability

Identifiability of a dynamical model depends on the model

equations themselves, as well as on input and observation

functions, initial conditions, constraints (Audoly et al., 2001;

Godfrey and DiStefano, 1987) and the often unknown true

parameter values (Vajda et al., 1989). A model together with all

constraints is called a constrained structure.

We follow a definition given by Godfrey and DiStefano

(Godfrey and DiStefano, 1987). Let ~x denote the state

variables, ~u the externally given input signals, ~p the system

parameters and ~y the observation function. The initial values

~x0 ¼ ~xðt0; ~pÞ depend in general on the parameters ~p. Finally, let
~h denote all additional constraints mathematically formulated

as explicit or implicit algebraic equations. A constrained

structure is then given by

d~xðt; ~pÞ=dt ¼ ~fð~xðt; pÞ; ~uðtÞ; t; ~pÞ ð1Þ

~yðt; ~p Þ ¼ ~gð~xðt; ~p Þ; ~p Þ ð2Þ

~x0 ¼ ~xðt0; ~p Þ ð3Þ

~hð~xðt; ~p Þ; ~uðtÞ; ~p Þ � ~0 ð4Þ

t0 � t � tf; ð5Þ

A single parameter pi of Equations (1–5) is globally identifiable

(a priori or structural), if there exists a unique solution for pi
from the constraint structure. A parameter with countable

or uncountable number of solutions is locally identifiable or

unidentifiable.
Biological data canonically comprises observational noise,

generalizing Equation (2) to

~yðt; ~p Þ ¼ ~gð~xðt; ~p Þ; ~p Þ þ �ðtÞ:

Observational noise may render even structural identifiable

parameters practically non-identifiable. Parameters which can

be determined with a small enough SD are termed practical

identifiable.

2.2 Alternating conditional expectation (ACE)

Initially, the ACE-algorithm has been proposed by Breiman and

Friedman (Breiman and Friedman, 1985) for the purpose of

regression analysis and has since been applied in various fields

(Buja, 1990; Timer et al., 2000; Voss andHurths, 1997;Wang and

Murphy, 2005). In the bivariate case, ACE non-parametrically

estimates optimal transformations b�ðp1Þ and b�1ðp2Þ which

maximize the linear correlation R between b�ðp1Þ and b�1ðp2Þ,

fb�;b�gp1;p2 ¼ sup ~�; ~� j Rð ~�ðp1Þ; ~�ðp2ÞÞ j :

Breiman and Friedman also provide weak conditions for

convergence of the iterative algorithm. Since ACE itself is not

the focus of this article, we just provide the basic knowledge

needed to understand its further application.
The bivariate case can easily be extended to arbitrarily many

parameters. Let K ¼ ½~p1; . . . ; ~pm� denote a ðn � mÞ matrix of m

parameters with n estimates for each parameter. Suppose the m

parameters have an unknown linear or non-linear functional

relation and let � and �j denote the true transformations that

linearize the relation between the parameters,

�ðpiÞ ¼
Xm
j 6¼i

�jð pjÞ þ �;

where � is Gaussian noise. Then ACE estimates optimal

transformations b�ð piÞ;b�jð pjÞ; j 6¼ i such, that

b�ð piÞ ¼
Xm
j 6¼i

b�jð pjÞ: ð6Þ

Note that ACE intrinsically distinguishes between left-and-

right-hand side terms. It regards the left-hand side parameter to

be the response and all others to be predictors.
The principle of the ACE algorithm for the multivariate case

is as follows: It starts with an initial estimate for the optimal

transformation of the response, �ð pkÞ ¼
pk

jjpkjj
; and of the

predictors, �i ¼ 0; i 2 f1; ::; ng=k. The transformation of the

response, �, and the �i are estimated iteratively; new estimates

of the �i serve as input for the estimation of �, and vice versa.

For each �i it is calculated, how much variance of the response,

�ð pkÞ, cannot yet be explained by the m� 2 other predictors,

�j; j 6¼ i. This unexplained variance is the next estimate for the

predictor �i. In other words, the best estimate for a

transformation �i minimizes the squared residuals of

Equation (6). It can be shown, that this estimate is given by

�ið piÞ ¼ E �ð pkÞ �
Xm
j 6¼i 6¼k

�jð pjÞ j pi

" #
:
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The �i are updated successively until the fraction of

unexplained variance of the predictor fails to decrease. The last

updated estimates serve as input to estimate �ð pkÞ like follows

�kð pkÞ ¼ E
Xm
j 6¼k

�jð pjÞ j pk

" #
=jjE

Xm
j 6¼k

�jð pjÞ j pk

" #
jj:

The iteration stops if a new estimate of �ðpkÞ does not cause

further reduction of the fraction of unexplained variance. In

practice, the conditional expectation is replaced by smoothing

techniques.

2.2.1 Remarks We use a modified version of ACE as
implemented by H. Voss (Voss and Kurths, 1997), where data

are ranked before optimal transformations are estimated.

Nevertheless, our application does not depend on a special

implementation of ACE. We also tested our algorithm with

ACE as included in the acepack package of R.
ACE works non-parametrically, thus we do not have to make

assumptions about underlying functional relations. However,

it does not provide explicit functional expressions as output,

but values of the estimated optimal transformations b� andb�j; j ¼ 2; . . . ;m at the parameter values which served as input.

3 APPROACH

Our goal is to reveal, in a data-based way, non-identifiabilities

of a non-linear dynamical model. Non-identifiability manifests

itself in functionally related parameters, and we apply ACE to

non-parametrically estimate these relations. However, to do

this objectively, a test function quantifying this information is

required. In order to motivate this test-function, we study the

typical behaviour of the ACE algorithm by means of a simple

example. Our findings can directly be applied to identifiability

analysis, as will be outlined afterwards.
Let p2; p3 and p4 be three parameters uniformly distributed

on the interval I ¼ ½0 5�. Suppose a fourth parameter p1 to be

functionally related with p2; p3 by p1 ¼ p22 þ sinðp3Þ. Real data

is always corrupted with observational noise, i.e. random errors

occurring during measurement, and we take this into account

by adding Gaussian noise to the response p1

p1 ¼ p22 þ sinð p3Þ þ �: ð7Þ

We independently draw 200 tuples ðp2; p3; p4Þ and calculate p1
for each tuple, thus gaining a 200� 4 matrix K, mimicking

200 parameter estimates. Only the first three columns of each

row are functionally related, the fourth being independent.

Then, we take K as input for ACE to estimate optimal

transformations (see Fig. 1). Note that even p4 seems to have

quite a smooth estimated optimal transformations significantly

different from white noise. This may be mistaken for a real

functional dependency. If, however, we draw a new 200� 4

matrix the same way as outlined above, the transformations of

the first three parameters will remain quite stable, while the

transformation of the fourth parameter will in general look

different, but still smooth.We can understand this volatility if we

recall the iterative form of the ACE algorithm that estimates the

optimal transformations. Since p2 and p3 suffice to explain all

variance of p1 but Gaussian noise, the residuals will be Gaussian

noise, smoothed by the filter employed by ACE. Noise will be

distributed differently in each new sample we draw, therefore,

we yield different estimates for the transformation of p4 every

time.
This is exactly, what renders possible to distinguish between

parameters with functional relations and those without; we

calculate the average estimated transformation by repeatedly

drawing new matrices K, estimating transformations each time.

We expect optimal transformations of functionally related

parameters to be invariant under averaging. In contrast,

parameters without functional relations yield different esti-

mates for each new drawn matrix K.
The connection to the identifiability analysis of a constraint

structure follows immediately: a non-identifiable constraint

structure causes parameters to be functionally related and we

may employ the above findings to detect these relations. The

process of drawing new matrices K is replaced by estimating

parameters through repeated fitting with different initial

guesses of the parameters of the constraint structure to

experimental or simulated data. This means, to yield a single

200�m matrix K, we fit the model 200 times to data; we term

this a single fitting sequence. Thus, the problem of identifiability

analysis is mapped onto the problem of detecting groups of

functionally related parameters. In the following, the qualita-

tive ideas of our approach are quantified within a test-function,

which is used to decide for functional dependencies.

4 METHODS

4.1 Construction of the test-function

A quantitative test-function based on the ACE algorithm is required to

detect sets of functionally related parameters. In order to improve its

robustness, all estimated optimal transformations for a given fitting

sequence are ranked. Let b� i
kð pkrÞ denote the value of the optimal

transformation of parameter pk at its r-th estimate in the i-th fitting

sequence, and let card denote the cardinal number of a given set, i.e. the

number of elements contained in the set. Then, we define �ikð pkrÞ as the

function which maps each parameter estimate of a certain fitting
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Fig. 1. ACE-Plot of Equation (7). Linear, quadratic and sinus are well

estimated by ACE. Note that even the fourth parameter p4 which is

actually not related to parameter p1 has a smooth estimated

transformation function which may be mistaken for a real functional

dependency.
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sequence onto its rank divided by the total number N of fits conducted

within one fitting sequence.

�ikð pkrÞ ¼
1

N
card �i

kð pkr 0 Þjr
0 2 1; . . . ;Nf g;�i

kð pkr0 Þ � �i
kð pkrÞ

� �� �
The division by N normalizes the estimated optimal transformations

and maps them to the interval ½0 1�. Thus, if rs and rl are the values of r

which belong to the smallest and largest estimate of parameter p1 in the

first fitting sequence, then �11ð p1rs Þ ¼
1
N and �11ð p1rl Þ ¼ 1. Let M denotes

the number of fitting sequences used to calculate the average optimal

transformation. Thus, for parameters with strong functional relation,

the normalized, average ranked transformation

��kð pkrÞ ¼
1

M

XM
i¼1

�ikð pkrÞ

is independent of M thus having a constant variance. Parameters

without functional relation yield different estimates for each fitting

sequence, therefore approximating ��kðtÞ ¼ 0:5 for M ! 1, i.e. zero

variance. This motivates following definition of a test function

Hk :¼ dvarr 1

M

XM
i¼1

�ikð pkrÞ

" #
; ð8Þ

where cvar denotes the empirical variance. Actually, the test-function Hk

for parameter pk depends on the parameters which have been taken as

response and predictors. Therefore, we specifyHk by citing the response

pi1 and all predictors pil ; l 2 f2; . . . ;mg used in the calculation of Hk,

Hk ¼ Hkðpi1 ; . . . ; pim Þ; k 2 fi1; . . . ; img

Let P denote the set which contains the left-hand side parameter as well

as all current right-hand side parameters taken as input for ACE. To

test a whole group of parameters at once we take the mean

�Hð pi1 ; . . . ; pim Þ ¼
1

cardðPÞ

X
k2P

Hk:

In order to reduce the computational burden which arises due to

repeated fitting sequences, only one fitting sequence may be conducted

and repetitions are replaced by drawing with replacement from K. The

computational time decreases by a factor 1
100. Note that this bootstrap

approach is not necessary in terms of functionality. All results presented

are valid also if we do not use the bootstrap. In the following we write

NoB instead of M to denote the number of bootstrap samples drawn to

calculate optimal transformations.

4.2 Properties
�H and Hk render it possible to distinguish between three different cases,

see Figure 2.

(1) Hi1 ði1; . . . ; imÞ � T1: the response parameter pi1 on the left-hand

side has no functional relation with any other parameter

pk; k 2 fi1; . . . ; ing:

(2) T15 �Hði1; . . . ; imÞ5T2: a given set of parameters contains not

enough information, i.e. we need to add additional parameters to

establish a strong functional relation.

(3) �Hði1; . . . ; imÞ � T2: a given set of parameters contains enough

information to establish a strong functional relation.

Especially the second case is of great importance. Suppose m parameters

comprising a functional relation, but only m� 1 of them serve as input

for ACE. Then, the m� 2 parameters on the right-hand side actually

do not contain enough information to establish a linear relation between

the estimates b�ðp1Þ;b�jðpjÞ; j ¼ 1; . . . ;m� 2. Roughly spoken, ACE will

distribute the lacking information among the estimates of the

transformations leading to noisy estimates. Noise is differently

distributed in each new estimate based on a new bootstrap sample,

therefore, yielding reduced values forHk (see Fig. 8 in the Supplementary

Material). Note that these reduced values still significantly exceed those

for parameters without any functional relation.

The three above stated cases correspond to three regions of variance

marked off by two threshold values which are determined analytically

(see supplementary Material). Let N denote the number of estimates,

and NoB the number of bootstrap samples. The expectation value of

the test function of a parameter which is not functionally related with a

given set of other parameters is

E ½Hk� ¼
1

12
��ðNÞ

� �
1

NoB
; ð9Þ

The term �ðNÞ 2 Oð 1ffiffiffi
N

p Þ denotes the overall contribution of the

correlation, which derives from the smoothing filter in ACE, to the

expectation value.

The expectation value of the test-function of a parameter which has a

strong monotone functional relation with a given set of parameters is

E ½Hk� ¼
1

12
1�

1

N2

� �
: ð10Þ

4.2.1 Remarks

� Both results Equations (9) and (10) have to be equal in the limes of

large N and NoB¼ 1 which is fulfilled (c.f. Fig. 2 inset).

� Equation (9) assumes independence of the drawn samples which

is asymptotically fulfilled for infinitely many fits within one

fitting sequence. Therefore, the obtained result is too small for

finite N. If we replace resampling by new fitting sequences,

Equation (9) holds for all N.

� Equations (9) and (10) assume ACE to estimate optimal transfor-

mations perfectly, which again is only asymptotically true for

large N and no noise. Especially, noise results in a slight shift of the
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Fig. 2. Histogram showing the distribution of Hkðp1; p2; p3; p4Þ;

k ¼ 1; . . . ; 4 for Equation (7). p1 dark blue (D), p2 light blue (C) , p3
yellow (B) and p4 (no functional relation) dark red (A). The distribution

shows a separation of the values of Hk between dependent and

independent parameters. Thresholds (dashed lines) are determined

analytically. With each new bootstrap sample the variance of the

normalized, average ranked optimal transformation of parameter p4 (no

functional relation) shrinks while all others keep stable (inset).

Threshold values are T1 ¼ 0:01 and T2 ¼ 0:07. The mean value of the

test-functions of parameters comprising a strong functional relation

exceeds T2. If there are not enough parameters to establish a strong

functional relation, the mean variance lies between T1 and T2. The test-

function of parameters, independent of the current response variable

has values below T1. Stated thresholds are universal and apply for all

possible functional relations. Simulations were conducted 10 000 times,

each time 35 bootstrap samples were drawn from a 200� 4 matrix

containing four tuples of the parameters in each row.
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test-function for functionally related parameters to smaller

variances (c.f. Fig. 2 inset).

4.3 The algorithm

The test-function Hk proposed in Equation (8) interprets the stability of

estimated optimal transformations as a measure for functional relations

of parameters. Our algorithm exploits the properties of Hk to identify

those parameters pk of a given set P which have a functional relation

and determines the relations non-parametrically.

ACE distinguishes between right-and left-hand side terms, which we

want to make use of. We propose a step up algorithm, i.e. we start with

parameter pi as left-hand side term and take a second parameter

pj; j 6¼ i, as right-hand side. Then, we calculate Hjðpi; pjÞ for each pj and

choose the parameter pk with Hk ¼ maxj 6¼i Hj which means we take the

parameter which is likely to have the strongest functional relation with

pi. If Hk5T1, parameter pi is supposed to be independent of all others.

Otherwise we calculate �Hðpi; pkÞ. If �Hðpi; pkÞ4T2 a strong functional

relation is found. Else another parameter pl; l 6¼ i; k, is added and

Hlðpi; pj; plÞ; l 6¼ i; k, calculated again. If T2 is never exceeded, even if we

added all parameters, it is supposed to have no strong functional

relation.

To increase power, we rerun the loop once again after having found a

strong functional relation. If the �H value increases with an additional

parameter, we keep it, else we take the relation which has already been

found before.

This is conducted successively for all parameters pi taken as left-hand

side; Figure 8 in the Supplementary Material shows a flowchart of the

proposed algorithm.

As a crosscheck, we determine the multiple r2, i.e. the fractional

amount of variance of the response y explained by the predictor

variables xi; i ¼ 1; . . . ;N.

4.4 Example

We work through an example to illustrate what kind of input is needed

and which output is provided. Assume a non-identifiable constraint

structure with seven parameters functionally related like follows:

p1 ¼ �p2 þ 10

p3 ¼ 5=ðp4 � p5Þ ð11Þ

p6 ¼ �

p7 ¼ 0:1;

where p2; p4; p5 and � are uniformley distributed on the interval

½0 5�: The input used in our algorithm is K ¼ ½~p1; . . . ; ~p7�, where ~pi
are column vectors of length 200 which correspond to 200 fits.

Note that by use of this input we do not make any assumptions

concerning underlying relations. The output is given like follows:

S ¼

p1 p2 p3 p4 p5 p6 p7

1 1 0 0 0 0 0

1 1 0 0 0 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
In each row, ones indicate which parameters are functionally related.

The response variable stands on the diagonal; thus, the fourth

row indicates that the response p4 is strongly related to the predictors

p3 and p5. The matrix S can be translated to tuples representing

functional relations: ðp1; p2Þ; ðp3; p4; p5Þ; ðp6Þ and ðp7Þ. Parameters

p6 and p7 are correctly assigned to have no functional relation with

any other parameters. Our algorithm was tested with more then three

dozen comparable examples (see Supplementary Material). Every time

the truth could be recovered. S has block diagonal form, which

on the one hand results because we ordered parameters in advance.

On the other hand, all parameters, when taken as right-hand side term

in ACE, contribute strong enough to the left-hand side term. This is not

always the case as we will see in the following section.

4.5 Sensitivity and specificity

We determined sensitivity and specificity in dependence of the threshold

values for Equation (11). In order to test robustness of our algorithm,

noise was added to all left-hand side terms. Figure 3 confirms that

defined threshold values yield high sensitivity as well as high specificity.

The inset of Figure 3 stresses the generality of the algorithm:

sensitivity is largely independent of the actual functional relation.

It only depends on the contribution strength of a predictor. The less a

predictor pj on the right-hand side contributes to the response on the

left-hand side, the noisier the estimated transformation �jð pjÞ gets,

finally being indistinguishable from a estimated transformation of an

independent parameter.

As discussed in the supplementary Material (section: Identifiability

of Identifiability), especially for two parameters, there is a strong

dependence of optimal transformations on the level of noise. However,

this is, to a large extent, compensated by the bootstrap approach and the

rank transformation of the optimal transformations, see Equation (8).

5 RESULTS

We apply our method to a non-linear dynamical model
motivated by a modelling-project dealing with endocytosis.

Our goal is to identify groups of functionally related parameters.
Once such sets of non-identifiable, interdependent parameters

are detected, either new experiments can be suggested to render
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Fig. 3. Sensitivity and specificity for the example of Equation (11).

T1 (dashed lines) is varied from 0.01 to 0.07 with T2 ¼ 0:07; sensitivity

(4) and specificity (�) is calculated. Same is done for T2 (solid lines)

with T1 ¼ 0:01. Lines at 100% are separated for clarity. We see

that analytically determined threshold values, T1 ¼ 0:01 and T2 ¼ 0:07,

have optimal specificity and sensitivity. (Inset) power of proposed

algorithm. The percentage of recovered functional relations is plotted

versus the mean contribution. To yield comparable results, we tested

a set of standard functions fi with p1 ¼ p2 þ � � fiðp3Þ; � 2 ½0 1�.

The mean contribution M�fðp3Þ of the second right-hand side term to

the left-hand side is defined like follows: M�f ðp3Þ ¼ mean ð� � f ð p3Þ=p1Þ.
Except for fðp3Þ ¼

ffiffiffiffiffi
p3

p
, all standard functional relationships

are detected with similar power. This result is of great importance,

because it confirms the universality of the algorithm.
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the parameters identifiable, or parameters have to be fixed in

order to improve identifiability. For the latter case, we suggest

following guidelines for handling the two most frequent types of

non-identifiable parameters: (1) structurally non-identifiable

parameters may, per definition, be fixed at an arbitrary value in

parameter space. The model’s dynamical properties are not

changed or restricted by the fixation. (2) For practically non-

identifiable parameters, the model’s dynamical properties

depend slightly on the chosen parameter value. The choice

which parameter to fix, depends on the experimental possibilities

and available reference values from the literature. If there is no

additional information, we suggest to fix the parameter within

physiological constraints to that value which belongs to the best

fit. (3) Iterate identifiability analysis and fixation of parameters

until all free parameter are rendered identifiable. This is a

necessary prerequisite for subsequent analysis techniques like

sensitivity analysis. Further guidelines are provided in the

Supplementary Material.

We proceed as follows : first, we fit the model to simulated

data. In order to test identifiability under realistic experimental

conditions, we add observational noise. Second, we apply our

algorithm for identifiability analysis and interpret the result.

Consider the following non-linear model derived from the

biological system in Figure 4:

_EPOR ¼Bmaxk1 � k1EPOR� k2EPOR EPO

þ KDk2½EPOR EPO�

_EPO ¼� k2EPOR EPO þ KDk2½EPOR EPO�

þ k5EPOint

_½EPOR EPO� ¼ k2EPOR EPO � KDk2½EPOR EPO�

� k3½EPOR EPO�

_½EPOR EPO�int ¼ k3½EPOR EPO� � k4½EPOR EPO�int

_EPOint ¼ k4½EPOR EPO� � k5EPOint � k6EPOint

_EPOint=deg ¼ k6 EPOint � k7EPOint=deg

_EPOdeg ¼ k7 EPOint=deg

Following linear combinations of dynamical variables are

observed: Y1 ¼ EPO þ EPOdeg;Y2 ¼ ½EPOR EPO�;Y3 ¼

½EPOR EPO�int þ EPOint þ EPOint=deg. Further motivation for

the model equations and choice of observation functions is

provided in the Supplementary Material. Parameter values were

assigned to be: k1¼ 0.008; k2¼ 5� 10-5; k3¼ 0.10; k4¼ 0.25;

k5¼ 0.15; k6¼ 0.075; k7¼ 0.01; Bmax¼ 1000; kD¼ 100;

EPO (t¼ 0)¼ 3000; EPOR (t¼ 0)¼ 1000. All simulations were

conducted with our developed Systems Biology Multi-

Experiment Fitting Matlab Toolbox PottersWheel (www.pot-

terswheel.de). The model was fitted 500 times to simulated data,

each fit started at the true parameter values, disturbed like

follows: pstart ¼ ptrue � 10
��0:4; � 2 Nð0; 1Þ: The fitting results can

be written in a 500� 7 matrix which is then taken as input for

identifiability analysis. Our approach yields following result:

S ¼

k1 k2 k3 k4 k5 k6 EPO

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 1 1 0

0 0 0 1 1 1 0

0 0 0 1 1 1 0

0 0 0 0 0 0 1

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
which can easily be to tuples: ðk1Þ; ðk2Þ; ðk3Þ;

ðk4; k5 and k6Þ and ðEPOÞ: We see, that parameters k4; k5 and

k6 are assigned to have a strong functional relation. The

corresponding r 2-value is r 2 ¼ 0:99. Figure 5 shows a scatterplot
of the three non-linearly related parameters. Every point on the

hyperbola represents a three tuple of the parameters, each tuple

yielding the same output function descibing the data equally

well. Since k4; k5 and k6 lie on a 1D manifold, one of the

three parameters uniquely determines the other two. The

fixation of one parameter should therefore suffice to eliminate

the non-identifiability. In order to check whether the detected

non-identifiability is structural or due to limited data, we set

observational noise to zero and reran the fitting sequence again:

the model exhibited the same non-identifiability. We can

therefore fix one of the parameters without loosing flexibility

of the model. We fix k4 at k4 ¼ 0:23 and conduct another

500 fits. The results are shown in Figure 6. The errors of k5 and k6
decrease tremendously. A new identifiability analysis confirms

that the model has successively been rendered identifiable.
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Fig. 4. Non-linear dynamical model for the endocytosis of the

erythropoietin receptor (EPO receptor). The EPO receptor is constitu-

tively produced and internalized. EPO reversibly binds to the receptor

and thereby induces accelerated endocytosis. Internalized EPO may

either be recycled to the cytoplasm or undergo degradation before it is

recycled. It is assumed, that the internalized dissociated receptors are

degraded and that the degraded receptors do not interfere with the

dynamic of the system.
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Fig. 5. Scatterplot. Our algorithm for identifiability analysis identifies a

three parameter relation between k4; k5 and k6. The parameters lie on a

tilted hyperbola in the 3D parameter space. The model’s observation

functions are invariant under parameter variations along the hyperbola,

i.e. all points yield comparable �2 values. In order to render the

constrained structure identifiable, one of the three parameters has to

be fixed.
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Note that in general it is possible for three functionally
related parameters to lie on a 2D manifold, i.e. a curved surface

in space. This would require to fix two parameters in order to
completely resolve non-identifiability. For an invertible optimal
transformation �, however, it is also possible to reduce the

number of non-identifiable parameters, not the non-identifiab-
lity itself, by expressing one of the parameters through the other
ones pi ¼ ��1

P
j 6¼i �jðpjÞ

� 	
.

6 CONCLUSION

We presented a non-parametric data-based algorithm for

identifiability testing. Its major characteristics, generality and
robustness, render it a valuable tool for identifiability analysis
of non-linear dynamical models. The use of the bootstrap

method reduces computational time tremendously.
Non-identifiabilities arise due to the structure of a model and

the observation function. The proposed method is capable

of identifying structural subunits causing non-identifiabilities by
detecting groups of functionally related parameters. It reveals
which parameters are uniquely determinable and which are not.

Thus, it also provides a more realistic picture of what can be
inferred from a model. In an example, the variance of estimated
parameter values could be reduced from around 81 to 1%, after
fixing one parameter as suggested by our approach.

The ability to apply the proposed approach to simulated data
renders it directly applicable for Experimental Design, i.e. the
quest for optimal experimental conditions, e.g. observables to

maximize the information while minimizing experimental effort.
For this purpose, we may test the identifiability of a model at all
possible combinations of realistic input–output scenarios.

Among the identifiable structures we then choose the input–
output combination which is easiest to realize experimentally.
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Fig. 6. (A) Boxplot of parameter estimates. Five hundred fits to simulated data were conducted and �2-values calculated for each fit. The boxplot is

populated with the best 15% of the fits, which yielded lowest, comparable �2-values. Parameter k7 is determined experimentally and thus does not

appear in the boxplot. The three parameters k4; k5 and k6 are fitted with large SDs and are thus non-identifiable, all remaining parameters are fitted

with small SDs and can be considered practical identifiable. However, boxplots can only provide a coarse classification, and it remains unclear which

parameters are functionally related and how their relation looks like. Our approach for identifiability analysis (c.f. Fig. 5) motivates to measure or fix

one of the parameters k4; k5 or k6. We fix k4 at k4 ¼ 0:23 and fit the model another 500 times to data. (B) Boxplot of parameter estimates with fixed

k4 ¼ 0:23. Errors reduce drastically. All parameters are now practically identifiable.
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