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Abstract

Over the last decades several techniques have been developed to analyze interactions in multivariate dynamic systems.

These analysis techniques have been applied to empirical data recorded in various branches of research, ranging from

economics to biomedical sciences. Investigations of interactions between different brain structures are of strong interest

in neuroscience. The information contained in electromagnetic signals may be used to quantify the information transfer

between those structures. When investigating such interactions, one has to face an inverse problem. Usually the distinct

features and different conceptual properties of the underlying processes generating the empirical data and therefore the

appropriate analysis technique are not known in advance. The performance of these methods has mainly been assessed

on the basis of those model systems they have been developed for. To draw reliable conclusions upon application to

empirical time series, understanding the properties and performances of the time series analysis techniques is essential.

To this aim, the performances of four representative multivariate linear signal processing techniques in the time and

frequency domain have been investigated in this study. The partial cross-spectral analysis and three different quantities

measuring Granger causality, i.e. a Granger causality index, partial directed coherence, and the directed transfer

function are compared on the basis of different model systems. To capture distinct properties in the dynamics of brain

neural networks, we have investigated multivariate linear, multivariate nonlinear as well as multivariate non-stationary

model systems. In an application to neural data recorded by electrothalamography and electrocorticography from

juvenile pigs under sedation, directed as well as time-varying interactions have been studied between thalamic and

cortical brain structures. The time-dependent alterations in local activity and changes in the interactions have been

analyzed by the Granger causality index and the partial directed coherence. Both methods have been shown to be most
e front matter r 2005 Elsevier B.V. All rights reserved.
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suitable for this application to brain neural networks based on our model systems investigated. The results of this

investigation contribute to the long-term goal to understand the relationships in neural structures in an abnormal state

of deep sedation.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Investigating the interrelations in the dynamics
between different brain structures and synchroni-
zation phenomena between neural populations
presents an important primary step toward the
overall aim: the determination of mechanisms
underlying pathophysiological diseases, primarily
in order to improve treatment strategies especially
for severe diseases. Synchronization phenomena or
interrelations between different neural circuits
have been observed e.g. in electroencephalography
(EEG) data recorded during sedation or deep
anesthetization. The detection, analysis, and mon-
itoring of clinical EEG burst suppression patterns
(BSP) during sedation or anesthesia are important
because BSP can be seen as a defined reference
point within the stream of changes in EEG
characteristics during cerebro-protective treat-
ment, i.e. sedation [1], or as a sign of unnecessary
deep anesthesia [2].
BSP are characterized by alternating periods of

high-voltage polymorphic activity, i.e. burst, and
periods of nearly total amplitude-depression, i.e.
suppression. A burst pattern consists of two main
transient components, the delta-wave activity at
1–4Hz and a delayed spindle oscillation within a
higher frequency range of 7–16Hz. Both are
triggered by the burst onset. Burst duration is
about 2–4 s. Steriade et al. [3,4] investigated the
pacemakers of both components recorded by the
electrocorticogram (ECoG) combined with intra-
cellular recordings in the thalamus. They postu-
lated that a disconnection between the thalamus
and the cortex occurs during the suppression
period and that burst periods appear after volleys
from thalamocortical neurons. After the burst
onset both delta wave and spindle oscillations are
generated by the coordination of neural networks.
The delta wave is the intrinsic rhythm of thala-
mocortical neurons and the delayed spindle
oscillation is generated by thalamo-cortico-thala-
mic circuits. These generator structures can be
investigated by electrocortico- and electrothalamo-
graphic recordings in animal experiments. As this
cortical information transfer process is a time-
variant structure, time-variant quantities are the
most preferable. New time-variant methods for the
quantification of neural information transfer are
desired. Indeed, such model-related time-variant
methods have been introduced successfully for
burst pattern analysis [5–7]. Previously, for the
quantification of information transfer between
thalamic and cortical structures, correlation and
coherence-based methods were used [8,9].
Analysis techniques based on correlation or

coherence are not sufficient to adequately describe
the interdependence within the neural system, such
as the thalamo-cortico-thalamic circuits. As an
example, assume that three signals are recorded in
distinct brain structures, two signals from the
thalamus and one signal from the cortex. If
interrelations were investigated by an application
of a bivariate analysis technique to each pair of
signals and if a relationship was detected between
both thalamic signals, they would not be necessa-
rily directly linked. The interdependence between
both thalamic signals might also be mediated by
the cortical signal. To enable a differentiation
between direct and indirect influences in multi-
variate systems, graphical models applying partial
coherence have been introduced [10].
Beside detecting simple correlations between

two signals in a multivariate network of processes,
an uncovering of directed interactions enables
deeper insight into the basic mechanisms under-
lying such networks. In our example of the
thalamo-cortical network, it would be possible to
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decide whether or not the thalamic leads project
their information to the cortex or vice-versa. In
some cases both directions might be present,
possibly in distinct frequency bands. Granger [11]
introduced a concept of causality based on the
common sense idea that a cause must precede its
effect, which allows inferring directed interactions
in multivariate systems. Introducing the concept of
Granger causality to multivariate analysis techni-
ques, e.g. by the directed transfer function (DTF)
[12], by the partial directed coherence (PDC) [13],
or by a direct measure for Granger causality in the
time-domain [14], has made these ideas more
accessible for the analysis of coordination in brain
neural networks. However, applying a single
analysis technique to neural data without knowing
its specific properties might yield misleading
results. A comparison of the advantages and
disadvantages of different analysis techniques is
therefore desirable.
To this aim we investigate four multivariate

signal processing techniques developed in the field
of linear transfer function systems. The four
analysis techniques originate from two classes,
the class of non-parametric and the class of
parametric analysis techniques. Representative of
the non-parametric multivariate analysis techni-
que, partial coherence (PC) and its corresponding
partial phase spectrum is investigated. It has been
used to reveal mainly undirected interactions in
multivariate systems, such as tremor [15], neural
system [16–18], or pollution data [10]. Other
widely used analysis techniques such as quantities
measuring phase or lag synchronization [19–22]
have no multivariate extension that allows one to
distinguish between direct and indirect interac-
tions; a pairwise bivariate analysis is not sufficient
to reveal the structure in multivariate networks.
Multivariate cross-correlation analysis is not used
because its information is already contained in its
frequency counterpart, namely partial coherence
[16,17]. Multivariate mutual information [23] is
based on density estimation which is numerically
difficult in multi-dimensional systems. Therefore
these analysis techniques are not investigated in
the present study. The class of parametric techni-
ques is represented by a Granger causality index
(GCI), the directed transfer function (DTF), and
the PDC. These methods were applied in various
fields of brain research [12–14,24–28,34].
The analysis techniques investigated here are

characterized by different conceptual properties
and reveal different dynamic effects such as
nonlinearities in multivariate systems. Addition-
ally, the ability to handle non-stationary signals is
different between these methods. However, in
applications to brain neural networks quantified
for instance by EEG, the underlying dynamic is
essentially unknown. Thus, requirements for the
signal processing method applied are not obvious.
For instance, neither nonlinearities nor non-
stationarities of the neural signals should lead to
an immediate breakdown of the method. To draw
reliable conclusions in applications, one should be
aware of the distinct features and the different
performances of these analysis techniques. To this
aim, all techniques are examined on the basis of
simulated data with known dynamics first. Reli-
able conclusions about their performances are thus
possible, since the true interaction structure is
known in these systems. Furthermore, these model
systems may serve as representatives for a large
number of empirical neural networks.
We investigate synthetic signals simulated by

different multivariate model systems with respect
to five aspects: First, a differentiation between
direct and indirect interrelations is examined.
Second, a detection of the direction of interrela-
tions is investigated. Third, the absence of any
influence between the processes reflects the speci-
ficity of the methods. Fourth, since in many
applications to brain neural networks the signals
are at least weakly nonlinear, it is tested to which
extent these analysis techniques can cope with
nonlinearities. Fifth, time-varying dynamic effects
are analyzed to investigate their performance on
non-stationary data.
PDC is the analysis technique showing the best

performance in revealing the multivariate interac-
tion structure in the simulated model examples.
Results from the DTF analysis are included in the
results of the PDC analysis. The GCI is particu-
larly useful if information in the time-domain is of
special interest. Partial coherence as a non-para-
metric technique is shown to be robust in
applications, because e.g. pre-knowledge of pro-
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cess orders is not necessary. However, a time-
variant partial coherence is not easily accessible.
Finally, we examine neural data recorded from

juvenile pigs under sedation. Directed as well
as time-varying interrelations are analyzed
between the thalamic and cortical brain structures
by PDC and the GCI. PDC yields a general
overview over influences dependent on time and
frequency, while the GCI is used to analyze the
BSP more closely.
2. Multivariate linear time series analysis

techniques

In this section, we summarize the theory of the
multivariate linear time series analysis techniques
under investigation, i.e. PC and partial phase
spectrum (Section 2.1.1), the GCI (Section 2.2.1),
the PDC (Section 2.2.2), and the DTF (Section
2.2.3). Finally, we briefly introduce the concept of
directed graphical models (Section 2.3).

2.1. Non-parametric approaches

2.1.1. Partial coherence and partial phase spectrum

In multivariate dynamic systems, more than two
processes are observed and a differentiation of
direct and indirect interactions between the pro-
cesses is desired. For this purpose bivariate
coherence analysis is extended to partial coher-
ence. The basic idea is to subtract linear influences
from all other processes under consideration in
order to detect directly interacting processes. The
partial cross-spectrum

SXY jZðoÞ ¼ SXY ðoÞ � SXZðoÞS�1ZZðoÞSZY ðoÞ (1)

is defined between process X and process Y , given
all the linear information of the remaining
processes Z. Using this procedure the linear
information of the remaining processes is sub-
tracted optimally. Partial coherence

CohXY jZðoÞ ¼
jSXY jZðoÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SXX jZðoÞSYY jZðoÞ
p 2 ½0; 1� (2)

is the normalized absolute value of the partial
cross-spectrum while the partial phase spectrum
FXY jZðoÞ ¼ argfSXY jZðoÞg is its argument [8,10].
To test the significance of coherence values, critical
values

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� að2=n�2 L�2Þ

p
(3)

for a significance level a depending on the
dimension L of Z are calculated [35]. The
equivalent number of degrees of freedom n
depends on the estimation procedure for the auto-
and cross-spectra. If for instance the spectra are
estimated by smoothing the periodograms, the
equivalent number of degrees of freedom [36]

n ¼
2Ph

i¼�hu2ðoiÞ
; with

Xh

i¼�h

uðoiÞ ¼ 1 (4)

is a function of the width 2hþ 1 of the normalized
smoothing window uðoÞ evaluated at the harmonic
frequencies oi.
Time delays and therefore the direction of

influences can be inferred by evaluating the phase
spectrum. A linear phase relation FXY jZðoÞ ¼ do
indicates a time delay d between process X and
process Y . The asymptotic variance

varfFXY jZðoÞg ¼
1

n
1

Coh2XY jZðoÞ
� 1

" #
(5)

for the phase FXY jZðoÞ again depends on the
equivalent number of degrees of freedom n (cf.
Eq. (4)) and the coherence value at frequency o
[36]. The variance and therefore the corresponding
confidence interval increases with decreasing co-
herence values. Large errors for every single
frequency prevent a reliable estimation of the
phase spectrum for corresponding coherence
values which are smaller than the critical value s

(cf. Eq. (3)). For signals in a narrow frequency
band, a linear phase relationship is thus difficult to
detect. Moreover, if the two processes considered
were mutually influencing each other, no simple
procedure exists to detect the mutual interaction
by means of one single phase spectrum especially
for influences in similar frequency bands.

2.2. Parametric approaches

Besides the non-parametric spectral concept
introduced in the previous section, we investigate
three parametric approaches to detect the direction
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of interactions in multivariate systems. The general
concept underlying these parametric methods is
the notion of causality introduced by Granger [11].
This causality principle is based on the common
sense idea, that a cause must precede its effect. For
dynamic systems a process X is said to Granger-
cause a process Y , if knowledge of the past of
process X improves the prediction of the process
Y compared to the knowledge of the past of
process Y alone. Commonly, Granger causality
is estimated by means of vector autoregressive
models. Since a vector autoregressive process is
linear by construction, only linear Granger caus-
ality can be inferred by this methodology. In the
following, we will use the notion causality in terms
of linear Granger causality.
The parametric analysis techniques introduced

in the following are based on modeling the
multivariate system by stationary n-dimensional
vector autoregressive processes of order p

(VAR[p])

X 1ðtÞ

..

.

X nðtÞ

0
BB@

1
CCA ¼X

p

r¼1

ar

X 1ðt� rÞ

..

.

X nðt� rÞ

0
BB@

1
CCAþ

�1ðtÞ

..

.

�nðtÞ

0
BB@

1
CCA. (6)

The estimated coefficient matrix elements âkl;r

(k; l ¼ 1; . . . ; n; r ¼ 1; . . . ; p) themselves or their
frequency domain representation

ÂklðoÞ ¼ dkl �
Xp

r¼1

âkl;r e
�ior (7)

with the Kronecker symbol (dkl ¼ 1, if k ¼ l else
dkl ¼ 0) contain the information about the causal
influences in the multivariate system. The coeffi-
cient matrices weight the information of the past
of the entire multivariate system. The causal
interactions between processes are modeled by
the off-diagonal elements of the matrices. The
influence of the history of an individual process on
the present value is modeled by the diagonal
elements.
The estimated covariance matrix Ŝ of the

Gaussian distributed noise �ðtÞ ¼ ð�1ðtÞ; . . . ; �nðtÞÞ
0

contains information about instantaneous interac-
tions and therefore, strictly speaking, non-causal
influences between processes. But changes in the
diagonal elements of the covariance matrix, when
fitted to the entire systems as well as the
subsystems, can be utilized to investigate Gran-
ger-causal influences, since the estimated variance
of the residuals �iðtÞ reflects information that
cannot be revealed by the past of the processes.
Additionally, the diagonal elements of the covar-
iance matrix will become necessary for DTF and
PDC which will be discussed in Section 3.2.
2.2.1. Granger causality index

To introduce a GCI in the time-domain and to
investigate directed influences from a component
X j to a component X i of a n-dimensional system,
n- and (n� 1)-dimensional VAR-models for X i are
considered. First, the entire n-dimensional VAR-
model is fitted to the n-dimensional system, leading
to the residual variance Ŝi;nðtÞ ¼ varð�i;nðtÞÞ for X i.
Second, a (n� 1)-dimensional VAR-model is fitted
to a (n� 1)-dimensional subsystem fX k; k ¼
1; . . . ; njkajg of the n-dimensional system, leading
to the residual variance Ŝi;n�1ðtÞ ¼ varð�i;n�1ðtÞÞ.
A time-varying GCI quantifying linear Granger

causality is defined by [14]

gi jðtÞ ¼ ln
Ŝi;n�1ðtÞ

Ŝi;nðtÞ

 !
. (8)

Since the residual variance of the n-dimensional
model is expected to be smaller than the residual
variance of the smaller (n� 1)-dimensional model,
gi jðtÞ is larger than or equal to zero. For a time-
resolved extension of the GCI, a time-variant
VAR-parameter estimation technique is utilized by
means of the recursive least square algorithm RLS
which is a special approach of adaptive filtering
[30]. Consequently, a time-resolved detection of
directed interactions between two processes X i and
X j is possible in the time-domain.
In the present study, the time-varying GCI is the

only analysis technique under investigation reflect-
ing information about multivariate systems in the
time-domain. Alternative time-domain analysis
techniques, such as the widely used cross-correla-
tion function, are characterized by the property
that their multivariate extensions are commonly
estimated by means of the frequency-domain
analysis techniques based on estimating partial
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auto- and cross-spectra. Furthermore, complex
covariance structures between time lags and
processes make a decision about statistically
significant time lags obtained by cross-correlation
analysis difficult [37].

2.2.2. Partial directed coherence

As a parametric approach in the frequency-
domain, PDC has been introduced to detect causal
relationships between processes in multivariate
dynamic systems. PDC accounts for the entire
multivariate system and renders a differentiation
between direct and indirect influences possible.
Based on the Fourier transformation of the
coefficient matrices (cf. Eq. (7)), PDC [13]

pi jðoÞ ¼
jAijðoÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

kjAkjðoÞj
2

q (9)

between processes X j and X i is defined, where | � |
is the absolute value of ( � ). Normalized between 0
and 1, a direct influence from process X j to process
X i is inferred by a non-zero PDC pi j. To test the
statistical significance of non-zero PDC values in
applications to finite time series, critical values are
used [38]. Similarly to the GCI, a significant causal
influence detected by PDC analysis has to be
interpreted in terms of linear Granger causality
[11]. In the following investigations, parameter
matrices have been estimated by means of multi-
variate Yule-Walker equations.

2.2.3. Directed transfer function

The DTF is a frequency-domain analysis
technique to detect directions of interactions and
is again based on the Fourier transformation of
the coefficient matrices (cf. Eq. (7)). The transfer
function HijðoÞ ¼ A�1ij ðoÞ leads to the definition of
the DTF [12,13]

di jðoÞ ¼
jHijðoÞj2P

ljHilðoÞj2
. (10)

The DTF is normalized in [0,1]. An interaction
from process X j to process X i is detected if di jðoÞ
is unequal to zero. The normalization in the
definition of the DTF and the PDC is a major
difference between both analysis techniques [29].
In the following, parameter matrices have been
estimated based on multivariate Yule-Walker
equations.
We note, however, that for the three parametric

approaches under investigation, values quantifying
the directed influences cannot be identified with
the strength of the interactions directly.

2.2.4. Time-resolved extension of parametric

approaches

In order to detect non-stationary effects in the
interrelation structure of the multivariate system,
an extension of the parametric approaches is
introduced. To this aim a time-resolved parameter
estimation technique is utilized. The GCI has
already been introduced as a time-resolved proce-
dure applying the recursive least square algorithm
[30]. An alternative method to estimate time-
resolved parameters in VAR-models, which speci-
fically considers the influence of observation noise
in the multivariate system, is based on time-
varying state space models (SSMs) [39,40]

BðtÞ ¼ Bðt� 1Þ þ ZðtÞ,

X ðtÞ ¼ Bðt� 1ÞX ðt� 1Þ þ �ðtÞ,

Y ðtÞ ¼ CðtÞX ðtÞ þ ~ZðtÞ. ð11Þ

SSMs consist of hidden state equations BðtÞ and
X ðtÞ as well as an observation equation Y ðtÞ. The
hidden state equation for BðtÞ includes the time-
dependent parameter matrices arðtÞ (compare with
Eq. (6)). The observation equation Y ðtÞ explicitly
takes account of observation noise ~ZðtÞ. For a
numerically efficient procedure to estimate the
parameters in the SSM, the EM-algorithm based
on the extended Kalman filter or for known
variances and observation matrix the extended
Kalman filter is used [41].

2.3. Directed graphical models

Graphical models are a methodology to visua-
lize and reveal relationships in multivariate sys-
tems [42]. Such a graph is shown in Fig. 1. The
vertices reflect the processes and the arrows the
interactions between the processes detected by
the analysis technique applied. For example, if
PDC is only significant from process X 4 to process
X 2 but not in the opposite direction, an arrow is
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drawn from process X 4 to process X 2. In contrast,
if PDCs are non-significant between process X 3

and process X 4, both processes are identified as
not directly influencing each other and arrows
between the processes in the corresponding gra-
phical model are absent. In the following, dashed
arrows will be drawn for specific properties of the
corresponding analysis technique, for instance an
indirect interaction between processes spuriously
detected by the analysis technique applied.
3. Comparison of analysis techniques based on

investigations of simulated, multivariate systems

The performance of the previously introduced
multivariate linear time series analysis techniques
is investigated by means of synthetic data simu-
lated by different types of model systems. To
illustrate the intrinsic differences between the
analysis techniques, an investigation of a linear
model system is given in Section 3.1. As discussed
in Section 3.2, problems with parametric ap-
proaches may arise if independent processes with
a wide difference in variance are observed. To
investigate the capability of these methods to
detect couplings in nonlinear multivariate systems,
a coupled stochastic Roessler system is analyzed
in Section 3.3. Finally, non-stationary effects
are examined by means of a linear VAR-model
with parameter changes dependent on time in
Section 3.4.

3.1. Example 1: Four-dimensional vector

autoregressive process

To show the properties of the four linear
multivariate analysis techniques, a multivariate
linear system has been investigated. Since all
techniques are developed for such systems, a
successful application is guaranteed. Therefore,
the following example shows the intrinsic proper-
ties of the analysis technique and not properties
related to the simulated processes. As a represen-
tative of the class of linear stochastic dynamic
systems, a four-dimensional VAR[5]-process,

X 1ðtÞ ¼ 0:8X 1ðt� 1Þ þ 0:65X 2ðt� 4Þ þ Z1ðtÞ,

X 2ðtÞ ¼ 0:6X 2ðt� 1Þ þ 0:6X 4ðt� 5Þ þ Z2ðtÞ,

X 3ðtÞ ¼ 0:5X 3ðt� 3Þ � 0:6X 1ðt� 1Þ þ 0:4X 2ðt� 4Þ

þ Z3ðtÞ,

X 4ðtÞ ¼ 1:2X 4ðt� 1Þ � 0:7X 4ðt� 2Þ þ Z4ðtÞ, ð12Þ

has been examined. The covariance matrix of the
noise terms ZiðtÞ has been set to the identity matrix
and N ¼ 50:000 data points have been simulated.
The simulated interdependence structure of the
vector autoregressive process is summarized by the
graph in Fig. 1.
The time-resolved values of the GCI are given in

Fig. 2(a). The corresponding graph based on the
analysis using the GCI is shown in Fig. 2(b) and is
identical to the graph corresponding to the
simulated VAR-model. The GCI detects all
simulated interdependencies as well as the direc-
tion of the influences correctly. For instance,
considering the influence from process X 1 to
process X 2, the corresponding GCI fluctuates
around zero. In contrast, by means of the GCI,
the opposite influence from process X 2 to process
X 1 is detected correctly.
In Fig. 2(c), partial coherences as well as partial

phase spectra are shown. Critical values for a 5%-
significance level for the partial coherence are
shown by the gray lines. The corresponding graph
based on this analysis is given in Fig. 2(d). The
interdependence structure in the VAR-model is
again detected correctly. Partial coherence analysis
reveals indirect interrelations between processes
X 1 and X 4 as well as between processes X 3 and
X 4. By means of the partial phase spectra,
directions of influences are inferred. For example,
partial phase spectrum between processes X 1 and
X 2 can be approximated by a linear phase relation
with negative slope, correctly indicating an influ-
ence from processes X 2 to X 1. The phase relation
between processes X 1 and X 3 is not linear, which
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Fig. 2. Granger causality index for the VAR-model in example 1 (a) and resulting directed graph (b). The simulated interrelation

structure is reproduced correctly by non-zero values of the Granger causality index. Partial coherence and corresponding phase spectra

(c). Spectra are shown on the diagonal. Above the diagonal partial phase spectra and below the diagonal the partial coherences are

shown. Two interrelations are unmasked as indirect ones by partial coherence. There is no direct mutual linear influence between the

processes X 1 and X 4 and the processes X 3 and X 4. For these two influences the phase spectra are also not interpretable due to the low

partial coherence values. Calculating the slopes of the phase spectra, time lags between processes can be estimated. The resulting graph

is shown in (d). The dashed arrow indicates that there is no linear phase relationship between the processes X 1 and X 3.
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is indicated by the dashed arrow in the graph in
Fig. 2(d).
Results of an analysis using the DTF are

given in Fig. 3(a) and the resulting graph in
Fig. 3(b). By means of DTF analysis, all directions
of interactions are detected correctly. Neverthe-
less, a differentiation between direct and indirect
influences is impossible. This is illustrated by
dashed arrows in the graph. Process X 4 is neither
directly influencing process X 1 nor process X 3.
Both influences are mediated by process X 2. In
Fig. 3(c) PDC and in Fig. 3(d) the corresponding
directed graph is given. In contrast to the DTF,
PDC analysis differentiates between direct and
indirect interactions and detects the corresponding
directions of influences correctly. The graph
resulting from PDC analysis is identical to the
graph corresponding to the simulated VAR-model
(cf. Fig. 1).
3.2. Example 2: Three independent white noise

processes

In the previous section, we have demonstrated
the intrinsic properties of the analysis techniques
under investigation and their high sensitivity in
detecting direct influences in multivariate systems.
The following investigation was performed in
order to test their reliability in the absence of
any influence between the processes, reflecting the
specificity of the methods in detecting influences.
The variances of the processes, to be more precise
the variance of the stochastic influence, differ
substantially in the following example. In applica-
tions to neural signals, for instance by analyzing
scalp or invasive EEG recordings, this situation
may arise. The following investigation illustrates
that a specific normalization procedure is required
to avoid false detections of influences when



ARTICLE IN PRESS

Partial directed coherenceDirected transfer function

(c)(a) 0 0.1 0.2 0.3 0.4 0.5
0

0.2
0.4
0.6
0.8

1

lo
g.

 S
pe

ct
ra

   
   

 
   

   
[a

.u
.] 

   
   

X
1
 → X

2

Frequency [Hz]

X
1
 → X

3

X
1
 → X

4

X
2
 → X

1

X
2
 → X

3

X
2
 → X

4

X
3

→ X
1

X
3
 → X

2

X
3

→ X
4

X
4
 → X

1

X
4
 → X

2

X
4
 → X

3

0 0.1 0.2 0.3 0.4 0.5
0

0.2
0.4
0.6
0.8

1

X
1
 → X

2

Frequency [Hz]

X
1
 → X

3

X
1
 → X

4

X
2
 → X

1

X
2
 → X

3

X
2

→ X
4

X
3
 → X

1

X
3
 → X

2

X
3
 → X

4

X
4
 → X

1

X
4
 → X

2

X
4
 → X

3

X 1

X 3

X 2 X 4

X 1

X 3

X 2 X 4

(b) (d)

Fig. 3. Directed transfer function for the VAR-model of example 1 (a). The auto-directed transfer functions di i are given on the

diagonal. The directed interdependencies are summarized in the graph in (b). Besides the true interactions, two indirect influences are

detected as directed ones by means of the directed transfer function, indicated by the dashed arrows. Partial directed coherence is given

in (c) and the resulting graph in (d). The simulated interdependence structure has been reproduced correctly.
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applying parametric approaches based on VAR-
modeling of the system investigated. Thus, three
independent white noise processes X 1ðtÞ ¼ s1Z1ðtÞ,
X 2ðtÞ ¼ s2Z2ðtÞ, X 3ðtÞ ¼ s3Z3ðtÞ, Zi�Nð0; 1Þ have
been simulated with 10.000 data points each and
different variances s2;3 ¼ 500 � s1. In Fig. 4(a) the
values of the GCI is shown and in Fig. 4(b) the
resulting graph. No Granger-causal influence
between the three processes is indicated.
In Fig. 5 results for DTF (a) and PDC (b) are

given. For this analysis an order of p ¼ 10 for the
fitted VAR-model has been chosen. When apply-
ing both techniques directly to the signals X i,
influences from process X 1 to process X 2 and to
process X 3 are observed by DTF and PDC
analysis (gray lines). This result is illustrated in
the graph in Fig. 5(c) by dashed arrows.
False detection of influences is caused by the

differences in the variance between X 1, X 2 and X 3,
leading to spurious, directed influences from the
process with low variance to the processes with
significantly higher variances. The difference in the
variance yields large errors on the parameter
estimates. A renormalization of the covariance
matrix Ŝ of the noise of the estimated VAR-model,
such that the covariance matrix Ŝ of the estimated
VAR-model approximately equals the identity
matrix and subsequent application of the para-
metric analysis technique, leads to the correct
results. This is shown in Fig. 5(a) and (b) by the
black lines. No directed influences are indicated
and the independence between the noise processes
is reproduced correctly.

3.3. Example 3: Four-dimensional coupled

stochastic Roessler system

An additional challenge expected in applications
to time series representing neural signal transfer is
a possible nonlinearity of the processes. At least
weakly nonlinear dynamic systems must not lead
immediately to wrong results when applying
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multivariate linear analysis techniques. To exam-
ine the performance of the linear methods in
application to a nonlinear stochastic systems, a
coupled stochastic Roessler system [33]

_X j

_Y j

_Zj

0
BB@

1
CCA ¼

�OjY j � Zj þ
P

i

kjiðX i � X jÞ

� �
þ Zj

OjX j þ aY j

bþ ðX j � cÞZj

0
BBBB@

1
CCCCA

i; j ¼ 1; 2; 3; 4 ð13Þ

with frequencies Oj has been analyzed. The
frequencies of the four oscillators have been
shifted using O1 ¼ 1:01, O2 ¼ 0:99, O3 ¼ 0:97,
and O4 ¼ 1:03. The parameters of the oscillators
have been set to a ¼ 0:15, b ¼ 0:2, and c ¼ 10. The
stochastic influence is given by Gaussian distrib-
uted white noise Zj. The interaction between
oscillator i and oscillator j is modeled by means
of a coupling between the X i- and X j-component
and the coupling strength is adjusted by the
coupling parameters kjia0. In the following, the
coupling parameters have been set to k12 ¼ 0:04,
k21 ¼ 0:04, k41 ¼ 0:04, k13 ¼ 0:04, k34 ¼ 0:04. The
remaining couplings strengths have been set to
zero. The simulated coupling scheme is summar-
ized in the graph in Fig. 6. The nonlinear
stochastic system has been simulated using an
Euler method with an integration step of 0.004, a
sampling step of 0.1, and N ¼ 50:000 data points.
The time series analysis techniques have been
applied to X-components of the Roessler system in
the following.
Applying the GCI to this nonlinear system, no

directed relationship between any of the processes
is detected (data not shown). Due to the high
model order which is required to describe the
nonlinear processes sufficiently well, higher fluc-
X1

X3

X2

X4

Fig. 6. Directed graph summarizing the coupling scheme of the

coupled stochastic Roessler system.
tuations of the GCI are observed compared to the
previous investigations of vector autoregressive
models.
For oscillatory processes with pronounced

frequencies, analysis techniques in the frequency
domain are preferable. In Fig. 7(a) results for the
application of the DTF are shown and in (b) the
resulting directed graph. The DTF is characterized
by peaks at the oscillation frequencies f i ¼

Oi=2p � 0:16 of the Roessler oscillators. For the
DTF, no analytic significance level based on the
statistical properties of this quantity has been
derived so far. Surrogate data tests based on
Fourier transformation and shuffling of phases
have been proposed to estimate confidence levels
[29]. While results obtained by this procedure
might be true, we doubt the formal correctness of
these confidence levels. For instance, shuffling the
phases and inverse Fourier transformation leads to
a stationary linear system of independent time
series [43]. Tests for the absence of coupling might
thus also test against stationarity or linearity of the
system. Therefore, false positive conclusions about
the presence of interactions are possible. Due to
these problems related to surrogate data testing,
we did not utilize this procedure in the present
investigation.
Nevertheless, high values of the DTF at the

oscillation frequencies are observed for the influ-
ence from process X 3 to process X 1 and from
process X 4 to process X 3, indicated by solid
arrows in the graph. Smaller directed influences
are suggested in both directions between process
X 1 and process X 2 as well as from process X 1 to
process X 4, indicated by dashed arrows in the
graph.
To illustrate a specific problem which might

occur when analyzing multivariate dynamical
systems, results for bivariate coherence analysis
(CohXY jZ¼0ðoÞ) are shown in addition to partial
coherence analysis in Fig. 8(a). Critical values for a
5%-significance level are given by the gray lines.
The resulting graph is given in Fig. 8(b). Due to
the functional relationship of the asymptotic
variance of the phase spectrum (cf. Section
2.1.1), directions of influences are not reliably
detectable by means of partial phase spectra.
Apart from bivariate coherence between processes
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Fig. 7. Directed transfer function for the coupled stochastic Roessler system (a). The auto-directed transfer functions di i are shown

on the diagonal. Due to the absence of an analytic significance level, results are difficult to interpret in this example. However, higher

values of the directed transfer function at the oscillation frequencies indicate the direction of the influences summarized in the graph in

(b). Dashed arrows reflect low values of the directed transfer function.
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X 2 and X 3, all bivariate coherences are significant
at the oscillation frequency. The indirect coupling
between the oscillators X 2 and X 4 is revealed
correctly, as partial coherence is non-significant at
the oscillation frequency. However, a significant
partial coherence is observed between oscillators
X 2 and X 3 although the bivariate coherence
between both processes is non-significant. This
effect is called marrying parents of a joint child and
is explained as follows:
Both processes X 2 and X 3 influence process X 1

but do not influence each other. This is correctly
indicated by bivariate coherence analysis between
oscillator X 2 and oscillator X 3. In contrast to
bivariate coherence, partial coherence between
X 2 and X 3 conditions on X 1. To explain the
significant partial coherence between the processes
X 2 and X 3, the specific case X 1 ¼ X 2 þ X 3 is
considered. A subtraction of the optimal linear
information 1=2ðX 2 þ X 3Þ from X 2 leads to
1=2ðX 2 � X 3Þ. Analogously, a subtraction of the
optimal linear information 1=2ðX 2 þ X 3Þ from X 3

leads to �1=2ðX 2 � X 3Þ (cf. Section 2.1.1). As
coherence between 1=2ðX 2 � X 3Þ and �1=2ðX 2 �

X 3Þ is one, the partial coherence between X 2 and
X 3 becomes significant. This effect is also observed
for more complex functional relationships between
process X 1 and the processes X 2 and X 3. The
‘‘parents’’ X 2 and X 3 are connected and ‘‘married
by the common child’’ X 1. The interrelation
between X 2 and X 3 is still indirect, even if the
partial coherence is significant. In conclusion, the
marrying parents of a joint child effect should not
be identified as a direct interrelation between the
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spectra of the processes are shown. Except from the coherence between processes X 2 and X 3, each pair of processes are bivariately
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dashed line in the undirected graph in (b). Results of partial directed coherence analysis (c). The level of significance is indicated by the

gray lines. The resulting graph is given in (d) and the simulated coupling scheme is reproduced correctly.
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corresponding processes and is detected by simul-
taneous calculation of bivariate coherence and
partial coherence.
The coupling scheme within the Roessler system

is detected correctly by PDC analysis using a
sufficiently high order p ¼ 200 for the VAR-
model. PDC is shown in Fig. 8(c) and the resulting
directed graph in Fig. 8(d). Critical values for a
5%-significance level are given by the gray lines.
The bidirectional coupling between processes X 1

and X 2 as well as all unidirectional couplings are
detected by significant PDC values at the oscilla-
tion frequency.

3.4. Example 4: Three-dimensional VAR-process

with non-stationary parameters

The final investigation of synthetic data sets is
devoted to non-stationary signals. For this pur-
pose, analysis techniques revealing time-varying
influences are required. When neglecting the
presence of non-stationarities in neural data,
averages of interactions in neural signal transfer
would be estimated.
But changes in the interactions may contain the

most relevant information, e.g. when analyzing
EEG recordings of epilepsy patients in the transi-
tion to a seizure. For a focal epilepsy, a seizure
starts from a well-defined area in the brain and
spreads until large areas of the brain are involved
in the seizure. Changes in interactions are taking
place during seizure spread and are therefore of
particular interest. A different example is the
processing of sensory input. The temporal varia-
tions in the interaction might infer the way
information is processed by the brain.
The application of the multivariate analysis

techniques to non-stationary systems has been
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examined in the following by a three-dimensional
VAR [2]-process with time-varying parameters

X 1ðtÞ ¼ a1ðtÞX 1ðt� 1Þ þ b1ðtÞX 1ðt� 2Þ

þ c12ðtÞX 2ðt� 1Þ þ c13ðtÞX 3ðt� 1Þ þ Z1ðtÞ,

X 2ðtÞ ¼ a2ðtÞX 2ðt� 1Þ þ b2ðtÞX 2ðt� 2Þ

þ c21ðtÞX 1ðt� 1Þ þ c23ðtÞX 3ðt� 1Þ þ Z2ðtÞ,

X 3ðtÞ ¼ a3ðtÞX 3ðt� 1Þ þ b3ðtÞX 3ðt� 2Þ

þ c31ðtÞX 1ðt� 1Þ þ c32ðtÞX 2ðt� 1Þ þ Z3ðtÞ,

Zi�Nð0; 1Þ; i ¼ 1; 2; 3. ð14Þ

N ¼ 10:000 data points have been simulated. The
process parameters a1 ¼ 0:5, a2 ¼ 0:7, a3 ¼ 0:8,
b1 ¼ 0:7, b2 ¼ �0:5, and b3 ¼ 0 have been kept
constant. The influence from process X 2 to process
X 1 was given by

c21ðtÞ ¼
0:5 t

5:000 if tp5:000;

0:5 10:000�t
5:000 else;

(
(15)

modeling a positive triangular function with a
maximum value of 0.5 in the middle of the
simulation period. The influence in the opposite
direction has been chosen to be constant at a value
c21ðtÞ ¼ 0:2. A unidirectional influence from pro-
cess X 3 to X 2 was given by

c23ðtÞ ¼
0:4 if tp7:000;

0 else;

(
(16)

modeling an abrupt breakdown of the influence
after 70% of the simulation period. The remaining
parameters modeling the influences have been set
to zero, i.e. c32ðtÞ ¼ c13ðtÞ ¼ c31ðtÞ ¼ 0. The simu-
lated interdependence structure is summarized in
Fig. 9.
Values of the GCI are given in Fig. 10(a) and the

resulting graph in (b). The triangularly modulated
X1 X3X2

t

const.

t

Fig. 9. Directed graph summarizing the interdependence

structure of the VAR-model with non-stationary parameters.
influence from process X 2 to process X 1 is detected
correctly as well as the abrupt change in the
influence from process X 3 to process X 2. As the
constant influence from process X 1 to process X 2

is rather weak, the GCI is only slightly different
from zero. However, compared to the remaining
values of the GCI, a direct influence from process
X 1 to process X 2 is indicated (dashed arrow in the
graph). The GCI is capable of reproducing the
non-stationary interdependence structure.
In Fig. 11(a) the results for the DTF are shown

and the resulting graph in Fig. 11(b). The auto-
DTFs of the processes are shown on the diagonal.
Apart from one spurious influence from process
X 3 to process X 1, indicated by the dashed arrow,
all influences and their changes are detected
correctly by means of DTF analysis. Results for
application of PDC based on state space modeling
and the resulting graph are given in Fig. 11(c) and
(d), respectively. The spectra of the three processes
are shown on the diagonal. The spurious directed
influence from process X 2 to X 3 during the first
few time points is caused by edge effects of the
estimation procedure. Small PDC values for the
influence from process X 1 and process X 2 to
process X 3 are considered to be negligible. The
remaining influences, their directions as well as
their non-stationary behavior are reproduced
correctly using PDC.
4. Application to neural data

In order to examine time-variant causal influ-
ences within distinct neural networks during
defined functional states of brain activity, data
obtained from an experimental approach of deep
sedation were analyzed. BSP in the brain electric
activity were used for the analysis. This specific
functional state was chosen because BSP represent
a defined reference point within the stream of
changes in EEG properties during sedation [1]
leading to secured unconsciousness. An analysis of
well-described alternating functional states of
assumed differences of signal transfer in a time
frame of seconds is possible. It has been shown
that a hyperpolarization block of thalamo-cortical
neurons evoked mainly by facilitated inhibitory
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Fig. 10. Time-varying Granger causality index applied to the three-dimensional, time-varying VAR-model (a), which is summarized in

the graph in (b). The influence from process X 1 to process X 2 is constant with time and is detected by a weak Granger causality index

(dashed arrow). In contrast, the influence from process X 2 to process X 1 is not constant as indicated by the Granger causality index,

but modulated by a triangular function. In addition, the abrupt change in the interrelation from process X 3 to X 2 is also detected

correctly by the Granger causality index.

M. Winterhalder et al. / Signal Processing 85 (2005) 2137–2160 2151
GABAergic input of reticular thalamic nucleus
(RTN) activity induces inhibition of thalamo-
cortical volley activity which is reflected by cortical
interburst activity [44,45]. This in turn is assumed
to be responsible for disconnection of afferent
sensory input leading to unconsciousness [46]. The
role of burst activity in terms of information
transfer remains elusive. Therefore, we studied
BSP in order to elaborate time and frequency-
dependent features of information transfer be-
tween intrathalamic, thalamo-cortical and cortico-
thalamic networks. Patterns were induced by
propofol infusion in juvenile pigs and derived
from cortical and thalamic electrodes. The analysis
was performed to clarify a suggested time-depen-
dent directed influence between the above men-
tioned brain structures known to be essentially
involved in regulation of the physiological varia-
tion in consciousness during wakefulness and
during sleep [32,47] as well as responsible to
induce unconsciousness during administration of
various anesthetic and sedative compounds [46]. In
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Fig. 11. Time-varying directed transfer function applied to a three-dimensional, time-varying VAR-model (a). On the diagonal the

auto-directed transfer functions are shown. With the exception of the direct influence from process X 1 to X 2, from process X 2 to X 1,

and from process X 3 to X 2, one indirect but directed interrelation is detected from X 3 to X 1, which is highest for those time points,

where both influences from process X 3 to X 2 and X 2 to X 1 are highest. Compared to the Granger causality index, the functional

relationship of the influences, especially for the triangular modulated influence, is more difficult to observe. However, the frequency

dependence of the interrelations is easier to trace. The graph summarizing the results is shown in (b). The dashed arrow marks the

indirect influence from process X 3 to process X 1. Corresponding results using time-varying partial directed coherence are shown in (c).

On the diagonal the spectra of the processes are given. Compared to the directed transfer function approach results are very similar.

The indirect influence from process X 3 to X 1 is unmasked by partial directed coherence. In contrast to the other approaches, the

directed interrelation between X 1 and X 2 is rather large. This is caused by the fact that partial directed coherence is normalized by the

influencing process. There is a spurious influence from process X 2 onto X 3 for the first few time units, which is caused by edge effects of

the estimation procedure. The results are summarized in the graph in (d).
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addition, the alternating occurrence pattern char-
acteristic of burst activity allowed a triggered
analysis of the GCI. Multiple trials enable to
use a generalized recursive least square estimator
[14,30], providing a more stable VAR parameter
estimation and a calculation of a significance level
based on these repetitions.

4.1. Experimental protocol and data acquisition

The investigation was carried out on six female,
domestic juvenile pigs (mixed breed, 7 weeks old,
15.171.4 kg b.w). Deep sedation with BSP was
induced by continuous propofol infusion. Initially,
0.9mg/kg b.w./min of propofol for approximately
7min were administered until occurrence of BSP in
occipital leads [31], followed by a maintenance
dose of 0.36mg/kg b.w./min. Ten screw electrodes
at frontal, parietal, central, temporal, and occipital
brain regions were utilized for ECoG recordings.
For signal analysis a recording from the left
parietooccipital cortex (POC) was used. Electrodes
introduced stereotactically into the rostral part of
the RTN and the dorsolateral thalamic nucleus
(LD) of the left side were used for the electro-
thalamogram (EThG) recordings (cf. Fig. 12a).
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Fig. 12. (a) Schematic representation of electrode localizations. ECoG indicates POC recording which is used in the present
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of a juvenile pig under propofol-induced deep sedation.
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Unipolar signals were amplified and filtered (12-
channel DC, 0.5–1000Hz bandpass filter, 50Hz
notch filter; Fa. Schwind, Erlangen) before
sampled continuously (125Hz) with a digital data
acquisition system (GJB Datentechnik GmbH,
Langewiesen). Four linked screw electrodes in-
serted into the nasal bone served as reference.
ECoG and EThG recordings were checked
visually to exclude artifacts.

4.2. Analysis of time-variant and multivariate

causal influences within distinct thalamo-cortical

networks

In order to quantify time-variant and multi-
variate causal influences in a distinct functional
state of general brain activity, we have chosen a
representative example of deep sedation, charac-
terized by existence of BSP. We used registrations
from both thalamic leads (LD, RTN) and from the
POC, which is known to respond early with
patterns typical for gradual sedation including
BSP [31]. In the present application, results for the
GCI and the PDC are discussed, since a time-
resolved extension of partial coherence is not
considered and the DTF approach leads to results
similar to PDC.
For PDC analysis continuous registrations of

384 s duration were utilized to provide an overview
of the entire recording (Fig. 12b). For a closer
investigation of the burst patterns the analysis
using the GCI was applied to triggered registra-
tions of 3 s duration each, i.e. 1 s before and 2 s
after burst onset (Fig. 12c). In a total of 66 trials,
trigger points were identified by visual inspection
and were set at the burst onset. The deep sedation
state was characterized by a distinct BSP in the
POC lead as well as continuous high amplitude
and low frequency activity in both thalamic leads.
For the entire time series of 384 s duration,

pairwise PDC analysis was performed to investi-
gate time-varying changes in directed influences
between both thalamic structures RTN and LD
and the POC. The results are shown in Fig. 13(a).
On the diagonal the time-resolved auto-spectra are
given. The graph summarizing the influences is
given in Fig. 13(b). A strong and continuous
influence is observed from both thalamic leads
RTN and LD to POC at approximately 2Hz. For
the opposite direction, the causal influences are
restricted to the low frequency range (o1Hz)
indicated by the dashed arrows in the graph.
Furthermore, a directed influence is strongly
indicated between the thalamic leads from LD to
RTN, while the opposite direction shows a
tendency to lower frequencies. The time-depen-
dency is more pronounced in the interaction
between both thalamic leads.
A clearer depiction of the interrelation struc-

tures occurring during the single burst patterns is
presented in Fig. 14 by applying the GCI to
segments of 3 s duration. For pairwise analysis
between the three signals (cf. Fig. 14a and b),
directed influences from both thalamic leads to the
POC are observed for broad time periods. At
several, well-defined time points, causal influences
are detected for the opposite direction and
between both thalamic leads (dashed arrows).
The interrelation between the thalamic leads
remains significant for the multivariate analysis
given in Fig. 14(c) and (d). The directed influence
from POC to LD and RTN is reduced to the burst
onsets. From RTN and LD to the POC, no
significant interrelation is traceable.
Results from the multivariate GCI cannot be

directly correlated to the results obtained by the
bivariate analysis. In particular, the missing
interrelation from RTN and LD to POC is difficult
to interpret with the knowledge of the bivariate
results. One possible explanation might be an
additional but unobserved process commonly
influencing the three processes. This assumption
is suggested by the results obtained from somato-
sensory-evoked potential (SEP) analysis (Fig. 15).
In contrast to previous opinions of a proposed
functional disconnection of afferent sensory inputs
to thalamo-cortical networks during interburst
periods leading to a functional state of uncon-
sciousness [46], SEP analysis indicates that even
during this particular functional state a signal
transduction appears from peripheral skin sensors
via thalamo-cortical networks up to cortical
structures leading to signal processing. Hence in
principle, a subthalamic generated continuous
input could be responsible for the pronounced
influence in the low frequency band, as shown by
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Fig. 13. Pairwise partial directed coherence based on state-space modeling for the signals of 384 s duration (a). On the diagonal the

spectra are shown. Partial directed coherences from the thalamic leads RTN and LD to POC indicate a pronounced influence at

approximately 2Hz. The opposite direction is restricted to low frequencies (o 1Hz). Both thalamic leads are mutually influencing each

other. The graph summarizing the results is shown in (b). The dashed arrows correspond to influences for low frequencies.
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PDC analysis. Such a low frequency component
might not be observable by the GCI due to the
missing selectivity for specific frequency bands.
Problems in the estimation procedure caused by,

for instance, highly correlated processes or missing
of important processes could also explain this
effect [15]. Furthermore, the discrepancies between
the bivariate and multivariate analysis could be
due to the nonlinear behavior of the system.
However, we claim that this possibility is not very
likely, because spectral properties obtained in
PDC analysis do not indicate a highly nonlinear
behavior.
5. Discussion of applicability of multivariate linear

analysis techniques to neural signal transfer

In this study we investigated and compared the
properties of linear multivariate time series analy-
sis techniques, i.e. non-parametric cross-spectral
and parametric approaches. In the application of
these methods to neural signal transfer, for
example in the analysis of neural coordination in
either the normal or pathological brain, one
should be aware not only of the potentials but
also the limitations of the methods. For this
purpose, the features of the different analysis
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Fig. 14. Investigation of directed interrelations during the occurrence of burst patterns using the Granger causality index in the time-

domain. Gray-colored regions indicate significant influences (alpha ¼ 5%,one-sided). When applying pairwise analysis, directed
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techniques were analyzed by means of synthetic
data simulated by various model systems.
To demonstrate the performance of the multi-

variate analysis techniques on a system they are
developed for, a linear vector autoregressive model
system was investigated first. In order to assess the
specificity of the methods, independent noise
processes with dramatically different variances
were analyzed. Since it has not yet been fully
determined whether particularly linear parametric
methods can be applied to nonlinear systems,
which are found in various fields of research, a
multivariate Roessler system was examined. The
Roessler system is a representative of the wide
class of nonlinear chaotic systems. Finally, a time-
variant and thus non-stationary system completed
the investigation on model systems. Analysis
techniques which do not account for such time
dependence of interactions and processes them-
selves, reveal only averaged results of the true
interrelation structure. Non-stationary data are in
particular expected when investigating brain neur-
al networks.
We note, however, that the simulations per-

formed in this study cannot include the totality of
the huge number and variety of multivariate
systems. But this should not lessen the value of
the comparison. To capture all reasonable situa-
tions, a countless number of systems and corre-
sponding parameter choices would have to be
investigated. However, the simulations presented
here may be considered representative of the many
situations faced in real-life applications. They are
substantiated by at least heuristic arguments
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Table 1

Summary of the results obtained by the comparison of the four

multivariate time series analysis techniques

PC GCI DTF PDC

Direct versus indirect interactions + + � +

Direction of influences (�) + + +

Specificity in absence of influences + + (+) (+)

Nonlinearity of data + � (+) +

Influences varying with time + + +

To evaluate the performance, five aspects are considered. The

brackets denote some specific limitations.

Burst Interburst

20 µV

50 ms

POC

RTN

LD

Fig. 15. Evoked activity derived from the parietooccipital

cortex (POC, upper panel), rostral part of reticular thalamic

nucleus thalamus (RTN, middle panel) and dorsolateral

thalamic nucleus (LD, lower panel) owing to bipolar stimula-

tion of the trigeminal nerve by a pair of hypodermic needles

inserted on left side of the outer disc ridge of the porcine snout

(rectangular pulses with constant current, duration of 70ms,
1Hz repetition frequency, 100 sweeps were averaged) in order

to obtain somatosensory-evoked potentials (SEP) during burst

as well as interburst periods. Note a similar signal pattern

during burst and interburst periods.
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revealing reasons for the properties of the methods
in various situations. For specific problems,
simulations should be performed in advance of
each analysis tailored to the investigated problem.
On the basis of the simulations, the performance

of the four investigated analysis techniques, i.e. PC
with its corresponding phase spectrum, the GCI,
the DTF, and the PDC are summarized with
respect to five aspects (cf. Table 1), which are
important when analyzing brain neural networks:
�
 Direct and indirect interactions: A differentia-
tion between direct and indirect information
transfer in multivariate systems is not possible
by means of the DTF. Therefore, the DTF is
not sensitive in this sense (minus sign in Table
1). The remaining multivariate analysis techni-
ques are in general able to distinguish between
direct and indirect interactions. Thus, the GCI,
PDC, and PC are sensitive in distinguishing
direct from indirect influences. Despite the high
sensitivity in general, there might be some
situations in which this characteristic is re-
stricted, for instance in nonlinear systems, non-
stationary systems, etc.

�
 Direction of influences: All multivariate methods
are capable of detecting the direction of
influences. Partial coherence in combination
with its phase spectrum is limited to high
coherence values and to unidirectional influ-
ences between the processes. This shortcoming
of partial coherence and partial phase spectrum
is indicated by the minus sign in Table 1.

�
 Specificity in absence of influences: All four
analysis techniques reject interrelations in the
absence of any influence between the processes,
reflecting the high specificity of the methods.
For the parametric approaches DTF and PDC,
a renormalization of the covariance matrix of
the noise in the estimated VAR-model is
required. Otherwise spurious interactions are
detected. A significance level for both techni-
ques should account for this. For the signifi-
cance level for PDC, this dependence on the
noise variance is explicitly considered. How-
ever, the renormalization is necessary to achieve
a balanced average height of values of PDC and
DTF in the case of an absence of an interaction
at the corresponding frequency.

�
 Nonlinearity of data: For the nonlinear coupled
stochastic Roessler system with pronounced
frequencies, analysis techniques in the fre-
quency domain are preferable. High model
orders are required to describe the nonlinear
system sufficiently with a linear VAR-model. As
there is no analytical significance level, inter-
pretation of the results obtained by the DTF
and the GCI is more complicated. The PC,
PDC, and the DTF are sensitive in detecting
interactions in nonlinear multivariate systems.
The GCI does not reveal the correct interrela-
tion structure.
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�
 Influences varying with time: In this study,
partial coherence is not examined as a time-
varying analysis technique. The GCI, DTF, and
the time-varying PDC detect various types of
time-varying influences. Therefore they are
sensitive for time-resolved investigations of
non-stationary data.

This summary provides an overview of which
analysis techniques are appropriate for specific
applications or problems. We note, however, that
the particular capabilities and limitations of a
specific analysis technique do not simply point to
drawbacks of the method in general. If for instance
the major task is to detect directions of influences,
the DTF is applicable even if the differentiation,
for example of direct or indirect interactions, is not
possible.
Partial coherence as a non-parametric method is

robust in detecting relationships in multivariate
systems. Direct and indirect influences can be
distinguished in linear systems and in the example
of the nonlinear stochastic Roessler system. Since
partial coherence is a non-parametric approach, it
is possible to capture these influences without
knowledge of the underlying dynamics. Further-
more, the statistical properties are well-known and
critical values for a given significance level can be
calculated in order to decide on significant
influences. This is an important fact especially in
applications to noisy neural signal transfer as
measured by e.g. EEG recordings. A drawback is
that the direction of relationships can only be
determined by means of phase spectral analysis. If
spectral coherence is weak or restricted to a small
frequency range, directions of influences are
difficult to infer by means of partial phase spectral
analysis. Additionally, mutual interactions be-
tween two processes are also hardly detectable
utilizing partial phase spectra.
Defined in the time-domain, the GCI is favor-

able in systems where neither specific frequencies
nor frequency-bands are exposed in advance. The
GCI utilizes information from the covariance
matrix. Weak interactions or narrow-band inter-
actions are difficult to detect since they lead to
only small changes in the covariance matrix. This
property accounts for the fact that when applying
the GCI to the nonlinear signals of the coupled
Roessler systems, the coupling scheme was no
longer detectable. The GCI, estimated by means of
the recursive least square algorithm, renders a
methodology to trace interdependence structures
in non-stationary data possible. This might be-
come important in applications to brain neural
networks, when the time course of transitions in
neural coordination is of particular interest.
By means of the DTF, directions of influences in

multivariate dynamical systems are detectable.
Nevertheless, in contrast to the remaining three
analysis techniques under investigation in the
present study, a differentiation between indirect
and direct influences is not possible using the
DTF. Analyzing brain networks, at least weakly
nonlinear processes might by expected to generate
the neural signals. In the application to the
nonlinear stochastic Roessler system, the direc-
tions of the couplings have been observed at the
oscillation frequencies. The DTF benefits from its
property as an analysis technique in the frequency
domain. Increasing the order of the fitted model
system is sufficient to capture the main features of
the system and thus to detect the interdependence
structure correctly. Nevertheless, a matrix inver-
sion is required for estimating the DTF, which
might lead to computational challenges especially
if high model orders are necessary. In order to
detect transitions in the coordination between
neural signals, the DTF is useful when applying
a time-resolved parameter estimation procedure.
In our investigations of synthetic data sets, PDC

has been the most powerful analysis technique. By
means of PDC, direct and indirect influences as well
as their directions are detectable. The investigation
of the paradigmatic model system of coupled
stochastic Roessler oscillators has shown that at
least for weak nonlinearities coupling directions can
be inferred by means of PDC. Increasing the order
of the fitted model is required to describe the
nonlinear system by a linear VAR-model suffi-
ciently. However, as the statistical properties of
PDC and significance levels for the decision of
significant influences are known, high model orders
of the estimated VAR-model are less problematic.
Using additionally time-resolved parameter estima-
tion techniques, PDC is applicable to non-stationary
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signals. Using this procedure, influences in depen-
dence on time and frequency are simultaneously
detectable. Since in applications to neural networks
it is usually unknown whether there are changes in
neural coordination or whether such changes are of
particular interest, respectively, time-resolved ana-
lysis techniques avoid possible false interpretations.
The promising results showing that most para-

metric linear analysis techniques have revealed
correct interaction structures in multivariate sys-
tems, indicates beneficial applicability to empirical
data. We analyzed electrophysiological signals
from thalamic and cortical brain structures repre-
sentative for key interrelations within a network
responsible for control and modulation of con-
sciousness. We used data obtained from experi-
mental recordings of deep sedation with BSP,
which allows usage of data from a well-defined
functional state including a triggered analysis
approach. PDC based on state space modeling
allows for inference of the time- and frequency-
dependence of the interrelation structure. The
mechanisms generating burst patterns were inves-
tigated in more detail by applying the GCI.
Besides a clear depiction of the system generating
such burst patterns, the application presented
here demonstrates, that time dependence is not
negligible.
In conclusion, several analysis techniques exist

to detect interrelation structures in multivariate
systems. We compared four different analysis
techniques and described their different perfor-
mances and properties. Since each analysis
technique is superior for specific problems, simul-
taneous application of several analysis techniques
is the preferable procedure.
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