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Abstract. The analysis of multi-dimensional biomedical systems requires analy-
sis techniques, which are able to deal with multivariate data consisting of both
time series as well as point processes. Univariate and bivariate analysis techniques
in the frequency domain for time series and point processes are established and
investigated, although the number of investigations is strongly biased towards time
series. Actual multivariate techniques for time series or hybrids of time series and
point processes are scarcely addressed. Here, we present spectral analysis tech-
niques which are able to analyse point processes as well as time series. Thereby,
univariate, bivariate as well as multivariate techniques are discussed. Applica-
tions to simulated as well as real-world data reveal the abilities of the proposed
techniques.

1 Introduction

Recordings of multivariate datasets are omnipresent in many fields of research. For a better
understanding of the underlying system, say a biomedical network, univariate, bivariate, and
recently multivariate analysis techniques have been proposed [1–3]. It is not clear in the first
place how to extend these methods to the case where the observed processes are point processes.
In contrast to a time series, point processes are sequences of events. The information is encoded
solely by the times of the occurrences of these events. Point processes are of particular interest in
neuroscience due to the fact that interactions and information processing of neurons is realised
by point processes, i.e. the instants in time when action potentials are generated. Multivariate
time series analysis techniques, applicable to point processes, would allow for inference of the
network structure of neuronal networks. Whenever the interplay between neuronal activity and
time series has to be addressed, a further adaptation of the techniques to cope with hybrids
of time series and point processes is mandatory. A hybrid of time series and point processes is
for instance recorded in tremor research. During stereotactic neurosurgery neuronal activity as
well as muscular activity is recorded, whereby the latter represents a time series. The analysis
techniques summarised and introduced in this work are applied to simulated data and the
tremor example mentioned above.
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Fig. 1. Subtraction of the mean of a point process. Upper row: Counting process N(t) (trend indicated
in grey) and its derivative dN

dt
. Lower row: Counting process N̄(t) (trend subtracted) and its derivative.

2 Fourier transform for time series and point processes

For a time series x(t) of length N and sampling rate 1/∆t the Fourier transform is given by

FT {x(t)}(ω) = 1√
πN

N∑
j=1

e−iωj∆tx(j∆t), (1)

with natural frequency values ωk =
2πk
N∆t

= 2π
T
k, k = −N2 . . . , 0, . . .

N
2 where N∆t = T is the

length of the time series.
Since point processes are characterised by a sequence of events, the notion of time series

is no longer valid. Several approaches have been discussed to calculate the Fourier transform
of a point process. A common idea is to convert the point process into a time series to make
it accessible for the well-investigated methods in the framework of time series analysis. This
conversion can be implemented by binning or by a convolution with an appropriate kernel
function [4,5].
The application of the binning method requires a careful choice of the binning width to

avoid aliasing effects. The aliasing effect is long known for time series. Assume that for instance
a biomedical system under investigation contains frequenices of a certain band width. Assume
further that this process is sampled at frequency fs. At least two scenarios are now conceivable.
Firstly, the frequency band of the biomedical system is lower than twice the sampling frequency.
In this case all frequencies can be analysed by spectral analysis. Secondly, the sampling fre-
quency is too low, i.e. it is lower than twice the upper bound of the frequency band. In this
case, spectral analysis will yield false postive informations about the frequencies contained in
the signal. Components of the signal with a frequency f0 higher than the Nyquist frequency
fNy will contribute to the Fourier transform at fNy − f0 leading to strongly biased estimators
of, for instance, the spectrum (see below). The Nyquist frequency is given by

fNy =
fs

2
, (2)

with fs denoting the sampling frequency. For time series it is necessary to low pass filter the
data before sampling with a cut off frequency smaller than the Nyquist frequency.
For point processes there is no natural analogue to the Nyquist frequency since point

processes are not sampled like time series. When transforming the point processes into time
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series the binning introduces however an artificial Nyquist frequency. To ensure an unbiased
estimator of, for instance, the spectrum, as a thumb rule this Nyquist frequency can be chosen
to be the 3- to 7-fold of the characteristic frequency fmax of the process. This characteristic
frequency can be determined if there is prior knowledge about the characteristic time intervals
Tchar of the process and therefore of fmax = 1/Tchar. Alternatively, it is possible to choose a
small binning width to ensure that there are mainly zeros and only very few ones in the time
series, which in turn ensures a sufficiently high sampling rate.
If there is no prior knowledge about the process, data driven concepts to derive an equation

for the Nyquist frequency implicitly are conceivable. However, to avoid the problems described
above emerging from the conversion of the point process to a time series, Fourier transformation
and therefore spectral estimation should be performed directly on the point process.
To this aim, an intuitive notion of point processes is given by the number of events Nt =∑
sΘ(t − Ts) that occurred until time t. The Heaviside function Θ(x) takes the value one for

x > 0, zero otherwise. Thereby, the times Ts denote the occurrence of events. The expectation
value of Nt for a stationary point process is given by

E{Nt} = λt. (3)

The quantity λ is called the intensity of the point process, which can be interpreted as the firing
rate of the point process. For the increment process of the point process we obtain a series of
Dirac-δ(·) functions

dNt =
∑
s

δ(t− Ts) dt. (4)

The Fourier transform of the point process of length T is then straight forward

FT {dNt}(ω) =
1√
πT

∫
e−iωt dNt, (5)

=
1√
πT

∑
s

e−iωTs . (6)

However, this definition has the disadvantage that for ω = 0 every single addend in the sum
equals one, which would lead to a singularity for ω = 0. This in turn leads to overestimated
spectral values for low frequencies.
To overcome this limitation, it is important to subtract the mean of the point process. The

centred point process N̄t = Nt − λt with expectation value E
{
dN̄t/dt

}
= 0 is considered. In

the case of a stationary point process the intensity can be estimated via λ̂ = NT /T .
The Fourier transform [6]

FT {dN̄t}(ω) =
1√
πT

∫
e−iωtdN̄t, (7)

=
1√
πT

∫
e−iωt[dNt − λdt], (8)

=
1√
πT

[∑
s

e−iωTs − 2πλδ(ω)
]
, (9)

reveals periodicities in the occurrence of events that lead to an increase in the correlation at
that specific frequency with respect to the correlation expected by chance alone.

3 Spectral estimation

Here we address the differences in the spectral estimation between time series and point
processes.
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3.1 Spectral estimation for time series

The spectrum of a process can be defined as the expectation value of its periodogram

S(ωk) = E {Perx(ωk)} . (10)

The periodogram in given by [9]

Perx(ωk) = |FT {x(t)}(ωk)|2 , (11)

with ωk =
2πk
N∆t
, k = 1, . . . , N2 and ∆t denoting the sampling width. However, for finite realisa-

tions of this process, i.e. the time series, an estimator for the spectrum has to be introduced.
Given a zero mean time series x(t) of length N of a stationary process, fulfilling certain mixing
conditions [7], the spectrum can be estimated by smoothing the periodogram [4,8]. Using a
smoothing window wj of width 2s+ 1 which has to fulfil

∑
j wj = 1, for example a triangular

window, the estimate of the spectrum is given by

Ŝx(ωk) =

s∑
j=−s

wjPerx(ωk+j) =

s∑
j=−s

wj |FT {x(t)}(ωk+j)|2 . (12)

To avoid leakage effects the time series should be tapered with an appropriate window function.
The confidence interval of the spectral estimate for a significance level α is given by(

νŜx(ωk)

χ2ν(1− α2 )
,
νŜx(ωk)

χ2ν(
α
2 )

)
. (13)

Thereby ν denotes the equivalent number of degrees of freedom. For the calculation of ν the
smoothing and taper window have to be taken into account [9].

3.2 Spectral estimation for point processes

Analogously to the spectrum of processes generating time series, the spectrum of a point process
can be directly estimated via smoothing the periodogram. The periodogram of the tapered point
process is given by

PerN̄t(ω) =
∣∣∣ ˜FT {dN̄t}(ω)∣∣∣2 , (14)

with

˜FT {dN̄t}(ω) = 1√
πT

∫
h(t)e−iωt

[
dN(t)− λ̂dt

]
, (15)

=
1√
πT

[∑
s

h(Ts)e
−iωTs − λ̂H(ω)

]
, (16)

whereby H(ω) denotes the Fourier transform of the taper window h(t). For h(t) the normali-
sation ∫ T

0

h2(t)dt = T, (17)

is necessary to guarantee a correct normalisation of the spectrum.
The spectral estimation for a point process is finally given by

ŜN̄t(ωk) =

s∑
j=−s

wjPerN̄t(ωk+j), (18)

with ωk = 2πk/T for a point process of length T .
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4 Bivariate analysis

4.1 Cross spectrum and coherence for point processes

Cross-spectral analysis for time series is a common methodology to analyse the linear rela-
tionship between two time series in the frequency domain [4]. Having in mind the previously
stated findings concerning the univariate analysis of point processes, it is possible to establish
estimators for the cross-periodogram, cross-spectrum, and coherence for point processes.
The cross-periodogram of two point processes Nt and Mt can be defined as

CPerN̄tM̄t(ωk) =
˜FT {dN̄t} ˜FT ∗{dM̄t}. (19)

Please note that for time series the very same equation holds with substituting the point
processes Nt and Mt by time series x(t) and y(t). To obtain a consistent estimator for the
cross-spectrum, the cross-periodogram has to be smoothed as described above

CSN̄tM̄t(ωk) =

s∑
j=−s

wjCPerN̄tM̄t(ωk+j). (20)

Rescaling the smoothed cross-spectrum with respect to the auto-spectra yields the coherence

ĈohN̄tM̄t(ωk) =

∣∣∣∣∣∣
s∑

j=−s
wjCPerN̄tM̄t(ωk+j)

∣∣∣∣∣∣√
ŜN̄t(ωk)ŜM̄t(ωk)

, (21)

between the point processes Mt and Nt. The real and imaginary part of the cross-peridogram
have to be smoothed.

4.2 Point processes and time series

The coherence between a time series and a point process can be estimated by conversion of the
point process into a time series and application of the methods for time series or again by using
the actual Fourier transform of the point process itself. For the latter the cross-periodogram

CPerx(t)N̄t(ω) = FT {x(t)}(ω) ˜FT ∗{dN̄t}(ω), (22)

is calculated.

5 Multivariate techniques

In this section we present multivariate techniques that allow for distinguishing direct and
indirect as well as the direction of interactions in multivariate networks consisting of both
point processes and time series.

5.1 Partial coherence

For a network of interacting neurons the described bivariate analysis is not able to discrimi-
nate direct from indirect interactions. If, for example, two mutually independent processes are
influenced by a third one, bivariate analysis will also detect a connection between the former
and therefore yield misleading results [1].
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Fig. 2. 5-dim network of connected neurons. The direct directed interactions are indicated by arrows.

To distinguish direct and indirect connections partial coherence has been suggested [2,3].
The main idea is to subtract the linear information of all remaining possibly multi-dimensional
processes y(t) from the considered processes xa(t) and xb(t). In the frequency domain, par-
tial coherence is based on partial cross and auto-spectra. The partial cross-spectrum can be
evaluated by [2]

CSxaxb|y(ω) = CSxaxb(ω)− CSxay(ω)S−1yy (ω)CSyxb(ω). (23)

Rescaling the partial cross-spectrum by the partial auto-spectra Sxaxa|y, leads to the partial
coherence

Cohxaxb|y(ω) =

∣∣CSxaxb|y(ω)∣∣√
Sxaxa|y(ω)Sxbxb|y(ω)

. (24)

The estimation of partial coherence can be implemented via inversion and rescaling of the
spectral matrix

S(ω) =



Sx1x1(ω) CSx1x2(ω) CSx1x3(ω) · · · CSx1xk(ω)

CSx2x1(ω) Sx2x2(ω) · · · · · ·
...

... · · · . . . · · ·
...

... · · · · · · . . .
...

CSxkx1(ω) · · · · · · · · · Sxkxk(ω)


, (25)

whose entries contain the auto-spectra on the diagonal and the cross-spectra on the off-diagonal
elements [2].
To demonstrate the performance of partial coherence, we simulated a five-dimensional net-

work of neurons. Each simulated neuron was influenced by its own activity through a refractory
period and the activity of other neurons. To implement the refractory period of the neurons,
which is a short period of time after an event occurred in which no second event can occur, their
spontaneous firing rate was set to zero directly after each event. During the refractory period
with a duration of 10ms, the firing rate slowly increases until it again reaches the spontaneous
firing rate. The influence of one neuron onto the others was implemented by increasing the
firing rate of the influenced neurons once the driver fired. The simulated network is depicted in
Fig. 2. Figure 3 shows the estimated coherence and partial coherence values from a realisation
of this multivariate network with a spontaneous firing rate of 0.1 per ms and a duration of
5 s. All coherence values in Fig. 3 (above the diagonal) are significantly different from zero.
Therefore, a bivariate analysis does not reveal the correct interaction structure but detects a
fully connected network; thus yields false positive results. In contrast, the network structure
is correctly detected by partial coherence analysis (Fig. 3 – below the diagonal). Several par-
tial coherence values are compatible with zero indicating an indirect interaction between the
processes as for instance between processes 1 and 4. The partial coherence introduced above is
directly applicable to time series as well. Since only the Fourier transformed processes enter the
analysis, networks consisting of time series, point processes, and hybrids thereof can be readily
analysed. Although this method yields information whether a link is direct or not, with respect
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Fig. 3. Estimated coherence (above diagonal) and partial coherence (below diagonal) spectra. The
spectra of the processes are shown on the diagonal. The interaction structure depicted in Fig. 2 is
correctly reproduced. The horizontal lines represent the 99% level of significance.

to the other observed processes, the question of the direction of information flow still remains
open.

5.2 Renormalized partial directed coherence

Besides the information whether or not a link is direct, the direction of the information flow
is often of particular interest. An approach to infer direct directed interactions in multivariate
datasets is given by partial directed coherence (PDC) which was suggested in [10,11]. The
concept is based on linear Granger causality, modelled by underlying vector autoregressive
process of order p (VAR[p]).
The VAR[p] representation of an n-dimensional system isx1(t)...

xn(t)

 = p∑
u=1

a(u)

x1(t− u)...
xn(t− u)

+
ε1(t)...
εn(t)

 . (26)

Using the Fourier transform of the coefficient matrices a(u)

A(ω) = I −
p∑
u=1

a(u)e−iωu (27)

the partial directed coherence can be evaluated as

|πi←j(ω)| =
|Aij(ω)|√∑
k |Akj(ω)|

2
. (28)

Coefficients πi←j(ω) significantly larger than zero indicate a direct linear influence of process
j onto process i at a given frequency ω. Due to some weaknesses in the normalisation of the
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Fig. 4. Estimates of rPDC for the simulated network. Neuronal processes were converted to 0-1 time
series to make them accessible for auto regressive modelling. The partial directed coherence value πi←j ,
belonging to the direct directed influence from process j onto process i, is depicted in the ith row and
jth column of the matrix of rPDC spectra. The horizontal dotted line represents the 99% significance
level, while the dashed lines are the 99% confidence intervals. The topology of the simulated network
shown in Fig. 2 is correctly reproduced including the directions of information transfer.

PDC, the interpretability of the PDC is hampered. An alternative normalisation procedure is
suggested in [12] to obtain the so-called renormalised partial directed coherence (rPDC). The
rPDC was applied to the network of neurons described above. The estimated rPDC values
are depicted in Fig. 4. They correctly reveal the simulated network structure including the
directions of information transfer.

6 Application to a tremor network

To demonstrate the performance of the rPDC on real-world data we used data recorded from
patients suffering from Parkinsonian tremor. Tremor is one of the cardinal symptoms of Parkin-
sons disease and manifests itself predominantly in the trembling of the upper limbs. The trem-
bling frequency lies between 3Hz and 8Hz.
The data used for the analysis was gathered during stereotactic neurosurgery. Neuronal

activity was recorded using five microelectrodes that were placed in the subthalamic nucleus
(STN), a brain region assumed to be involved in tremor generation. Neuronal activity was
extracted from the microelectrode recordings using a spike sorting algorithm [13]. The activity
of the trembling muscles was recorded simultaneously using surface electromyography (EMG)
electrodes. The EMG recordings were high-pass filtered to remove movement artefacts, rectified,
and corrected for the mean.
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Fig. 5. Estimates of the rPDC for the considered neuron-EMG network. The rPDC values are arranged
as in Fig. 4. The first four processes represent different neurons of the STN, while the fifth process
belongs to the muscular activity. The coefficient π5←1 indicates a direct directed influence from neuron
1 onto the muscle at approximately 5Hz which was the trembling frequency of the muscle. Moreover
the subthalamic nucleus is receiving proprioceptive input from the muscle as depicted in π4←5.

The representative results of a system consisting of four neurons and the activity of the
trembling muscle is depicted in Fig. 5. The first four processes represent different neurons of
the STN, while the fifth process displays the muscular activity. The tremor frequency in this
example is 5Hz. The results show, for instance, a strong influence from neuron 1 onto the
muscular activity at the tremor frequency. Since there is also a highly significant influence from
the muscular activity onto the neuronal activity of neuron 4 at the first higher harmonic of
the tremor frequency, a feedback from the muscular activity to the STN is strongly suggested.
Several neurons are also directly interacting with one another. These findings strongly support
the assumption that the STN is involved in a tremor network to a large extent. It may moreover
serve as a generator for tremor. Please note, however, that we do not claim a direct interaction
between the neurons and the muscles. The information might well be mediated by unobserved
brain structures like the sensori-motor-cortex. These structures were not recorded as there was
no clinical need for such recordings.

7 Discussion

Nowadays data are gathered with a high temporal as well as spatial resolution. Moreover,
modern recording devices are capable to deliver signals originating directly from neurons, which
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can be treated as point processes. Thus, multivariate analysis techniques are desired being able
to analyse point processes, time series and hybrids thereof. In this manuscript, we addressed
possible analysis techniques to cope with these challenges. The presented modifications of the
multivariate partial coherence and renormalised partial directed coherence allow for the analysis
of networks consisting of point processes and time series. We demonstrated their abilities in a
simulated network of neurons and applied them to physiological data. Novel insights into the
generation of tremor in Parkinson’s disease will emerge from the analysis of the data obtained
during stereotactic neurosurgery.
The univariate, bivariate as well as multivariate techniques presented here are by no means

restricted to the tremor application. Whenever point processes, time series or networks consis-
ting of both are to be analysed, these methods will allow the rigorous assessment of the charac-
teristics of the processes themselves and their interaction structure. False positive conclusions
to the underlying dynamics are prevented using especially multivariate approaches.
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