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On the Detection of Direct Directed
Information Flow in fMRI

Wolfgang Mader, David Feess, Riidiger Lange, Dorothee Saur, Volkmar Glauche, Cornelius Weiller,
Jens Timmer, and Bjorn Schelter

Abstract—To infer interactions from functional magnetic reso-
nance imaging (fMRI) data, structural equation modeling (SEM)
as well as dynamic causal modeling (DCM) has been suggested.
Directed partial correlation (dPC) is a measure which detects
Granger causality in multivariate systems. To demonstrate the
strengths as well as the limitations of directed partial correlation
we first applied it to simulated data tailored to the problem at
hand. Second, after dPC has proven to be usefull for fMRI data
analysis, we applied it to actual fMRI data.

Index Terms—Directed partial correlation, fMRI, Granger
causality, instantaneous interactions, VAR-processes.

I. INTRODUCTION

NFERENCE of the brain network structure while per-
forming specific tasks presents a hot topic in neuroscience
research. The network structure contains information about the
functioning or dysfunctioning of the brain. Several researchers,
therefore, address the challenge to infer the network structure
from measured signals. While concepts have originally been
developed for electroencephalography or magnetoencephalog-
raphy data, recently particular emphasis has been laid on
functional magnetic-resonance imaging (fMRI) data. For the
latter, the temporal resolution has been increased tremendously
during the past years although it is still much lower than for
electroencephalography or magnetoencephalography data. The
spatial resolution is, however, a unique advantage of fMRI data.
The comparably low temporal resolution of fMRI data
poses challenges to the applied analysis techniques. Moreover,
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neuronal activity is not observed directly but through the blood
oxygen level dependency (BOLD). Concepts like dynamic
causal modeling are based on certain prior assumptions about
the investigated interaction structure [1]. We concentrate on the
analysis of the fMRI signals directly without trying to access
the underlying neuronal activity.

Although dealing with the BOLD signals directly, analyzing
multivariate time series as obtained from fMRI still poses cer-
tain challenges to the techniques applied. Inference of the in-
teraction structure implies that direct and indirect connections
should be distinguished by the analysis technique. A bivariate
analysis of pairwise interactions is therefore not expected to be
able to provide a reasonable estimate of the underlying inter-
action structure. To avoid false positive conclusions about the
interaction structure, multivariate techniques that are able to dis-
tinguish direct and indirect interdependencies should be applied
as already done in other fields of research [2]—[4]. Another chal-
lenge which should be taken care of by the analysis techniques is
the direction of information flow, which might be of particular
interest. To this aim, Bayesian networks have been suggested
[5], which allow detection of directed acyclic graphs. Since the
presence of cycles in the human brain cannot be ruled out in the
first place, Bayesian network models providing directed acyclic
graphs likely produce false positive or negative results in this
case. Recently, [6] suggested an extension of Baysian networks,
the so-called dynamic Bayesian networks that allow for certain
variations of interactions with time. Using the temporal infor-
mation, cycles in the graphs can be revealed indirectly.

Analysis techniques which are supposed to detect the direc-
tion of information flow and, thus, causality usually base on
Granger causality [7], [8]. Granger causality in turn is based on
the common sense conception that causes do need to precede
their effects in time. Vector autoregressive modeling is com-
monly used to implement Granger causality. A VAR process
aims to explain as much as possible of its current state-vector
from its own past state-vectors.

One might speculate whether or not the temporal information
contained in fMRI data is too poor to allow for the inference of
causal interdependencies between processes. First, this does not
hold true when it comes to analyze the contact point of an ex-
ternal stimulus on the network under investigation, because the
BOLD response is delayed for approximately 2 s with respect
to the onset time of the stimulus, and this time is resolveable
by fMRI. As shown in this manuscript, the temporal informa-
tion is crucial in this case. Second, because a VAR process uses
the knowledge of its own past to explain its current state the co-
variance matrix of the driving noise reflects the instantaneous
interactions which can not be explained by the own past. This
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covariance matrix is much more accurate than the information
provided by pure correlation approaches like partial correlation
[9].

The investigation of directed direct interaction structures in
the human brain by directed partial correlation utilizes the tem-
poral signals of certain hotspots, so-called seeds, which have to
be identified for instance using the statistical parametric map-
ping (SPM) package first [1], [10]. Additional a priori assump-
tions are not necessary.

The mathematical background of dPC is described in [11].
This paper also introduces dPC for analyzing fMRI data, but
the performance of dPC is only demonstrated on data simulated
using a VAR[2] process. The manuscript at hand aims to close
this gap by presenting a simulation study with simulated data
which is designed to be closer to actual data.

After introducing the mathematical concept underlying di-
rected partial correlation, we present its abilities and limitations
first in an application to data simulated by an autoregressive
model and second in an application to simulated fMRI signals.
In an application to a language comprehension task we investi-
gate functional interactions in a real-world experiment.

II. MATHEMATICAL BACKGROUND

In this section, we briefly describe the analysis techniques
used. For a more in detail description see [11].

A. Granger Causality and Autoregressive Modeling

When analyzing real-world data, one is often interested in
inference of the underlying network structure. Bivariate mea-
sures are not capable of providing the true interaction structure
as they cannot distinguish direct and indirect interactions [12].
Moreover, when it comes to analyze the direction of information
transfer leading to directed networks, a technique is mandatory
that is capable of providing the direction of information flow.

Commonly the direction of information flow is based on
the notion of causality. Granger [7], [8] introduced his con-
cept of causality based on the common sense conception that
causes necessarily precede their effects in time. In terms of
predictability this leads to the following definition: a process
X is Granger-noncausal to process X; if the knowledge of the
past of X; does not improve the information about X;. This
idea can be readily extended to the multivariate case. In an
n-dimensional multivariate system Xy V = {1,2,...n} the
process X; is called Granger-noncausal for X; if the knowledge
about X; based on the past of X Vs i.e. all processes but j, is
the same as if the past of the entire Xy, is used.

The concept of Granger-causality or Granger-noncausality
well transfers into the notion of vector-autoregressive processes
(VAR[p])

X1
XM= 1 | (=D AGX(E -5 +et). O
Xn i=1
Here, the matrix A(j) is the j-th n x n coefficient matrix and
e(t) is the n-dimensional white noise term with covariance ma-
trix 2.

Ol ORCO ()
A, #\ Az £0
()
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Fig. 1. (a) Shows a direct connection between _X; and X, (b) an indirect con-
nection between X; and X. It is important to distinguish direct and indirect
connections to avoid false positive conclusions.

Imagine now that certain off-diagonal entries of the ma-
trices A(j) are nonzero, say Ax(j) # 0. Then, process X
is Granger-causal for X} given all the information from the
past of Xy,. Furthermore, it makes a difference if Ag;(j) # 0
(Fig. 1(a)) or if, both Ag,(j) # 0 and A, (j) # 0 and
Apgi(7) = 0 [Fig. 1(b)]. The first refers to a direct directed inter-
action while the latter illustrates an indirect directed interaction
from process X; onto X}, as the entire information is mediated
by process X,. Conclusively, the coefficient matrices contain
the information of direct directed signal transfer in multivariate
autoregressive systems. If an indirect interaction is present for
instance between process X; and X mediated by process X,
process X still influences process Xy, but if process X, ceased
to exist, the interaction between X; and X, would also cease
to exist.

A nonzero entry in the covariance matrix Y. of the noise term
e(t) also correlates processes. By this, two processes can be
correlated even if there is no directed, causal connection. Since
the influence is instantaneous in time, this correlation should be
referred to as Instantaneous Interaction although it is sometimes
misleadingly called Instantaneous Causality [13].

In cases where measured signals are to be analyzed, vector au-
toregressive models should be fitted to the raw data. For this pur-
pose, different estimation techniques are known [14]. For non-
linear systems it is not clear in the first place if autoregressive
modeling is a reasonable approach. However, extensive simu-
lation studies have shown that autoregressive modeling and the
concept of Granger-causality works well also in nonlinear sys-
tems [12], [15].

B. Measures Based on Autoregressive Modeling

Several measures based on Granger causality applying au-
toregressive modeling are conceivable. The most naive one
would be to check the specific entries of the matrix Ay, (j) for
all j. If for one of those j entries Ay, is significantly different
from zero, one would claim a Granger-causal influence from
process X; onto process X . This approach, however, is inferior
to other approaches as it does not provide an intuitive way to
present the results for high autoregressive model orders p.

Recently, a time domain measure called directed partial cor-
relation has been suggested by [11], [13]. The advantage of this
technique is that it treats both the Granger-causal influences as
well as instantaneous interactions. Roughly, directed partial cor-
relation presents the multivariate cross-correlation function con-
ditioning on third processes without the disadvantages of corre-
lated errors as known for the cross-correlation analysis.
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Mathematically, directed partial correlation 7;; is defined for
the time lag 7 by
Az T
() = i) @)
Xiipij(T)

with

T—1
A
pij(r) = Kij+ ) > Awj(v)KuAij(v) +
v=1k,leEV

Here, the matrix K is the inverse of the covariance matrix of the
noise ¥, K = ¥~1. For 7 = 0, we do have

which is the cross-correlation of the noise . In contrast to ordi-
nary cross-correlation analysis, the directed partial correlation
at time lag zero contains the entries of the covariance matrix of
the driving noise in the autoregressive model. Thus, 7;;(0) de-
scribes the direct interactions that cannot be explained by the
past of the multivariate process.

When applying this to real-world data the estimates of the en-
tries of coefficient matrices Ag;(7) of Ay(j) and the estimates
of the covariance matrix entries 21«1 of X replace their true
values in the above equations. For estimation procedures, please
refer to [14], as described above.

The statistics for directed partial correlation is also known
[13]. This allows a rigorous assessment of statistical signifi-
cance of interactions at certain time lags. For time lag zero the
instantaneous direct correlations are provided.

To demonstrate the abilities and limitations of this technique,
a simulation study is performed in the following two sections
before it is applied to real-world data.

ij(0) = “

III. SIMULATION STUDY

To illustrate the performance of directed partial correlation
as introduced above, we apply it to simulated data of a vector
autoregressive model first. Since the technique has been devel-
oped for autoregressive models, directed partial correlation is
expected to detect the true underlying network structure. Af-
terwards it is also applied to simulated signals obtained from a
model which is supposed to be a model for fMRI signals. This
is an important step to show that dPC can meaningfully be ap-
plied to actual fMRI data even though this data surely violates
the assumptions made by dPC.

A. Autoregressive Model

An autoregressive process

2

X(t)=> AGX(t—j)+e(t) ®)

i=1

of order 2 has been simulated for 256 data points. The following
entries

All(l) = ...= Agg(l) =04

@ 0.6,7 =2 @ @
N\ o
OO |

NS

Fig. 2. Graph summarizing the simulated network for VAR data generation.
The connections not labeled with 7 are at time lag 7 = 1.

Asz1(1) =0.7, Asz(1)=0.7
A42(1) =08, Azs(1)=0.4
A87(1) = 09
Ap2(2) =0.6, Ay5(2) =04 (0)
of the matrices
All('r) Aln(’r)
A(r) = : : @)
Anl('r) Ann('r)

have been chosen nonequal to zero.

The resulting interaction structure is shown in Fig. 2. The co-
efficient quantifying the interaction and the corresponding time
lag is attached to the edges between the nodes. An edge be-
tween two nodes, thus, indicates a direct interaction between
the corresponding nodes. The network is designed to include
indirect interactions, loops, processes that influence many other
processes, and independent sub-networks. This should represent
typical scenarios one has to face in real-world applications.

B. Result for the Autoregressive Model

First, a VAR[2] has been fitted to the data. This is supposed
to give optimal results as the simulated process is a VAR[2] as
well. Fig. 3 shows the correlations as well as the directed par-
tial correlations between the processes estimated from the VAR
model that has been fitted to the data. The upper triangular part
of Fig. 3 shows the bivariate correlations for each combination
of the eight processes. The lower triangular part shows the result
of the multivariate directed partial correlation analysis.

In Fig. 3 on the abscissa, time lags are shown and on the or-
dinate the correlation coefficients. The vertical dashed line in
every subplot marks the time lag 7 = 0. The bar presented there
quantifies the instantaneous interaction caused by non-zero off-
diagonal entries in the covariance matrix ¥ of the driving noise
€. The bars on the right side of this line correspond to informa-
tion which is transferred from processes with lower number to
processes with higher numbers with increasing time lag; the bars
on the left side denote the opposite direction. In other words,
positive time lags denote an interaction from the process in the
i-th column to the j-th row of the figure, while the negative lags
correspond to an influence from the process in the j-th row to
the ¢-th column. The horizontal dotted line in every diagram is
the 95% significance level. It varies with the time lag under in-
vestigation.
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Fig. 3. Result for data simulated with a VAR[2] model and without observational noise. The order of the fitted VAR[p] also was p = 2. This is expected to
give the best results. The lower triangular part of the plot show the directed partial correlation values, while the upper triangular part shows the estimates for the
bivariate correlation analysis. Concerning the directed partial correlation, bars at positive time lags, right from the vertical dashed line, denote an interaction from
the process in the ¢th column to the jth row of the figure, while the negative lags correspond to an influence from the process in the jth row to the ¢th column. The

dotted horizontal line marks the 95% significance level.

The bivariate correlation analysis leads to false positive conclu-
sions about the interaction between processes if the information
is transmitted by a third process. This is demonstrated by the
processes 2 and 5. Process 5 is only connected with process 2
via process 4 (see Fig. 2). The bivariate analysis shows an influ-
ence from process 2 to 5 with a time lag 7 = 2, which is caused
by the mediated influence through process 4. This false positive
conclusion is, however, prevented by the multivariate analysis
as the corresponding directed partial correlation is compatible
with zero.

Summarizing, the results from the directed partial correlation
analysis lead to the true underlying network structure shown in
Fig. 2.

To show the ability of directed partial correlation when the as-
sumptions are slightly violated, we simulated the more realistic
setting from which the results are displayed in Fig. 4. The sim-
ulated processes for this analysis of again 256 data points each
have been contaminated with observational noise. The signal-to-
noise ratios vary between 1:1 and 3:1 for the individual pro-
cesses. The directed partial correlations gathered in Fig. 4 have
been estimated using a VAR[p] model of the order p = 7 to fit
the data, which is higher than the true order p = 2. Even in this
situation the underlying network is revealed correctly.

C. Simulated fMRI Signals

To simulate signals which are closely related to actual fMRI-
signals, we utilized a model for fMRI data here. To motivate
this model, the mechanisms underlying fMRI signals are briefly
summarized.

Oxygenated hemoglobin is diamagnetic and deoxyhe-
moglobin is paramagnetic. If deoxyhemoglobin is present the

magnetic field of the tomograph is distorted and the MR signal
is altered. This alteration is observable.

If a population of neurons is active, its consumption of
oxygen increases. To deliver more oxygen to the population the
blood flow in this brain region is increased. At the same time the
local oxygen extraction fraction decreases due to the smaller
transit time of the blood through the tissue. Therefore, locally
the blood is more oxygenated and less deoxyhemoglobin is
present; the activity of neurons leads to less deoxyhemoglobin.
This change is observable and is called BOLD signal [16].

To generate data that resembles brain data as well as possible,
dynamic causal modeling [1] as implemented in SPMS5 was
used as forward-model. Input signals have been generated with
random stimulus onset times and durations. Dynamic causal
modeling is based on a purely deterministic model, which is
hardly expected to be present in real-world data. To overcome
this limitation of DCM, independent Gaussian noise was added
to the input stimulus time series for those nodes which do re-
ceive an input stimulus and pure Gaussian noise serves as input
for those regions with no stimulus input. Thus, all regions re-
ceive an input signal, either pure Gaussian noise or randomized
stimulus boxcar functions with additional Gaussian noise (cf.
Fig. 6). Presence and absence of stimuli are binary-coded, i.e.
input signals in dynamic causal modeling have the values 0 or
1. In this arbitrary units, we added driving Gaussian noise of
standard deviation 0.25. Finally, observational Gaussian noise
of two different variances was added to the time series.

D. The Model

The network structure used for this simulation is shown in
Fig. 5. Its topology has been chosen similar to the topology of
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Fig. 4. Result for data simulated with a VAR[2] model with observational noise. The results are presented in the same way as in Fig. 3. The signal-to-noise ratio
differs between 1:1 and 3:1 depending on the individual process. The order of the fitted VAR[p] was p = 7. Even if the order of the fit is chosen higher than the
true one and the data is contaminated with observational noise, the revealed network is the same as the simulated one.
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Fig. 5. Graph summarizing the simulated network for dynamic causal mod-
eling data generation. Each input I;, I> and I is composed of boxcar functions
plus independent Gaussian noise (cf. Fig. 6). All other nodes do also have input,
but pure Gaussian noise.

the network for VAR simulation. Due to the different approaches
of VAR[p] and dynamic causal modeling, input stimuli were
added and some connection coefficients were altered this time.

The underlying activity of neuronal populations is modeled
by

A(t) ®)

A+ u;(t)B | 2(t) + Cult).

The nonzero entries of the intrinsic connection matrix A are

A= ... = Agg = —1
Az =07, Agp = 0.7
Agp =0.8, A5 =02
Ay =04, Agy=0.3
Agz =0.9. )

The matrix B quantifying the effects of input signals on intrinsic
connections is set to zero. The matrix C is, here, the identity
matrix assigning the noisy inputs to every node. The nodes 1,
2 and 7 are chosen to receive boxcar stimuli. 1000 realizations
of 256 data points were computed, where the intrinsic noise,
observational noise, stimulus onsets and durations were drawn
randomly every time. In accordance with data obtained from
actual experiments the sampling time was set to 2.2 s. Stimulus
lengths are drawn from a Gaussian distribution with a mean of 7
data points and a standard deviation of 5 data points, rounded to
the next integer; for negative stimulus lengths the absolute value
is taken. The stimulus onset times are equally distributed over
the 256 data points. Fig. 6 shows an exemplary stimulus input
function and two simulated time series generated as described
above.

E. Signal-to-Noise Ratio in Simulated fMRI Signals

Signal-to-noise ratio (SNR) is defined as the quotient of
signal variance divided by observational noise variance. It can
be seen as measure for how grave the impact of the noise on the
data is. We assume the absolute level of observational noise to
be roughly constant in actual fMRI experiments over channels
and thus also over the data of all regions under investigation.
Therefore we added independent Gaussian noise each of the
same variance to the data of every node in our simulations. As
the signals of each node have different variances themselves,
adding noise of constant variance leads to different SNRs for
every node in the system. Additionally, as the input time series
and the intrinsic noise are redrawn in every realization, the
signal variance of each individual node itself as well varies in
between realizations. Hence, it is not possible to declare an
exact global SNR.
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Fig. 6. Exemplary time series from the fMRI signal simulation. The upper plot
shows an input time series of an stimulus contaminated with Gaussian noise.
Every stimulus consists of a few boxcar functions. This is the input for node 1
of Fig. 5. The plot in the second row shows the resulting output of node 1. The
plot at the bottom shows the output of node 3. Node 3 is driven by the output of
node 1, but also by its own noise and by the output of node 2. The y-axis are in
arbitrary units.

Two sets of simulated data have been generated, one with ob-
servational noise variance 6.25, the other with variance 20.25.
These values per se are not meaningful, as the scale of the sig-
nals that DCM produces is rather arbitrary. Still, choosing 6.25
as noise variances leads to SNRs in the range of 1:1 to 4:1. We
refer to this set of simulations as SNRa. Noise variance 20.25
leads to SNRs in the range of 0.4:1 to 0.9:1, this data set shall
be called SNRb. Fig. 7 illustrates the actual SNR distributions
for the SNRa data set. The distributions for the SNRb data set
look similar, but shifted towards smaller SNRs. For SNRb the
two outliers, node 5 and 6, have SNR distributions around 0.5:1
and 0.3:1 respectively.

F. Results for Simulated fMRI Signals

The connections have been estimated for every realization.
The order of the fitted VAR[p] process was p = 7. To obtain
group results we divide each directed partial correlation value
by its significance level and then average this fractions over the
group. This leads to values indicating the likeliness of the pres-
ence of a connection: values significantly higher than 1 indicate
that, on average, the estimated direct partial correlation is higher
than its significance level, i.e., a connection has been detected.
All values regarded are those belonging to timelag 7 = 0, be-
cause connections are assumed to be fast in relation to the sam-
pling time of 2.2 s used both in the simulation and the fMRI
experiment below.

Tables I and II show the results of the group analysis with
different levels of observational noise. The results presented
in Table I correspond to data set SNRa, while Table II corre-
sponds to SNRb. In both scenarios the strongest connections
As1, Asa, Ago, Agr are correctly identified. The 20 confidence
interval of every result presented in the Tables I, I and Il ranges
from 0.03 to 0.04. The connection between nodes 4 and 5, actu-
ally a weak loop, is found only in the case of low observational

Node Nr. 1

Occurrences

Node Nr. 6

Node Nr. 7

SNR

Fig. 7. Histograms of the signal-to-noise ratios from simulation set SNRa. Ob-
servational noise variance is 6.25. For most of the nodes the SNR ranges from
2:1to 4:1. Nodes 5 and 6, however, show noticeable worse SNRs. As the ob-
servational noise variance is constant, the signal variance in this nodes has to be
smaller than in the other nodes. This is consistent with the fact that nodes 5 and
6 receive the weakest stimulation, cf. model parameters in Fig. 5.

TABLE I
RESULTS OF THE NETWORK ESTIMATION WITH SIMULATED fMRI SIGNALS,
DATA SET SNRa. THE LIKELINESS OF THE PRESENCE OF A CONNECTION IS
CONSIDERED AS THE ESTIMATED DIRECTED PARTIAL CORRELATION DIVIDED
BY ITS SIGNIFICANCE LEVEL. VALUES LARGER THAN ONE THEREFORE
INDICATE TRUE DIRECT CONNECTIONS. THE SHOWN VALUES ARE THE MEANS
OF 1000 INDIVIDUAL REALIZATIONS. THEY ARE MEANT TO DENOTE AN
INTERACTION BETWEEN THE NODE IN COLUMN ¢ AND THE NODE IN ROW j OF
THE TABLE. THE 20 CONFIDENCE INTERVAL OF THE MEAN RANGES BETWEEN
0.03 AND 0.04 FOR EACH CASE

1 2 3 4 5 6 7
21 -05
3126 17
41-02 24 07
5 0 03 01 1.6
61|-01 10 03 04 0.1
7 0 0 0 0 0 0
8 0 0 0 0 0 0 31

noise. The weak connection between nodes 2 and 6 cannot be
detected in either setting. We want to point out that the presence
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TABLE II
RESULTS OF THE NETWORK ESTIMATION WITH SIMULATED fMRI SIGNALS
FROM DATA SET SNRbD (CF. TABLE I). THE 20 CONFIDENCE INTERVAL OF THE
MEAN 1S 0.04 IN EACH CASE. THE WEAK CONNECTION BETWEEN NODES 4
AND 5 COULD NOT BE REVEALED IN THIS CASE

1 2 3 4 5 6 7

2| -02

3114 11

41-02 1.6 07

5 0 04 02 10

6 0 07 03 04 01

7 0 0 0 0 0 0

8 0 0 0 0 0 0 20

TABLE IIT
RESULTS OF THE ESTIMATION WITH SIMULATED fMRI SIGNALS FROM DATA
SET SNRa WITH ALL 3 INPUTS INCLUDED TO THE ANALYSIS. THE TABLE
SHOWS ONLY THE RESULTS FOR THE INPUTS ACTING ON THE REGIONS TO
TIME LAG 7 = —1. WE FIND A HIGH LIKELINESS OF THE INPUTS ACTING ON
THE CORRECT NODES, INPUT 1 ON NODE 1, INPUT 2 ON NODE 2 AND INPUT
7 ON NODE 7. STILL, WE ALSO FIND SIGNIFICANT EVIDENCE FOR INPUT 2
ACTING ON NODE 4 AND INPUT 7 ACTING ON NODE 8. THE 20 CONFIDENCE
INTERVAL OF THE MEAN IS SETTLED BETWEEN 0.03 AND 0.04 IN EACH CASE

|1 2 3 4 5 6 1 8
{23 0 09 0 0 0 0 0

i2 0 23 09 12 03 06 0 0
i7 0 0 0 0 0 0 23 12

of observational noise always reduces the accuracy of estima-
tion. Still, only the very weak connections could not be recov-
ered in our simulation studies. However, we want to emphasize
that dPC does not draw false positive conclusions. Therefore, if
dPC does not detect a connection between two regions this does
not necessarily imply that the regions in the underlying netwok
are disconnected. The data, in this case, simply does not carry
enough information to reveal the connection. If, in contrary, a
connection is detected, dPC provides a statistical significant and
therefore a reliable estimate.

G. Integrating the Stimuli

Both in simulations and in real fMRI studies, the exper-
imenter has good knowledge about onsets and durations of
stimuli. In order to learn more about the levels of signal pro-
cessing within the set of regions, one might want to know
which regions the stimulus initially acts on. In terms of dPC
this would be represented by causal relationships between the
stimuli and the network.

To preliminarily investigate if dPC is capable of drawing such
inferences, we have chosen a very naive approach. The inputs
to our simulations are modeled as noisy boxcar functions, cf.
Section III-C. Here, we segregate the boxcar functions from the
noise and regard the clean boxcar function as the external stim-
ulation time series. These time series may now be included in
the dPC estimation. The dimension of the network thereby in-
creases by the number of input time series included.

As mentioned above the time resolution of an fMRI exper-
iment is around 2 s. Relative to the stimulus onset the corre-
sponding BOLD response is also delayed by 1 to 2 s [16]. There-
fore, an interaction between stimulus and network is expected
to be found at time lag 7 = —1.

Fig. 8 shows the result of a dPC estimation of a single real-
ization of data from the SNRa set with one input included. Note
that the integration of binary boxcar functions clearly violates
the assumptions for AR processes. Therefore, inferences on the
actual network structure should not be drawn from the estima-
tions with inputs included. Looking at the bottom row, Fig. 8
delivers strong evidence for input 1 acting on region 1 to time
lag 7 = —1. Comparing with the simulated network topology
in Fig. 5 we find that this is correct.

As for the analyses above, we can compute group results
based on all realizations from both data sets. This time, though,
group results are computed from dPCs to timelag 7 = —1.
Table IIT shows the results for data set SNRa with all 3 inputs
included simultaneously. The inputs are linked to the correct
nodes with the highest likeliness. The two false positives result
from the fact that the nodes receive the stimulation indirectly:
input 2 is propagated to node 4 by node 2 and input 7 is prop-
agated to node 8 by node 7. It appears that, in this setting of
fast signal propagation, slow sampling frequency and the naive
input integration approach, this difference between direct and
indirect influence can not be resolved.

The group results for the SNRb data set, however, do not re-
veal false positive conclusions but only the correct assignment
of inputs to nodes. The likeliness values are 1.5 with a 20 con-
fidence interval of the mean of 0.04 in each case. The decrease
of the values is an expected result of the lower SNR.

Altogether, the promising results of this naive integration of
the inputs suggest further development in this direction.

IV. ANALYSIS OF fMRI DATA

A. The Data

In an fMRI event-related experiment we aurally presented 90
sentences of each normal speech, pseudo speech and reversed
speech, resulting in 270 stimuli distributed to three sessions with
a total of 690 scans. The sampling time was 2.2 s. From seed re-
gions, which were defined by the peak voxels of activated clus-
ters on group level, time series were extracted. The data was
fully preprocessed with slice time correction, motion correction
and smoothing with a 9 mm Gaussian smoothing kernel over the
entire brain. For all corrections SPMS5 was used.

To get rid of the scanner drift we fitted a polynomial of degree
3 to each time series and subtracted its function values from it.
A small simulation study has shown that polynomials are less
critical concerning AR-fitting than e.g. low-pass filters.

B. The Results

Here, we present the result (see Fig. 9) of a single subject (see
Fig. 10). The five temporal and frontal seed regions are func-
tionally interconnected directly and indirectly. From the poste-
rior temporal seed (T2p) an indirect functional connection to
the frontal lobe (F3tri) via the fusiform gyrus (FUS) and ante-
rior temporal lobe (T2a) as well as a direct functional connec-
tion was found. This supports current theories on language pro-
cessing suggesting parallel and serial information flow. How-
ever, these findings need to be evaluated in a large-scale group
analysis.
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Fig. 8. Results of the dPC estimation of one realization from the SNRa data set with input 1 included. In the bottom line we see that input 1 affects node 1 to
time lag 7 = —1. This is the correct assignment. No other node is influenced by input 1 with such high significance and to a reasonable time lag. Regarding the
estimated network topology, one can see that some connections are still estimated correctly. Azo, A4o, As4 and Ag; are found significant at time lag 7 = 0. Still,
as the inclusion of the nonstochastic input time series violates the requirements for AR modeling, the network topology should be inferred from analyzes without

included inputs.
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l'—m,: e e
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lag.

Fig. 9. Estimated dPC for the presented single subject. Due to the low time
resolution of the fMRI technique only dPCs for timelag 7 = 0 are of concern.
This values are represented by the bars directly on the dotted vertical line in
every subplot. Fig. 10 is a graphical representation of this result.

V. DISCUSSION AND CONCLUSION

This manuscript presents an overview on directed partial cor-
relation and a simulation which shows, that dPC can be applied
to fMRI data. Based on this simulation and an application to
real-world data, we present dPC’s advantages and limitations.

In fMRI experiments the seed points, and therefore the time-
series which are taken from these seed points are selected in the
first place. To this aim, the seed points contributing to the net-
work have to be identified. To address the issue of how these
seed points should be detected and which seed points should be
included in the analysis is beyond the scope of this manuscript.

Fig. 10. fMRI single subject data for the contrast of speech compared with
meaningless pseudo speech (p < 0.05 corrected) are superimposed on a canon-
ical brain. Peak activations are indicated with black dots and were located in the
anterior (T2a) and posterior temporal lobe (T2p), in the fusiform gyrus (FUS)
and the inferior frontal gyrus, pars orbitalis (F3orb) and triangularis (F3tri). Sig-
nificant functional connections between seed regions are indicated with black
lines. For the estimates see Fig. 9.

‘We mention though that the preselection of certain seed points
will influence the result of the analysis, as directed partial cor-
relation detects the interaction structure of the underlying net-
works based on the observed time series. We recommend per-
forming simulation studies tailored to the problem at hand prior
to the analysis.

If directed partial correlation is confronted with data which
holds too poor information about the network structure, dPC is
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not able to estimate the underlying network structure. Such sit-
uations are likely to appear if the measured network consists of
too many nodes. With an increasing number of nodes the in-
formation on the network must increase, as the number of pos-
sible connections does. But because dPC does not tend to infer
false positive conclusions it provides the researcher with a good
hint if the data is good enough for this kind of investigation. If
dPC ends up with all nodes unconnected and the network is ex-
pected to have connections, for instance learned from bivariate
analysis, the data is not able to reveal this network. Analyses
towards subnetworks are a reasonable way out of this dilemma
[17]. In cases with too poor signal-to-noise ratios, directed par-
tial correlation analysis again ends up with isolated nodes. In
any case of our simulations directed partial correlation analysis
did not draw false positive conclusions about the network struc-
ture.

Additionally, directed partial correlation is model indepen-
dent: No anatomical or functional a priori knowledge is needed.
The method is entirely data driven; this way it is possible to ana-
lyze networks which have not been under investigation so far. It
is also possible to use directed partial correlation as a pre-anal-
ysis for other techniques like DCM which do need constraint
about the underlying network.

By analyzing actual data from an auditory paradigm, we
demonstrated the performance of directed partial correlation
in a real-world scenario. Further analyses for a collective of
subjects will be performed in the near future.
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