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Abstract: Systems biology is an approach to the analysis and prediction of the dynamic behaviour
of biological networks through mathematical modelling based on experimental data. The current
lack of reliable quantitative data, especially in the field of signal transduction, means that new
methodologies in data acquisition and processing are needed. Here, we present methods to
advance the established techniques of immunoprecipitation and immunoblotting to more accurate
and quantitative procedures. We propose randomisation of sample loading to disrupt lane corre-
lations and the use of normalisers and calibrators for data correction. To predict the impact of
each method on improving the data quality we used simulations. These studies showed that ran-
domisation reduces the standard deviation of a smoothed signal by 55%+ 10%, independently
from most experimental settings. Normalisation with appropriate endogenous or external proteins
further reduces the deviation from the true values. As the improvement strongly depends on the
quality of the normaliser measurement, a criteria-based normalisation procedure was developed.
Our approach was experimentally verified by application of the proposed methods to time
course data obtained by the immunoblotting technique. This analysis showed that the procedure
is robust and can significantly improve the quality of experimental data.
1 Introduction

Blotting techniques are widely used to analyse components
in biological systems. They are based on the separation of
components according to the molecular weight within a
gel and transfer to a membrane followed by a detection
process. The presence of proteins and/or their modifications
in complex mixtures is examined by immunoblotting using
specific antibodies in combination with chemiluminescence
detection. So far, the data generated by immunoblotting have
been primarily qualitative but the recent report of data-based
mathematical modelling of the JAK-STAT signalling path-
way [1] demonstrates the potential of using quantitative
immunoblotting for systems biology approaches.
Here, we suggest new methodologies to improve data

acquisition and data processing for quantitative immuno-
blotting. We propose randomised gel loading to transform
correlated blotting errors into uncorrelated blotting errors by
loading samples on the gel in a non-chronological order:
Neighbouring lanes on the gel are used, not for consecutive
time points, but in a randomised way. Furthermore, we
suggest normalisation using data of calibrators (purified
proteins of a different molecular weight from that of the
protein of interest and the same antibody binding epitope
added to cell lysates prior to immunoprecipitation) and
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normalisers (endogenous proteins quantified by reprobing
the immunoblot). Smoothing splines of the normaliser or
calibrator signals were employed to correct immunoblotting
data in an unbiased, criteria-mediated framework.

In addition, we present a quantitative analysis of the
effects of these improvements by assessing the influence
of each method on the standard deviation and correlation
structure of simulated data and measurement processes.
By applying our procedures to a data set comprising five
independent experiments, each measuring eight protein
species with 20 time points, we validated the performance
of our approach method under experimental conditions.

2 Randomisation reduces standard deviation
of immunoblotting data more than two-fold

Simulations of typical immunoblotting experiments
were performed by generating a simulated signal x� with
quadratic rise and exponential decay and a maximum at
half gel slot number, equidistantly sampled (Fig. 1b). This
simulates a typical time course experiment after stimulation
with a hormone. The true signal x� was processed as follows:

First, a multiplicative, uncorrelated pipetting error of
strength s was applied, as shown in Fig. 1a, representing
errors derived from unequal cell number or errors in pipet-
ting the cellular lysates:

x0 ¼ x� � ð1þ 1Þ 1 � N ð0;sÞ

Secondly, a multiplicative, strongly correlated blotting error
was applied, representing errors from differences in
migration in the SDS polyacrylamide gel or unequal trans-
fer to the membrane, a common and probably underesti-
mated problem in immunoblotting (compare the estimated
blotting error in Figs. 4a and 6a and d)

x ¼ x0 � g
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Fig. 1 Effect of randomisation on immunoblotting data

a Simulated uncorrelated pipetting error and highly correlated, sine-like blotting error
b Simulated signal perturbed with pipetting and blotting error in chronological and randomised manner
c Only randomised procedure does not change characteristics of true signal, as smoothed data show
d Residuals of perturbed to true signal exhibit strong autocorrelation for chronological procedure, which is not agreeable with white noise.
Randomisation prevents this autocorrelation
with the blotting error g represented by a sine function with
mean 1 and varied phase, amplitude and frequency.
The processing was applied to a chronological signal and

to a randomised true signal, respectively, leading to simu-
lated measurements such as in Fig. 1b. Note that the chrono-
logical signal is rather smooth but changes the characteristic
of the true signal: the maximum occurs earlier, and a new
minimum is observed at t ¼ 15. The randomised signal,
on the other hand, is very noisy, but does not introduce
misleading effects. The smoothed, processed, randomised
signal is very close to the true one, whereas the smoothed,
processed, chronological signal conserves the correlated
deviations from the true signal (Fig. 1c).
The correlation structure of the deviations can be inves-

tigated through the autocorrelation function (Fig. 1d). For
uncorrelated errors, the autocorrelation function should drop
from 1 at t ¼ 0 into the 95% confidence interval for t . 0
[2]. This is not the case for the processed chronological
signal, which can lead to incorrect conclusions if methods
assuming uncorrelated noise are applied. Besides visual
inspection of the autocorrelation function, the improvement
of data quality can be quantified by the error reduction
factor by randomisation, defined as the reduction of the
standard deviation of the smoothed signal by means of
randomisation

error reduction factor by randomisation

¼
standard deviation ðsmoothed chronological dataÞ

standard deviation ðsmoothed randomised dataÞ
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For the illustrated data set, an error reduction factor of
0.4 was calculated, i.e. the standard deviation could be
decreased by 60%. The reduction can only be quantified
when the true data are available, which is certainly not
the case in real measurements. Hence, the question arises
whether a general reduction factor can be established by
randomising or whether it depends on experimental para-
meters such as the number of lanes, maximum signal
strength, blotting error or pipetting error. We performed a
simulation study showing that, for small pipetting errors,
a reduction to 45%+ 10% could be established indepen-
dently from other parameters.

3 Simulation study

Several parameters were varied quantitatively to assess the
effect of randomisation. This included the number of lanes
(10–100), the number of sine periods of the blotting error
(0.8–2.2), the strength of the blotting error (ratio of smallest
to largest value ranging from 1.5 to 10), the strength of the
pipetting error (s ranging from 0 to 1) and the maximum
signal strength (0.1–20).

During the variation of one parameter, the other para-
meters were fixed:

† number of lanes: 20
† number of sine periods of the blotting error: 1
† strength of the blotting error (max/min): 3
† standard deviation of the pipetting error: 0.1
† maximum signal strength: 2.
IEE Proc.-Syst. Biol., Vol. 152, No. 4, December 2005



Figure 2 displays the error reduction factor for all
parameter variations. Variation of lane number (Fig. 2a)
showed that randomisation is recommended for 15 or
more lanes. For the other investigated parameter ranges,
no strong effect could be observed for all variations
(Figs. 2b–d), except for the strength of the pipetting error
(Fig. 2e).
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As pipetting errors are uncorrelated, they cannot be
reduced by randomisation: if the fraction of the pipetting
errors increases, the randomisation has less effect. In
general, randomisation decreases the standard deviation in
quantitative immunoblotting by 55%+ 10% of the value
without randomisation, as long as the standard deviation
of the pipetting error does not exceed 20%. An approach
Fig. 2 For gels with more than 15 gel lanes, randomisation reduces standard deviation robustly by 50%

a Variation of lane number
b Variation of blotting error characteristics
c Variation of error strength
d Variation of signal strength
e Variation of pipetting error
Increasing pipetting error to blotting error ratio decreases error reduction factor, as only blotting errors are tackled by randomisation
195



Fig. 3 Normalisation of simulated time course data

Left panel: valid procedure according to our criteria
a Blotting error is well estimated corresponding to suitable normalisation protein
b Perturbation of simulated signal
c Perturbation is strongly reduced after normalisation
d Correlation in gel domain of residuals is improved
Autocorrelation, i.e. correlation in time domain, agrees for both randomised signals with white noise (not shown)

Right panel: procedure rejected according to our criteria
e Blotting error estimate is phase shifted, corresponding to too distant normalisation protein
f Perturbation of simulated signal
g Perturbation cannot be reduced with normalisation
h Lane-to-lane correlation is not improved
IEE Proc.-Syst. Biol., Vol. 152, No. 4, December 2005196



to control the pipetting error in experiments is sampling the
same number of cells for each time point or measuring and
adjusting total protein concentration.

4 Criteria for employing calibrators and
normalisers further to improve quantitative
immunoblotting data

Calibrators and normalisers possess a constant concen-
tration. Fluctuations occur only as measurement errors. As
the blotting error changes gradually from lane to lane, and
other errors such as the pipetting error are rather uncorre-
lated, the blotting error can be estimated by smoothing of
the calibrator or normaliser signal, e.g. with a smoothing
spline [3]. The smoothing is carried out with a cubic
IEE Proc.-Syst. Biol., Vol. 152, No. 4, December 2005
spline approximation, the smoothness being determined
by generalised cross-validation. Based on this blotting
error estimate, the protein of interest can be normalised
by division. However, as the blotting error is a local prop-
erty of the gel, normalisers and calibrators with a similar
molecular weight to that of the protein of interest are
required. If the position of the normaliser is too distant on
the blot, or its signal is too noisy, the normalisation pro-
cedure can even be detrimental to the data. We therefore
developed criteria for employing normalisers and calibra-
tors. The following discussion applies equally well to
normalisers and calibrators.

Figure 3a shows a simulated blotting error and a good
estimation, corresponding to the smoothed signal of an
appropriate normaliser in a real experiment. Smoothing
bActin

bActin spline

pERK1

pERK1 normalised

95% confidence interval

pERK1
spline
normalised
norm., spline

pERK2
spline
normalised
norm., spline

2.0

1.5

1.0

0.5

0

ar
bi

tr
ar

y 
un

its

lane
0 5 10 15 20

a

1.0

0.5

0

-0.5

-1.0

au
to

co
rr

el
at

io
n

lane distance
0 2 4 6 8 10

b

20

15

10

5

0

ar
bi

tr
ar

y 
un

its

time, min
0 2 4 6 8 10

c

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

ar
bi

tr
ar

y 
un

its

time, min
0 2 4 6 8 10

d

Quantitative
immunoblot

anit-pERK

anit- Actinb

pERK1

pERK2

bActin

3.
5

4.
5

6.
5

8 1 2.
5

6 8.
5

9.
5

0.
5

7 5 9 1.
5

0 4 7.
5

5.
5

3 2 min Epo+

blotting error estimate lane correlation of residuals

time course estimation time course estimation

Fig. 4 Randomisation and normalisation of erythropoietin-induced time course experiment

BaF3-EpoR cells are stimulated with 50 units ml21 Epo resulting in ERK phosphorylation. Gel electrophoresis has been performed with randomised,
non-chronological gel loading with bActin as normaliser protein (upper panel)
a Smoothed measurements of bActin serve as estimate of strong, sine-like blotting error
b Normalisation destroys autocorrelation

Normalisation significantly reduces standard deviation of pERK1/2 measurements compared with spline-smoothed pERK1/2 signal (solid line),
which serves as first estimate of true signal
c pERK1
d pERK2
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the processed randomised signal leads to an acceptable esti-
mation of the true signal (Fig. 3b). Smoothing the normal-
ised signal yields virtually the true signal itself, as shown
in Fig. 3c. Even the correlation structure of the estimation
error in the gel domain is improved (Fig. 3d). The esti-
mation of the blotting error displayed in Fig. 3e is inaccur-
ate: a strong phase shift can be observed, corresponding to a
normaliser measurement of a different molecular weight
from the protein of interest. The blotting error can be simu-
lated by a sine wave surface plot covering the entire blot
area, resulting in a phase shift of the blotting error estimate
when moving vertically away from the position of the
protein of interest. In this situation, normalising the data
increases the deviation of the estimated signal from the
true one (Fig. 3g). Hence, a criterion for whether normalisa-
tion is applicable would be a decreased standard deviation
of the estimated signal. Unfortunately, this requires knowl-
edge of the true curve, which is not given. Instead, the
smoothing spline curve of the randomised but not yet nor-
malised signal is used as first estimate of the true signal.
If the normalisation procedure is valid, a new spline curve
can be calculated based on the randomised and normalised
data; otherwise, the former values are kept. The error
reduction factor by normalisation is defined as

error reduction factor by normalisation

¼
standard deviation of data from first estimate

standard deviation of normalised data from
first estimate

The shown simulated data sets posses the following stan-
dard deviations:

(a) Case 1 (Figs. 3a–d):

† standard deviation of the data from the true signal: 0.533
† standard deviation of the data from first estimate: 0.722
† standard deviation of the normalised data from the true
signal: 0.157
† standard deviation of the normalised data from first
estimate: 0.515
† error reduction factor: 0.515/0.722 ¼ 0.7133

(b) Case 2 (Figs. 3e–h):

† standard deviation of the data from the true signal: 0.533
† standard deviation of the data from first estimate: 0.722
† standard deviation of the normalised data from the true
signal: 1.208
† standard deviation of the normalised data from first
estimate: 1.068
† error reduction factor: 1.068/0.722 ¼ 1.4792

The estimated standard deviation improves in case 1 (error
reduction factor ,1) but becomes worse in case 2 (error
reduction factor .1). Hence, the normalisation procedure
is only applicable in the first case, reducing the true standard
deviation from 0.533 to 0.157, i.e. to 30%. This procedure
works robustly for normalisers and calibrators, as long as
the immunoblot is randomised.

5 Application to experimental time course

The randomisation and normalisation procedure was
applied on an erythropoietin-induced time course experi-
ment resulting in phosphorylation of ERK1 and ERK2.
Samples were loaded in a randomised order and separated
on a 17.5% SDS polyacrylamide gel. Membranes were
developed with chemiluminescent substrates and quantified
with a CCD camera (Fig. 4). We calculated the standard
198
deviation of the signals from their spline approximation as
2.524 for pERK1 and 0.455 for pERK2. Normalisation
with bActin reduced the standard deviation to the spline
approximation to 1.878 (74%) for pERK1 and 0.262
(58%) for pERK2. The reduced lane correlation for the
normalised data confirms the quality of data processing.
In this case, the correlation structure of the systematic
blotting error could be disrupted, thus validating the
normalisation.

6 First estimates used for criteria-mediated
error reduction

The proposed criterion for error reduction needs a first
estimate, which is compared with the measured and the
normalised data, respectively. Above, we discussed time
course data, where a smoothing spline adequately describes

Fig. 5 First estimates used for criteria-mediated error reduction

a In grouped data, such as mutant to wild type comparisons, first esti-
mate is calculated as mean value of samples loaded in replicates
b If known continuous dependency between data points exists, first
estimate is calculated as regression function; for example, sigmoidal
regression estimates dose-response experiment
c In cases where function is unknown, including time course exper-
iments, first estimate consists of smoothing spline
These are artificial data for illustration purposes
IEE Proc.-Syst. Biol., Vol. 152, No. 4, December 2005



Fig. 6 Normalisation of experimental quantitative immunoblotting data

Left panel: valid procedure according to our criteria
a Data points of bActin and smoothing spline serving as blotting error estimate
b Smoothing spline (dashed line) serves as first estimate for data points of pERK1, which are normalised using blotting error estimate shown in a
c As normalised values are closer to first estimate (error reduction factor ¼ 0.9227), normalised values are kept, and new smoothing spline is
calculated (solid line)

Right panel: procedure rejected according to our criteria
d Data points of bActin and smoothing spline serving as blotting error estimate
e Smoothing spline (solid line) serves as first estimate for data points of pERK2, which are normalised using blotting error estimate shown in d
f As normalised values are not closer to first estimate (error reduction factor ¼ 2.0799), normalisation is rejected, and original data are retained
the unknown functional dependency between samples.
However, our procedures can also be applied to other exper-
imental settings. Therefore we developed three categories
for first estimates, as shown in Fig. 5

(i) In grouped data, as in mutant-to-wild type comparisons,
the first estimate is the mean value of replicates.
(ii) In experiments with a known continuous functional
dependency between time points and known function,
such as dose response assays, the first estimate is calculated
by a regression function.
(iii) For experiments with an unknown continuous func-
tional dependency between time points, including time
course analysis, the first estimate is represented by a
smoothing spline.

Using this approach, we are able to process data derived
from any immunoblotting experiment robustly. Care has
IEE Proc.-Syst. Biol., Vol. 152, No. 4, December 2005
to be taken if a regression is used as a first estimate. It is
important to show in advance that the signal behaves as
expected to prevent incorrect use of the criterion. If there
is uncertainty, a smoothing spline might be more appropri-
ate, the only prerequisite being a smooth signal behaviour.

7 Data processing of time course experiments
in murine cell lines

To analyse the robustness of our data processing methods,
we applied the standard operating procedures and data nor-
malisation criteria to a large, yet noisy, data set obtained
by quantitative immunoblotting of mouse cellular lysates.
The murine BaF3 cell line was transfected with five different
HA-tagged EpoR variants and stimulated for 1 h with
50 units ml21 Epo. A total of 20 samples were taken at
regular intervals so that the changes in phosphorylation and
199



total amount of four different proteins (the Epo receptor
(EpoR), Janus kinase 2 (JAK2) and extracellular regulated
kinase 1 (ERK1) and 2 (ERK2)) could be followed. EpoR
and JAK2 were enriched by immunoprecipitation, and
ERK1 and ERK2 were analysed from total cellular lysates.
SDS gel electrophoresis was performed with randomised
sample loading, and phosphorylation levels were measured
using quantitative immunoblotting with phospho-specific
antibodies. Furthermore, total amounts of these proteins
were determined by reprobing of the membranes with the
respective antibodies. Calibrators of EpoR and JAK2
added to the lysates prior to immunoprecipitation were quan-
tified in parallel. The membranes used for measuring ERK1
and ERK2 were reprobed once more, and bActin was
measured, serving as normaliser for these proteins.
After quantification of all proteins with the LumiImager

system, we applied criteria-mediated normalisation pro-
cedures to the data. As the data generated were very
noisy, we tested whether our methods could improve their
quality. We calculated the error reduction factor of the stan-
dard deviation of the values compared with a smoothing
spline, which served as first estimate. In 33% of all cases,
the error reduction factor was smaller than 1, resulting in
a valid normalisation procedure. In all other instances, the
error reduction factor was larger than 1. In these cases, nor-
malisation was rejected and the original data were retained.
Figure 6 shows two examples of criteria-mediated error

reduction. In the left panel, the normalisation was valid,
with the corrected values closely following the smoothing
spline (Fig. 6c). In the right panel, normalisation was
rejected, and the original data were kept. The most
common reason for rejected normalisation was poor
quality of the normaliser or calibrator measurement, as evi-
denced by the deviation of data points of the normaliser
bActin from the blotting error estimate (Fig. 6d).
However, as immunoblotting was performed by randomised
gel loading, no misleading effects occurred that could lead
to false interpretation. For visual investigation, the
numbers were approximated with a smoothing spline, dis-
playing convincing time course dynamics (Fig. 6f ). By
comparing the data obtained with previous experiments,
we could show that our data processing methods substan-
tially improved the reliability of measurements in an
unbiased manner.

8 Conclusions

We show that, by the suggested data processing procedures,
the standard deviations of data generated by quantitative
immunoblotting can be decreased to approximately 55%,
thereby increasing data quality substantially. This is
largely independent of the experimental setting and quality
of the immunoblotting procedure. In contrast to traditional
chronological sample loading, we demonstrate the benefit
of randomised immunoblots. Randomisation is most useful
if the signal and blotting error are in the same frequency
range. As the number of measurements is often highly
200
limited in biochemical experiments, the sampling of time
courses is rather coarse. This leads to similar frequencies
of the signal and the blotting error. By quantification and
plotting of the signal intensity against time, the same infor-
mation is obtained as with chronological immunoblots;
however, as the correlation between neighbouring lanes is
disrupted, the standard deviation of the smoothed signal is
reduced more than two-fold, leading to data of higher
quality and therefore to fewer experiments being necessary
for novel biological insight.

Furthermore we demonstrate that calibrators and normali-
sers allow for correction of immunoblot data, provided there
is a good estimate of the blotting error. By generating criteria
for data correction, we developed a robust method to enhance
data quality further. The application to a large set of exper-
imental data validated our approach. The normalisation cri-
terion not only validates normalisation procedures, but also
assesses the quality of the immunoblotting experiment.
Valid normalisation criteria and decreased standard devi-
ation to the first estimate are indicators of adequate measure-
ments. If our standard operating procedures for experimental
design and data processing are employed, many aspects of
quantitative immunoblotting can be automated.

Subtle parameter changes in biological systems can
change the state of a cell and trigger the onset of diseases.
Therefore quantitative measurements with the highest resol-
ution possible are necessary so that we can understand,
predict and interfere with these networks. The limitation
of current systems biology is often the lack of data to test
the quantitative accuracy of mathematical models, requiring
new measurement techniques [4]. With the presented
procedure, the established technique of quantitative
immunoblotting is developed into a robust and reliable
method to generate high-quality quantitative data for
systems biology.
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