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Determination of synchronization phenomena between pairs of coupled multivariate processes
is of particular interest in Nonlinear Dynamics. Besides synchronization phenomena, coupling
directions between the processes are investigated. We present an approach to analyze coupling
directions in multivariate oscillatory stochastic systems. We propose usage of partial directed
coherence developed in the framework of linear stochastic processes. We show that partial
directed coherence is also applicable to detect coupling directions in nonlinear systems such
as coupled stochastic van der Pol and stochastic Rössler systems. Furthermore, a differentiation
between direct and indirect couplings in multivariate systems is possible when applying partial
directed coherence.
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1. Introduction

Analysis of multivariate systems has gained
particular interest during the past years. To this
aim, methods have been developed for linear
stochastic systems as well as for nonlinear deter-
ministic systems. These methods allow, for instance,
the detection of interactions between the pro-
cesses [Brockwell & Davis, 1998; Dahlhaus, 2000;
Pikovsky et al., 2001]. Extensions to the nonlinear
stochastic case have also been addressed [Tass et al.,
1998].

Partial directed coherence has been developed
in the framework of linear stochastic systems to
detect the directions of interactions in multivariate
systems [Baccala & Sameshima, 2001]. Moreover,
partial directed coherence enables to distinguish

between direct and indirect interactions. The inter-
action network can thus be analyzed and deter-
mined completely.

Partial directed coherence is based on model-
ing the multivariate system by linear vector autore-
gressive processes. Therefore, it is not clear whether
or not partial directed coherence can be read-
ily applied to stochastic oscillatory systems. In
this paper, we present an application of partial
directed coherence to simulated data originating
from stochastic oscillatory systems.

2. Partial Directed Coherence

We briefly introduce the concept of partial
directed coherence in the following. Consider a
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n-dimensional vector autoregressive process VAR[p]
of model order p
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 (t) =
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η1
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ηn


 (t) (1)

where ηi are the components of multivariate stan-
dard Gaussian distributed random variables and
ar matrices with entries akl,r quantifying the time
delayed influences of the history of the process on
the current value. Fourier transformation of the
coefficient matrices

Akl(ω) = 1 −
p∑

r=1

akl,re
iωr (2)

leads to the definition of partial directed coherence

πk←l(ω) =
|Akl(ω)|√√√√ n∑

j=1

|Ajl(ω)|2
. (3)

The denominator guarantees that partial directed
coherence is normalized in [0, 1]. A partial directed
coherence value of zero indicates an absent dir-
ected interaction from process l to process k at
frequency ω.

To estimate partial directed coherence, multi-
variate Yule–Walker equations can be utilized in
order to estimate the VAR coefficient matrices.
Direct usage of Eq. (3) leads to an estimate of
partial directed coherence. Recently, an analytic
significance level has been introduced to decide
whether or not partial directed coherence is sig-
nificantly different from zero when estimated for
finite time series [Schelter et al., 2005]. This signifi-
cance level has been shown to be frequency depen-
dent. We suggest to chose the model order p by
comparing the parametric auto-spectra with auto-
spectra estimated by means of a nonparametric
approach.

3. Model Systems Under
Investigation

In the following, the two oscillatory systems are
introduced and the application of partial directed
coherence to these systems is reported.

3.1. Network of four coupled
van der Pol oscillators

The first model system is a network of four coupled
stochastic van der Pol oscillators [van der Pol, 1922]

ẍi = µ(1 − x2
i )ẋi − ω2

i xi + σηi +
4∑

j �=i

εij(xj − xi),

i = 1, . . . , 4 (4)

with standard normally distributed noise ηi. The
parameters have been chosen to be µ = 5, ω1 =
1.02, ω2 = 0.97, ω3 = 1.01, ω4 = 0.5, and σ = 1.5.
The couplings between the oscillators have been
modeled by ε12 = 0.3, ε14 = 0.25, ε24 = 0.25,
ε41 = 0.3, and ε42 = 0.3. The remaining coupling
strengths have been chosen to be equal to zero.
Note, that the stochasticity entering the differential
equations can in general modify the characteristics
of the model systems considerably.

A four-dimensional VAR[200] was fitted to the
simulated van der Pol system with N = 50.000
data points for each component. The results of
partial directed coherence analysis are shown in
Fig. 1. The significance level is indicated by the red
line. At the oscillation frequencies of the oscillators,
the significance level obtains higher values prevent-
ing erroneous conclusions. The following coupling
directions, summarized in the graph in Fig. 1, are
observed by significant partial directed coherence
values at the oscillation frequency: X2 → X1, X4 →
X1, X4 → X2, X1 → X4, and X2 → X4. The simu-
lated coupling structure is reproduced correctly by
partial coherence analysis.

3.2. Network of four-coupled
Rössler oscillators

The second model system is a network of four-
coupled Rössler oscillators [Rössler, 1976]


Ẋj

Ẏj

Żj




=



−ωj Yj − Zj +

[∑
i

εji (Xi − Xj)

]
+ σj ηj

ωj Xj + aYj

b + (Xj − c)Zj




i, j = 1, 2, 3, 4. (5)
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Fig. 1. Results of partial directed coherence analysis for a four-dimensional van der Pol system. On the diagonal the spectra
of the four oscillators are shown and on the off-diagonal the partial directed coherences. The red curves indicate the frequency
dependent 5%-significance levels. The graph summarizes the coupling scheme detected by partial directed coherence, which is
in agreement with the coupling scheme simulated.

The parameters have been chosen to be σj = 1.5,
ω1 = 0.99, ω2 = 1.05, ω3 = 0.97, ω4 = 1.02,
a = 0.15, b = 0.2, c = 10; ηj denotes Gaus-
sian distributed white noise. The couplings between
the oscillators have been modeled by ε12 = 0.05,
ε13 = 0.04, ε23 = 0.05, ε24 = 0.05, ε31 = 0.06, and
ε42 = 0.05. The remaining coupling strengths have
been chosen to be equal to zero. For each oscillator,
N = 50.000 have been simulated. Partial directed
coherence was applied to the four X-components of
the Rössler oscillators utilizing a four-dimensional
VAR[200]. The results are shown in Fig. 2. The
following coupling directions, summarized in the
graph in Fig. 2, are observed by significant par-
tial directed coherence values at the oscillation fre-
quency: X2 → X1, X3 → X1, X3 → X2, X4 → X2,
X1 → X3 and X2 → X4. The coupling structure
simulated is again reproduced correctly by partial
coherence analysis.

3.3. Detection of coupling directions —
A test for the power

To test the power of partial directed coherence
for detection of coupling directions in nonlinear

stochastic systems, we have investigated a two-
oscillator unidirectionally coupled Rössler system.
The coupling strength ε12 was varied from 0.001 to
0.1, while the coupling in the opposite direction was
absent (ε21 = 0). The parameters were chosen to be
ω1 = 1.015, ω2 = 0.985, a = 0.15, b = 0.2, c = 10,
and σ1,2 = 1.5. A two-dimensional VAR[200] was
fitted to the simulated N = 50.000 data points for
each X-component and each coupling strength.

In Fig. 3 the partial directed coherence values
(blue curves) at the oscillation frequencies and the
corresponding critical values for a 5%-significance
level (red curves) are given in dependence on the
coupling strength ε12. The functional relationship
of partial directed coherence and the critical value
for the coupling direction from X2 to X1 at the fre-
quency of oscillator X1 are presented in (a), for the
coupling direction from X2 to X1 at the frequency
of oscillator X2 in (b), for the coupling direction
from X1 to X2 at the frequency of oscillator X1 in
(c), and for the coupling direction from X1 to X2

at the frequency of oscillator X2 in (d). Since there
is only a minor difference between the results for
the different frequencies, we restrict the following
interpretations to the frequency of oscillator X1.
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Fig. 2. Results of partial directed coherence analysis for a four-dimensional Rössler system. The analysis is performed on
the X-components. On the diagonal the spectra of the four oscillators are given, while on the off-diagonal the partial directed
coherences are shown. The red curves indicate the frequency dependent 5%-significance levels. The graph summarizes the
detected coupling scheme by partial directed coherence. It is in agreement with the coupling scheme simulated.

The functional relation of partial directed
coherence crosses the functional relationship of the
critical value at ε12 = 0.025 for the direction
X2 → X1. For the opposite coupling direction,

partial directed coherence values are not significant.
A detection of the correct coupling directions
between stochastic Rössler oscillators is possible
for coupling strengths higher than 0.025, which
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Fig. 3. To test the power of partial directed coherence in detecting coupling directions, the empirical functional relationship
of partial directed coherences and the corresponding critical values in dependence of a unidirectional coupling ε12 have been
investigated. Partial directed coherence as well as the corresponding critical value is evaluated at both oscillation frequencies
of the oscillators X1 and X2. Results for both frequencies are quite similar. The correct coupling direction is detected for
coupling strengths ε12 > 0.025.
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Fig. 3. (Continued )

corresponds to a weak coupling in the stochas-
tic Rössler system (a, b). For the absent cou-
pling direction, partial directed coherence is sig-
nificant just for a few coupling strengths, which
is expected for a 5%-significance level (c, d). For
higher coupling strengths, corresponding to an
almost complete synchronization between the oscil-
lators, partial directed coherence will be significant
for both directions.

4. Conclusion

Partial directed coherence is a powerful tool for
the analysis of multivariate linear systems [Win-
terhalder et al., 2005]. Moreover, we have shown
that the linear concept of partial directed coher-
ence can also be applied successfully to the nonlin-
ear oscillatory system investigated here. For this, a
high model order is required to model the systems
by linear vector autoregressive processes sufficiently
well, and consideration of the significance level is
essential in order to prevent erroneous conclusions.
By partial directed coherence analysis, not only a
detection of coupling directions but also a differenti-
ation of direct and indirect interactions is possible.
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