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Abstract

One major challenge in neuroscience is the identification of interrelations between signals reflecting neural activity. When applying multivariate
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ime series analysis techniques to neural signals, detection of directed relationships, which can be described in terms of Granger-causality, is of
articular interest. Partial directed coherence has been introduced for a frequency domain analysis of linear Granger-causality based on modeling
he underlying dynamics by vector autoregressive processes. We discuss the statistical properties of estimates for partial directed coherence and
ropose a significance level for testing for nonzero partial directed coherence at a given frequency. The performance of this test is illustrated by
eans of linear and non-linear model systems and in an application to electroencephalography and electromyography data recorded from a patient

uffering from essential tremor.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Examinations of interrelations and especially causal influ-
nces between different brain areas are of particular interest
n neuroscience. These investigations are based on consider-
ng the brain as a dynamic system and analyzing signals reflect-
ng neural activity, for example, electroencephalographic (EEG)
r magnetoencephalographic (MEG) recordings. This approach
as been used, for instance, in application to data sets recorded
rom patients suffering from neurological diseases, in order to
ncrease the understanding of underlying mechanisms generat-
ng these dysfunctions (Grosse et al., 2002; Hellwig et al., 2000,
001, 2003; Hesse et al., 2003; Tass et al., 1998; Volkmann et
l., 1996).

Various time series analysis techniques have been proposed
or the description of interdependencies between dynamic pro-

∗ Corresponding author. Tel.: +49 761 203 7710; fax: +49 761 203 7700.
E-mail address: schelter@fdm.uni-freiburg.de (B. Schelter).

cesses and for the detection of causal influences in multivariate
systems (Boccaletti et al., 2002; Dahlhaus et al., 1997; Dahlhaus,
2000; Eichler et al., 2003; Pikovsky et al., 2001; Rosenblum
and Pikovsky, 2001; Smirnov and Bezruchko, 2003; Timmer
et al., 1998). In the frequency domain the interdependencies
between two dynamic processes are investigated by the cross-
spectrum and the coherence. For multivariate systems with more
than two components, the distinction between indirect and di-
rect relationships becomes important, the latter can be described
in terms of the partial coherence (Brillinger, 1981). The par-
tial coherence has been used to define graphical interaction
models that describe the dependence structure of multivariate
time series by undirected graphs (Brillinger, 1996; Dahlhaus,
2000).

The concept of Granger-causality (Granger, 1969) is usually
utilized for determination of causal influences. This proba-
bilistic concept of causality is based on the common sense
idea that causes precede their effects in time and is formulated
in terms of predictability. Empirically, Granger-causality is
commonly evaluated by fitting vector autoregressive models. A

165-0270/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
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graphical approach for modeling Granger-causal relationships
in multivariate processes has been discussed (Eichler, Preprint
2001); an overview is provided in Dahlhaus and Eichler (2003).
More generally, graphs provide a convenient framework for
causal inference and allow, for example, the discussion of
so-called spurious causalities due to confounding by latent
variables (Eichler, 2005).

The partial directed coherence has been introduced for in-
ference of linear Granger-causality in the frequency domain
based on vector autoregressive models of appropriate order p
(VAR[p]) (Baccala and Sameshima, 2001; Sameshima and Bac-
cala, 1999). Unlike coherence and partial coherence analysis,
the statistical properties of the partial directed coherence have
not yet been investigated. In particular, significance levels for
testing for nonzero partial directed coherences at fixed frequen-
cies are not available and are usually determined by simulations
(Baccala and Sameshima, 2001; Schnider et al., 1989). On the
one hand, without a significance level, detection of causal in-
fluences becomes more hazardous for increasing model order as
the variability of estimated partial directed coherences increases
leading to false detections. On the other hand, a high model order
is often required to describe the dependencies of a multivariate
process examined sufficiently well.

In this paper, the statistical properties of partial directed co-
herence estimates are discussed and a significance level for test-
ing nonzero directed influences between frequency components
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and defines causal relationships in terms of predictability. In
a linear framework, the notion of Granger-causality is closely
related to vector autoregressions.

More precisely, let x = (x(t))t∈Z with x(t) =
(x1(t), . . . , xn(t))′ be a stationary n-dimensional time se-
ries with mean zero. Then a vector autoregressive model of
order p, abbreviated VAR[p], for x is given by

x(t) =
p∑

r=1

a(r) x(t − r)+ ε(t), (1)

where a(r) are the n× n coefficient matrices of the model and
ε(t) is a multivariate Gaussian white noise process. The covari-
ance matrix of the noise process is denoted by �. To guarantee
stationarity of the model we assume that

det(I − a(1) z− . . .− a(p) zp) �= 0 (2)

for all z ∈ C such that |z| ≤ 1 (e.g. Lütkepohl, 1993).
In this model, the coefficients aij(r) describe how the present

values of xi depend linearly on the past values of the components
xj . Thus, we say that xj does not Granger-cause another process
xi with respect to the full process x if in the autoregressive rep-
resentation (1) all entries aij(r) are zero for r = 1, . . . , p; or in
other words, if linear prediction of xi(t + 1) based on the past
and present values of all variables but xj cannot be improved by
adding the past and present values of xj . We note that the vector
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s derived. In Section 2, partial directed coherence is introduced
nd simulations illustrating the problem of a missing signifi-
ance level are presented. Furthermore, statistical properties of
artial directed coherence are calculated. Since not only linear
ut also non-linear stochastic systems may be present in applica-
ions, the performance of this significance level is demonstrated
y one linear and one non-linear stochastic model system with
ifferent dynamic behavior in Section 3. An exemplary applica-
ion to electroencephalographic and electromyographic (EMG)
ecordings of a patient suffering from essential tremor is pre-
ented in Section 4.

. Partial directed coherence

In the following, the concepts of Granger-causality and partial
irected coherence are presented and illustrated in examples of
ector autoregressive processes. Furthermore, we discuss the
tatistical properties of estimators for partial directed coherence
nd derive a pointwise significance level for testing for a nonzero
artial directed coherence.

.1. Definition

The concept of Granger-causality, which originates from
conometrics (Granger, 1969), is a fundamental tool for the de-
cription of directed dynamic relationships among the compo-
ents of a multivariate process and has been applied recently
o problems in neuroscience (e.g. Eichler, 2005; Goebel et al.,
003; Hesse et al., 2003). Based on the common sense concep-
ion that causes precede their effects in time, this probabilistic
oncept of causality exploits the temporal structure of signals
utoregressive modeling approach allows only the description
f linear relationships among the variables and hence, strictly
peaking, relates to linear Granger-causality. In the sequel, we
ill use “Granger-causality” in this restricted meaning.
In order to provide a frequency domain description of

ranger-causality, Baccala and Sameshima (2001) introduced
he concept of partial directed coherence. Let

(ω) = I −
p∑

r=1

a(r) e−iωr (3)

enote the difference between the n-dimensional identity matrix
and the Fourier transform of the coefficient series. Then the
artial directed coherence |πi←j(ω)| for a VAR[p]-process is
efined as

πi←j(ω)| = |Aij(ω)|√∑
k |Akj(ω)|2

. (4)

e note that condition (2) guarantees that the denominator is
trictly positive and hence that the partial directed coherence is
ell defined. From the definition, it follows that |πi←j(ω)| van-

shes for all frequencies ω if and only if all coefficients aij(r) are
ero and hence xj does not Granger-cause xi given the other vari-
bles. This suggests that the partial directed coherence |πi←j(ω)|
rovides a measure for the directed linear influence of xj on xi at
requency ω. Furthermore, because of the normalization in Eq.
4), the partial directed coherence takes values in the interval
0,1]. It compares the effect of the past of xj on the presence of
i with the effect of the past of xj on the other variables. Thus,
artial directed coherence ranks the interaction strengths with
espect to a given signal source.
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Fig. 1. Graph summarizing the causal influences for the example of a five-dimensional VAR[4] (a). Corresponding spectra (diagonal) and partial directed coherence
(off-diagonal) (b). The simulated causal influences are reproduced correctly by the estimated partial directed coherence.

2.2. Background

To illustrate the performance of partial directed coherence
in detecting causal influences, the following five-dimensional
vector autoregressive process of order p = 4

x1(t) = 0.6x1(t − 1)+ 0.65x2(t − 2)+ ε1(t)

x2(t) = 0.5x2(t − 1)− 0.3x2(t − 2)− 0.3x3(t − 4)

+ 0.6x4(t − 1)+ ε2(t)

x3(t) = 0.8x3(t − 1)− 0.7x3(t − 2)− 0.1x5(t − 3)+ ε3(t)

x4(t) = 0.5x4(t − 1)+ 0.9x3(t − 2)+ 0.4x5(t − 2)+ ε4(t)

x5(t) = 0.7x5(t − 1)− 0.5x5(t − 2)− 0.2x3(t − 1)+ ε5(t)

(5)

is investigated. The covariance matrix of the noise � is set to
the identity, the number of simulated data points is N = 50.000
for each component of the VAR-process. The structure of the
autoregressive model can be summarized by the graph in Fig.
1(a). In this graph, a directed edge from xj to xi is drawn if xj

Granger-causes xi. The properties of such graphs have been in-
vestigated in detail in Eichler (2001, 2002). In particular, they
allow to differentiate between direct and indirect influences. For
instance, process x4 has an indirect influence on x1 that is me-
diated by x2 since, for all times t, the present value of x1(t) is
influenced by x2(t − 2), which in turn is influenced by x4(t − 3).
I
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F
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tra of the processes xi are displayed on the diagonal. Partial
directed coherences |πi←j| are shown on the off-diagonal ele-
ments. The results show that the autoregressive structure of the
simulated process is detected correctly by partial directed coher-
ence, because |π1←2|, |π2←3|, |π4←3|, |π5←3|, |π2←4|, |π3←5|,
and |π4←5| do not vanish. The example demonstrates that par-
tial directed coherence provides a frequency domain approach
for the identification of causal influences in multivariate sys-
tems.

In this example, the order of the fitted vector autoregressive
process has been chosen to be the correct order of the simulated
process p = 4. But in applications to empirical time series, the
order is unknown that is necessary to describe the processes by a
VAR-model sufficiently well, especially for non-linear stochas-
tic processes.

To demonstrate the effects of different values for the order of
the fitted model, a two-dimensional vector autoregressive pro-
cess VAR[2](

x1(t)

x2(t)

)
=
(

a11 a12

a21 a22

)(
x1(t − 1)

x2(t − 1)

)

+
(

b11 b12

b21 b22

)(
x1(t − 2)

x2(t − 2)

)
+
(

ε1(t)

ε2(t)

)
(6)

i
a

a

f x2 would be blocked somehow, changes in x4 would no longer
ffect x1.

The corresponding partial directed coherence is given in
ig. 1(b). Partial directed coherence is estimated by fitting a
AR[4]-model to the data and direct usage of Eq. (4). The spec-
s examined, that can be interpreted as a system of relaxators
nd damped oscillators. The parameters

11 = a22 = 2 cos

(
2π

T

)
exp

(
−1

τ

)
(7)
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Fig. 2. Partial directed coherence for three different values of the order of the fitted vector autoregressive process p = 2 (a), p = 50 (b), and p = 200 (c). Variability
increases with increasing model order p. As in almost all applications the correct value of p is unknown and especially for non-linear stochastic processes a high
order of p is required to describe the processes sufficiently well, a significance level for partial directed coherence is strongly required. The almost horizontal, gray
lines indicate the 5%-significance level that will be derived in the following.

b11 = b22 = − exp

(
−2

τ

)
(8)

are chosen using T = 15 for the characteristic period and τ = 5
for the characteristic relaxation time of the oscillators (Timmer,
1998). The problem of interpreting partial directed coherence for
increasing orders of the fitted VAR-model is illustrated by two in-
dependent AR[2]-processes (a12 = a21 = b12 = b21 = 0), sim-
ulated each with N = 10.000 data points.

In Fig. 2 the partial directed coherence is shown for differ-
ent values of the order p of the fitted VAR[p]-model to the
true VAR[2]-process (cf. Eq. (6)). In (a), the correct order of
p = 2 is chosen and partial directed coherence is mostly van-
ishing as there is no influence between both AR[2]-processes.
Increasing the order of the fitted vector autoregressive process
to p = 50 (b) and p = 200 (c), respectively, yields a higher vari-
ability in partial directed coherence. This increasing variability
complicates the interpretation of partial directed coherence. Par-
tial directed coherence obtains values up to 0.15 for p = 200
(c). Thus, it is hardly possible to decide without a significance
level whether or not there are causal influences between the pro-
cesses. As in several applications a high value of p is required
to describe especially non-linear processes sufficiently well by
vector autoregressive processes, a significance level for partial
directed coherence is required. The gray lines represent the cor-
responding significance level that will be derived in the next
s

2
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Eqs. (3) and (4) with the parameter estimates âij(k) substi-
tuted for the true coefficients aij(k). Thus, the statistical prop-
erties of the estimates of partial directed coherence |π̂i←j(ω)|
can be derived from the properties of the parameter estimates
âij(k). Commonly used estimates âij(k) of the coefficients
aij(k) such as least squares estimates or Yule-Walker estimates
are asymptotically normally distributed with mean aij(k) and
covariances

lim
N→∞N cov(âij(k), âij(l)) = �ii Hjj(k, l). (9)

Here, Hjj(k, l) are entries of the inverse H = R−1 of the covari-
ance matrix R of the VAR-process x. The covariance matrix R
is composed of n× n sub-matrices

R(k, l) =

⎛
⎜⎜⎝

R11(k, l) · · · R1n(k, l)
...

. . .
...

Rn1(k, l) · · · Rnn(k, l)

⎞
⎟⎟⎠ (10)

with entries

Rij(k, l) = cov(xi(t − k), xj(t − l)) (11)

for i, j = 1, . . . , n and k, l = 1, . . . , p (Lütkepohl, 1993). Con-
s ˆ

t
t
d

ection.

.3. Statistical properties

The partial directed coherence |πi←j(ω)| is estimated by
tting a n-dimensional VAR[p] model to the data and using
equently, the real and imaginary part of Aij(ω) are also asymp-
otically jointly normally distributed. In the appendix, it is shown
hat under the null hypothesis of |Aij(ω)|2 = 0 the asymptotic
istribution of

N

Cij(ω)
|Âij(ω)|2 (12)
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is a weighted average of two independent χ2-distributions with
one degree of freedom, where

Cij(ω)

= �ii

⎡
⎣ p∑

k,l=1

Hjj(k, l)(cos(kω) cos(lω)+ sin(kω) sin(lω))

⎤
⎦ .

(13)

Thus, the critical value of the distribution is bounded by the
critical value of a χ2-distribution with one degree of freedom.

Next, we consider the complex valued function

π̂i←j(ω) = Âij(ω)√∑
k |Âkj(ω)|2

(14)

from which we obtain the partial directed coherence by taking
the absolute value. This function is non-linear in the parameter
estimates âij(k). Taylor expansion of π̂i←j(ω) about aij(k) yields

π̂i←j(ω) = Âij(ω)√∑
k |Akj(ω)|2

+ Aij(ω) R1 + R2 (15)

with |R1| ≤ C ‖â − a‖ and |R2| ≤ C ‖â − a‖2. The estimate of
a = (a(1), . . . , a(p)) is denoted by â. Under the hypothesis of
|
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α-significance level, where p is the order of the VAR-process.
However, since the values of |πi←j(ω)| at different frequencies
ω are in general highly correlated, it seems hardly possible to
derive a uniform non-constant significance level for the partial
directed coherence. We mention though that it is rather common
in other applications to use pointwise levels.

Calculation of this significance level for the example of two
independent AR[2]-processes leads to the gray lines in Fig. 2
(α = 5%). Since the significance level is only crossed at a small
number of frequencies, a causal influence between both pro-
cesses is rejected. We note that for p = 2 the significance level
exhibits a strong dependence on the frequency illustrating the
fact that the significance level in Eq. (17) varies with ω.

3. Simulations

In the first part of this section, we demonstrate the perfor-
mance of the proposed significance level for a vector autore-
gressive process. We shall see that the method even works well
when the true model order is strongly overfitted.

Partial directed coherence has been developed in the frame
of linear stochastic processes. In several applications, however,
non-linear stochastic processes are expected to generate the time
series. Nevertheless, in most of these cases the dependence struc-
ture is reflected in the linear second order structure and for this
reason the partial directed coherence also works well for many
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Aij(ω)|2 = 0 the second term Aij(ω) R1 vanishes and we have

π̂i←j(ω)|2 = |Âij(ω)|2∑
k |Akj(ω)|2 + R, (16)

here the remainder R is of order ‖â − a‖3 and is negligible
ompared with the main term. Therefore, the α-significance level
or the partial directed coherence |πi←j(ω)| can be approximated
y

Ĉij(ω) χ2
1,1−α

N
∑

k |Âkj(ω)|2

)1/2

, (17)

here χ2
1,1−α is the 1− α quantile of the χ2-distribution with

ne degree of freedom and Ĉij(ω) is an estimate of Cij(ω) in Eq.
13).

An interesting feature of the significance level in Eq. (17) is
hat it does depend on the frequency unlike e.g. the significance
evels of ordinary coherence (Bloomfield, 1976). In particular, it

ompensates for the effects of normalization by
√∑

k |Âkj(ω)|2,
hat is, significance depends not on the relative but the absolute
trength of the relationship at that frequency. As a consequence,
t could happen that the largest value of |π̂i←j(ω)| is found non-
ignificant while at other frequencies smaller values with a larger
ormalization factor are significant. This demonstrates again the
mportance of a significance level that can be used to detect local
eviations from the null hypothesis of |πi←j(ω)| = 0.

A possible drawback of the proposed significance level is
hat it is only a pointwise level, which is typically exceeded
or a certain number of frequencies even if there is no causal
nfluence. We expect on average pα crossings of the pointwise
on-linear processes. In the second part of this section we there-
ore demonstrate the performance of the method for a non-linear
tochastic oscillatory system. Again we show that the proposed
ignificance level works well for rather high model orders. High
odel orders are required for a sufficient description of non-

inear systems by linear vector autoregressive processes.

.1. Vector autoregressive process

The five-dimensional VAR[4]-process from Eq. (5) serves as
first example for the performance of the significance level. The

nterdependence structure is given in Fig. 1(a). As shown in Fig.
(b), the interdependence structure can be intuitively reproduced
orrectly without knowledge of a significance level. However,
his holds if the order of the fitted VAR[p]-process is chosen
orrectly. Akaike’s information criterion (Akaike, 1973) or dif-
erent model selection strategies (Hastie et al., 1996; Rissanen,
978, 1983; Schwartz, 1979) might give a hint for the appropri-
te selection of the model order.

In applications, if a huge time lag is present between time se-
ies or if combinations between linear and non-linear processes
ave to be investigated, rather high model orders are required.
n these circumstances the significance level allows to decide
hether a partial directed coherence is significantly different

rom zero or not.
To investigate the effects of high model orders, a VAR[200]-

odel is fitted to the time series generated by the VAR[4]-
rocess. The results are shown in Fig. 3. The corresponding
%-significance levels are shown by the gray lines. The higher
rder increases the variability of the partial directed coherence
ut, correctly, only direct causal influences are revealed by sig-
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Fig. 3. Spectra (diagonal) and partial directed coherence (off-diagonal) for the example of the VAR[4]-process. The corresponding 5%-significance levels are
indicated by the gray lines. The simulated causal influences are reproduced correctly since only partial directed coherences |π1←2|, |π2←3|, |π4←3|, |π5←3|, |π2←4|,
|π3←5|, and |π4←5| are significant.

nificant partial directed coherences. These are the partial directed
coherences |π1←2|, |π2←3|, |π4←3|, |π5←3, |π2←4|, |π3←5|, and
|π4←5|.

3.2. Four coupled stochastic van der Pol oscillators

To test the validity of the significance level for a non-linear
system, an example of coupled stochastic van der Pol oscillators
(van der Pol, 1922)

ẍ1 = µ(1− x2
1)ẋ1 − ω2

1x1 + ση1 + ε12(x2 − x1)

+ ε13(x3 − x1)+ ε14(x4 − x1) (18)

ẍ2 = µ(1− x2
2)ẋ2 − ω2

2x2 + ση2 + ε23(x3 − x2)

+ ε24(x4 − x2)+ ε21(x1 − x2) (19)

ẍ3 = µ(1− x2
3)ẋ3 − ω2

3x3 + ση3 + ε34(x4 − x3)

+ ε31(x1 − x3)+ ε32(x2 − x3) (20)

ẍ4 = µ(1− x2
4)ẋ4 − ω2

4x4 + ση4 + ε41(x1 − x4)

+ ε42(x2 − x4)+ ε43(x3 − x4) (21)

is investigated with N = 50.000 data points for each pro-
cess, ω1 = 1.5, ω2 = 1.48, ω3 = 1.53, ω4 = 1.44, σ = 1.5, and
Gaussian distributed white noise ηi. Although the interaction
between the four oscillators is still linear, the system is non-
linear due to terms weighted by the parameter µ. The param-
eter µ is fixed to 5, leading to a highly non-linear behavior of
the van der Pol oscillators. The unidirectional and bidirectional
coupling between these four non-identical oscillators are set to
ε12 = ε21 = 0.2, ε24 = ε42 = 0.2, ε31 = 0.2, and ε34 = 0.2.

The causal influences are summarized in the graph in Fig.
4(a). Estimated partial directed coherence as well as the spectra
are given in Fig. 4(b). The order of the vector autoregressive
process is chosen to be p = 200. This high model order is re-
quired to reproduce the spectra sufficiently well, compared to
non-parametric spectral estimates.

The corresponding 5%-significance levels are indicated by
gray lines. Partial directed coherence correctly detects the causal
influences in the van der Pol system, as only |π2←1|, |π3←1|,
|π1←2|, |π4←2|, |π2←4|, and |π3←4| are significant at the corre-
sponding oscillation frequencies. The significance level depends
on the investigated frequency. At the peaks in the spectra of the
van der Pol oscillators, the significance level is slightly higher
than at the remaining frequencies. This allows only those partial
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Fig. 4. Causal influences for the example of four coupled stochastic van der Pol oscillators (a). Corresponding spectra (diagonal) and partial directed coherence
(off-diagonal) (b). The corresponding 5%-significance levels are indicated by gray lines. The simulated causal influences are reproduced correctly since only partial
directed coherences |π2←1|, |π3←1|, |π1←2|, |π4←2|, |π2←4|, and |π3←4| are significant at the oscillation frequencies.

directed coherencies to be significant that are related to direct
causal influences between the oscillators.

4. Application to essential tremor

The pathophysiological basis of essential tremor, a common
neurological disease with a prevalence of 0.4–4% (Louis et
al., 1998), is not precisely known. Essential tremor manifests
itself mainly in the upper limbs, when the hands are in a
postural outstretched position. Usually the trembling frequency
of the hands is 4–10 Hz. To elucidate the tremor generating
mechanisms in essential tremor, relationships between the
brain and trembling muscles are of particular interest. Tremor
correlated cortical activity has been observed by coherence
analysis of simultaneously recorded electroencephalography
and electromyography (Hellwig et al., 2001). Within that study
it was not possible to differentiate whether the cortex imposes
its oscillatory activity on the muscles via the corticospinal
tract or whether the muscle activity is just reflected in the
cortex via proprioceptive afferences. Therefore, to get deeper
insights into tremor generation, partial directed coherence is
applied to data recorded from patients suffering from essential
tremor.

For one patient with essential tremor, the EMG from the left
and right wrist extensor as well as the EEG recorded over the
left and right sensorimotor cortex are analyzed. Bilateral postural
t
E
a
b

In Fig. 5, results of the partial directed coherence analysis
for the two EMG and the two EEG channels are shown. On
the diagonal the spectra of the processes are given. The tremor
frequency indicated by the sharp peak in the left EMG-spectrum
is almost 5 Hz. The tremor amplitude is lower for the right wrist
extensor and its frequency is slightly higher compared to the
left wrist extensor. Significant partial directed coherences at the
corresponding tremor frequencies are detected for the direction
from the left EMG to the right, contralateral EEG, from the
right EEG to the left EMG, and from the left EEG to the right
EMG. All remaining partial directed coherences between EEG
and EMG are non-significant at the corresponding frequencies
of the tremor. Caused by the property of the significance level to
be valid only pointwise, partial directed coherence should only
be evaluated at the tremor frequency.

However, since the EEG recordings are mutually influencing
each other over a range of frequencies, we consider this result
as significant even if we do not apply a correction for multiple
testing. Actually, this weak interaction indicating an interhemi-
spheric coupling is not unexpected, as shown for bilaterally
activated essential tremor by means of bivariate coherence anal-
ysis (Hellwig et al., 2003). Moreover, there are no significant
partial directed coherences between both EMG recordings. The
partial directed coherence indicating a causal influence from
the left EMG to the right EEG is much higher than the partial
directed coherence indicating a causal influence from the right
E
s
h
p

remor was recorded for 250 s using a sampling rate of 1.000 Hz.
EG data were band-pass filtered between 0.5 and 200 Hz. To
void movement artifacts, EMG data were band-pass filtered
etween 30 and 200 Hz and rectified afterwards.
EG to the left EMG (Fig. 5). This might be caused by the
ignal-to-noise ratios of the EEG and the EMG. While the EMG
as hardly any noise influence, the EEG is characterized by a
oor signal-to-noise ratio. The scalp EEG contains information
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Fig. 5. Partial directed coherences for EEG- and EMG-recordings of one patient suffering from essential tremor. The corresponding 5%-significance levels are
indicated by gray lines. Significant partial directed coherences at the corresponding frequencies of the tremor are found between EEG left→ EMG right, EEG right
→ EMG left, and EMG left→ EEG right indicating a directed influence between these recordings. Both EEG recordings are mutually influencing each other over
a range of frequencies around the tremor frequencies. Neither ipsilateral interdependencies nor an interaction between both muscles are significant at the tremor
frequencies.

from rather extended cortical areas and is not selective about
tremor-related information from the motor cortex. Therefore, a
high partial directed coherence from the EEG to the EMG is not
likely to be detected. Similarly, a causal influence from the right

Fig. 6. Graph for partial directed coherence analysis of the tremor application
(cf. Fig. 5). The arrows indicate a direct and directed interrelation at the tremor
frequency. The dashed arrows indicate partial directed coherence between the
EEGs, which are significant over a range of frequencies close to the tremor
frequency.

EMG to the left EEG might be absent due to the weak tremor
amplitude.

The graph summarizing the results of partial directed coher-
ence analysis is presented in Fig. 6. The influences between both
EEGs are marked by dashed arrows. This is due to the fact, that
partial directed coherence is not significant exactly at the tremor
frequency but over a range of frequencies close to the tremor
frequency. Since causal influences from both EEGs to the cor-
responding contralateral EMGs are present, participation of the
motor cortex in tremor generation is strongly indicated. More-
over, there is also a significant partial directed coherence from
the EMG to the contralateral EEG at the tremor frequency. This
corresponds to a feedback from the muscles to the somatosen-
sory cortex. For this patient, unexpected ipsilateral interrelations
are not detected by partial directed coherence analysis.

5. Conclusion

Partial directed coherence is a powerful analysis technique to
detect causal influences in multivariate stochastic systems with
respect to Granger-causality. We illustrated the problem of infer-
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ence based on partial directed coherence without a significance
level, especially if a high model order is required. In order to
draw reliable conclusions in applications, we analyzed the sta-
tistical properties and analytically derived a significance level.

The performance of the proposed significance level has been
shown by means of linear stochastic as well as non-linear
stochastic model systems. Even in application to the non-linear
stochastic van der Pol system, partial directed coherence in com-
bination with the significance level is able to detect causal influ-
ences and to distinguish direct from indirect ones.

The significance level allows for more freedom in the choice
of the fitted VAR-process order. This has been demonstrated by
the analysis of a VAR[4]-process, in which the order of the fitted
process has been chosen to be p = 200. In spite of highly vari-
able estimates for partial directed coherence, the correct inter-
relation structure could be inferred using the significance level.
The order of the fitted process should not be smaller than the
true order, but a higher order is unproblematic in combination
with the significance level.

Choosing a high model order requires a large sample size for
a reliable estimation of the parameters and the significance level.
In general, the sample size required strongly depends on the sys-
tem investigated and the corresponding model order. Especially
if only a small sample size is available in applications, we rec-
ommend a tailored study on simulated data sets in advance.

Furthermore, we have presented an exemplary application
t
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covariance matrix

Vij(ω) =
p∑

k,l=1

Hjj(k, l) �ii

×
(

cos(kω) cos(lω) cos(kω) sin(lω)

sin(kω) cos(lω) sin(kω) sin(lω)

)
. (A.2)

For ω �= 0 mod π, the matrix Vij(ω) is positive definite. To see
this, let

M(ω) =

⎛
⎜⎜⎝

cos(ω) sin(ω)
...

...

cos(pω) sin(pω)

⎞
⎟⎟⎠ . (A.3)

Then for x ∈ R
2 we have

x′Vij(ω)x = �ii(M(ω)x)′H(j)M(ω)x = 0 (A.4)

where H(j) is the p× p matrix with entries H(j)
k,l = Hjj(k, l)

for k, l = 1, . . . , p. Since H(j) is positive definite and M(ω)
has rank 2 if and only if p ≥ 2 and ω �= 0 mod π, we have
x′Vij(ω)x = 0 if and only if x = 0, which proves the positive
definiteness of Vij(ω). Consequently, Vij(ω) can be factorized
as Vij(ω) = Qij(ω)Dij(ω)Q′ij(ω) where Qij(ω) is some orthog-
onal matrix and Dij(ω) is the diagonal matrix of the eigenvalues
of Vij(ω). Then Yij(ω) = Dij(ω)−1/2Q′(ω)Xij(ω) is asymptot-
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o EEG and EMG data from a patient suffering from essential
remor. Using partial directed coherence in combination with
he significance level allows to detect causal influences between
EG and EMG recordings in essential tremor and provides thus
loser insights into the tremor generating mechanisms. The sig-
ificance level introduced for partial directed coherence pro-
ides a rigorous framework for statistical inference of causal
nfluences in general enabling a more widespread use of partial
irected coherence in neuroscience applications.
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ppendix A

In this appendix, we derive the asymptotic distribution of
Âij(ω)|2 under the hypothesis of |Aij(ω)|2 = 0. We first note
hat for p = 1 we have |Âij(ω)|2 = âij(1)2 and Cij(ω) = �ii

jj(1, 1) = var(âij(1)), which implies that the ratioN|Âij(ω)|2/
ij(ω) is χ2-distributed with one degree of freedom.

For p ≥ 2, we can write N |Âij(ω)|2 as X′ij(ω)Xij(ω), where

ij(ω) =
(√

NReÂij(ω)√
NImÂij(ω)

)
. (A.1)

ince the real and imaginary part of Âij(ω) are linear func-
ions in the parameter estimates âij(1), . . . , âij(p), Xij(ω)
s asymptotically normally distributed with mean zero and
cally bivariately standard normally distributed, from which it
ollows that

|Aij(ω)|2 = X′ij(ω)Xij(ω) = Y′ij(ω) Dij(ω) Yij(ω) (A.5)

as asymptotically the same distribution as
′Dij(ω)Z = D11,ij(ω)Z2

1 + D22,ij(ω)Z2
2, (A.6)

here Z = (Z1, Z2)′ has a bivariate standard normal distribu-
ion. The two eigenvalues D11,ij(ω) and D22,ij(ω) of Vij(ω) are
n general not equal. Calculation of the eigenvalues of Vij(ω)

et

(
V11,ij(ω)− Dkk,ij(ω) V12,ij(ω)

V21,ij(ω) V22,ij(ω)− Dkk,ij(ω)

)
!= 0,

k = 1, 2 (A.7)

eads to
2
kk,ij(ω)− Dkk,ij(ω)(V11,ij(ω)+ V22,ij(ω))+ det Vij(ω)

!= 0.

(A.8)

he eigenvalues Dkk,ij(ω) satisfy

Dkk,ij(ω)

Cij(ω)
= 1

2
±
√

1

4
− det Vij(ω)

C2
ij(ω)

> 0 (A.9)

here Cij(ω) = V11,ij(ω)+ V22,ij(ω) is given by the constant in
q. (13). It follows that N |Aij(ω)|2/Cij(ω) is the weighted av-
rage of two independent χ2-distributed random variables with
ne degree of freedom because Z1 and Z2 are standard normally
istributed. Only if the two eigenvalues of Vij(ω) were identical,
e would obtain a χ2-distribution with two degrees of freedom

caled by a factor 1/2.
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Finally, we note that for p ≥ 2 and ω = 0 mod π, we have
Xij,2 = Im Âij(ω) = 0, while Xij,1 is asymptotically normally
distributed with mean zero and variance V11,ij(ω) = Cij(ω). It
follows thatN|Âij(ω)|2/Cij(ω) isχ2-distributed with one degree
of freedom.
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