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6 SUPPLEMENT

6.1 Experimental data
Time courses of phosphorylated insulin receptor (IR∗) and insulin
receptor substrate (IRS-1∗) as well as binding of PI-3 kinase to
IRS-1 and phosphorylation of extracellular regulated kinase (ERK-
1∗ and ERK-2∗) as functional outcome are measured for different
insulin stimulations. In addition, total concentrations of IR, IRS-
1, ERK-1 and ERK-2 and of housekeeping proteins gp96, hsc70,
β-actin are measured. Further, positive and negative controls are
performed within every stimulation with insulin. Total protein con-
centrations and concentrations of housekeeping proteins are not
affected by insulin stimulation and are therefore considered to be
constant.

Cells used for measurements are primary hepatocytes of mice
origin isolated as previously described (Klingmuelleret al., 2006)
Isolation procedure is done with cells from two mice livers.Cells
are incubated for different times with insulin 24 hours after iso-
lation. After incubation with insulin, cells are harvestedand cell
pellets are incubated in lysis buffer (10mM Tris-HCl PH 7.4,150
mM NaCl, 5 mM EGTA, 5 mM EDTA, 1 mM Na3VO4, 20 mM NaF,
20 mM Na4P2O7, 1% Triton x-100, protease inhibitors). For immu-
noprecipitation, 500µg protein is mixed with protein A sepharose
(Sigma, Deisenhofen) previous coated with antibodies against IRS-
1 or IR. Immunoprecipitated proteins as well as total cell lysates
separated by SDS/PAGE and transferred to Immobilon P mem-
branes (Millipore, Schwalbach, Germany). It could be shownthat
randomized gel loading enables correction of within gel inhomoge-
neities (Schillinget al., 2005b). Following this approach gels are
loaded in non-chronological time order.

Membranes are incubated with antibodies against Tyrosine phos-
phorylated sites (PY-20, BD Heidelberg, Germany), IRS-1 (Upstate
biotechnology) IR (Santa Cruz), gp96 (9G10.F8.2, NeoMarkers,
Asbach, Germany), hsc 70 (B-6, Santa Cruz), ppERK (V8031,
Promega), ERK (V1141, Promega) andβ-actin (AC-15, S) and
stained with ECL-plus (Amersham, Freiburg, Germany) following
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manufacturer’s instructions. For quantitative measurements of lumi-
niscence, LAS-3000 from Fujifilm (Raytest, Straubenherdt,Ger-
many) was used. Luminescence was quantified using 2D facilities
of the AIDA c© imaging software.

6.2 Additive and multiplicative noise
In Section 3.1 an additive error model

y = α + βx + ε , ε ∼ N(0, σ2
ε) (1)

as well as a model

ỹ = β0 + β1 xβ2 η , η ∼ eN(0,ση) . (2)

with multiplicative noise were introduced. A more general model
with additive and multiplicative noise

y′ = β0 + β1 xβ2 η + ε (3)

is dominated by additive noiseε for small concentrationsx and by
multiplicative noiseη for large concentrations. Unfortunately, an
exact transformation leading to Gaussian noise does not exist for
model(3) and intensity dependency of measurement errors cannot
be removed completely. The most appropriate transformation is a
generalized log-transformation (Durbinet al., 2004), (Rockeet al.,
2003)

y = log

 

y′ − β0 +

s

(y′ − β0)2 +
σ2

ε

σ2
η

!

(4)

which leads to symmetric errors with first order signal independent
variance. Transformed data points can be analysed equivalently to
(1) (see Gelleret al. (2003); Huberet al. (2002, 2003)).

Generalized log-transformation requires knowledge aboutpara-
metersβ0, σε, ση which can be estimated using a general maxi-
mum likelihood approach (Honerkamp, 1993; Rockeet al., 1995)
or by estimatingσε andβ0 from data with low andση from data
with high intensities (Gelleret al., 2003).

Note, that for large signal intensitiesy′ − β0 ≫ σ2
ε/σ2

η, e.g.
small additive noiseσε ≪ ση, generalized log-transformation cor-
responds to a simple log-transformation ofy′ − β0 and model(3)
becomes equivalent to model(1). For small signalsy′ − β0 ≪
σ2

ε/σ2
η, e.g. σε ≪ ση, measurements consist primarily of obser-

vational noise. In this case, transformation(4) reduces toy ≈
σε/ση.
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Fig. 1. Foreground intensities are correlated with background intensities.
These correlations cannot be removed by background subtraction. This is
indicated by the arrows.

6.3 Potential response variables
Background constitutes a systematic bias of measurements.In
immunoblotting, signalsS are usually calculated by background
subtraction

S = F − B (5)

to eliminate this bias. However, if measurements of background are
very noisy, this step may introduce additional variability. In this
case, it could be superior to abandon from background correction.

If foreground and background intensities are strongly correlated,
e.g. by a common multiplicative error, it could be superior to apply
a background correction by division. Ratios

R =
F

B
(6)

are more correlated with underlying true protein concentrations if
there is a strong common multiplicative effect in foreground as
well as in background intensities. This circumstance is illustrated
by a simulation study in Section 6.4. Actually, Figure 1 shows that
measured foreground and background intensities are strongly cor-
related. Background subtraction does not remove these correlations
completely. This fact is indicated by the arrows in Figure 1.

To check the hypothesis that background correction by division
is feasible, repeated measurements of housekeeping proteins on the
same gel are used to assess reproducibility. Figure 2 shows relative
variability for raw foreground intensities, for background subtrac-
ted intensities as well as for ratios foreground over background.
The latters show the smallest variability of around14% for mea-
surement on the same gel and19% within the same preparation.
In contrast, raw foreground intensities have a variabilityof around
27% and40%, respectively. Propagation of errors in foreground and
background intensities leads to a variability of signals obtained by
background subtraction of around38% within gels and57% within
preparations.

Decreasing variability by multiplicative background correction
is a consequence of inhomogeneity of gels, which seems to be a
multiplicative influence on foreground as well as on background
intensities.
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Fig. 2. Ratios foreground / background leads to clearly smaller relative
variability. In fact background subtraction increases variability in compari-
son with uncorrected raw foreground intensities. Boxes around the medians
indicates 50% quantiles of observed relative residuals.
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Fig. 3. QQ-plot of foreground intensities without and after log-
transformation against normal distribution shows the benefit of the trans-
formation.

For measurements of housekeeping proteins, the underlyingpro-
tein concentration is constant, e.g. independent from timeand sti-
mulation. Therefore repeated observations can be used to determine
the distribution of technical and biological noise.

A possibility to assess assumptions about distribution of noise is
a plot of theoretical quantiles against observed quantiles. If distri-
bution of observations coincide with theoretical distribution, such a
“quantile-quantile plot” or “qq-plot” result in a straight line with
slope 1. A deviation from a straight line is a qualitative criterion to
assess the assumption of normal distributed noise.

QQ-Plots of raw and log-transformed foreground intensities
against normal distribution confirms that log-transformation is
required to obtain normally distributed measurements (seeFigure
3).

Additionally, log-transformed intensities agrees betterwith the
assumption of normally distributed noise. This is indicated by orders
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Table 1. Comparison of repeated measurements of housekeeping
proteins with normal distribution.

Response variable Abbreviation Kolmogorov-Smirnov test

Foreground F p < 1e − 19
Signals S p = 2.2e − 19
Signal ratios R p = 1.8e − 8
log-foreground log(F ) p = 0.224
log-signals log(S) p = 0.0014
log-ratios log(R) p = 0.00027

AKolmogorov-Smirnov test shows that log-transformation is required to
obtain normally distributed noise.

of magnitude largerp-values obtained by Kolmogorov-Smirnov test
(see Table 1).

6.4 Simulation study
In this section, it will be illustrated by a simulation studythat mul-
tiplicative background correction is superior if strong multiplicative
noise affects both, foreground as well as background intensities.

Scanned foreground intensity is composed of background and
concentration dependent signal intensity. An evident background
correction procedure for estimation of signalS would be a back-
ground subtraction

Ŝ = F − B . (7)

However, immunoblotting suffers from several systematic multipli-
cative errors. These errors affect foreground as well as background
intensities commonly. For such correlated multiplicativenoise,
signal ratios

R = F/B (8)

foreground over background lead to more accurate estimation of
underlying concentrations than background subtraction. To illustrate
this fact, foreground is simulated according to

F = rS + B (9)

with a signal to background ratio parameterr. Signals

S = x γ eη1 + x(1− γ)eη2 + ε1 , (10)

ηi ∼ N(0, σηi
) , i = 1, 2 , ε1 ∼ N(0, σε1

)

consist on multiplicative lognormal distributed noiseeη1 and eη2

and additive Gaussian noiseε1. It is assumed thatη1 is the common
error which affects background, too. Parameterγ ∈ [0, 1] is used to
vary the proportion of this common error. True underlying protein
concentration is denoted byx. Background intensities are simulated
according to

B = γeη1 + (1 − γ)eη3 + ε2 . (11)

η3 ∼ N(0, ση3
) , ε2 ∼ N(0, σε2

)

whereη3 denotes the uncorrelated fraction of multiplicative noise
corresponding toη2 for signals.

The intention of a background correction procedure is to improve
the determination of underlying protein dynamics. Correlations
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Fig. 4. For γ > 0.65, corresponding to a correlation of foreground and
background of about0.7, signal ratios are better correlated to underlying
protein concentrations than signals obtained after background subtraction.

Table 2. Chosen parameters for simulation study.

Parameter Description Parameter value

r Signal to background ratio 10
n Number of simulations 100
N Number of data points 1000
γ Fraction of common error {0, 0.1, . . . , 1}
x True concentrations ∼ N(0, 1)
ε1 Additive noise in signals ∼ N(0, 0.1)
ε2 Additive noise in background ∼ N(0, 0.1)
η1 Common multiplicative noise ∼ N(0, 1)
η2 Multiplicative noise ofS ∼ N(0, 1)
η3 Multiplicative noise ofB ∼ N(0, 1)

with underlying true protein concentrations are used to compare
background subtraction with signal ratios. For positive differences

∆c = cor(R,x) − cor(F − B, x) (12)

of correlations, signal ratios are more accurate estimators of the
underlying protein concentration dynamics.

Figure 4 shows∆c obtained by simulations for different values
of parameterγ. For smallγ, foreground and background intensities
are only weakly correlated and signalsF − B should be used for
background correction. However, for largeγ background correction
by division is superior. For our simulation, above a threshold of
γ = 0.65 corresponding to a correlation between foreground and
background of around0.7, signal ratios become more accurate than
background subtraction.

Realistic values are assumed for parameters (see Table 2). The
obtained result depends only weakly on chosen parameter values.
Since ratiosR diverge for background intensities near zero, lower
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Table 3. Model selection of superior models.

Tested effect p-value p-value
for model 26 for model 26’

Time and stimulation T < 2.2e − 16 < 2.2e − 16
Background B 1.58e − 15 6.67e − 16

Preparation specificB ǫ
(1)
p 0.095 1.67e − 3

Preparation effects ǫ
(2)
p 4.13e − 5 4.01e − 3

Gel specificB ǫ
(1)
pg < 2.2e − 16 < 2.2e − 16

Gel effects ǫ
(2)
pg < 2.2e − 16 < 2.2e − 16

p-values obtained by likelihood-ratio tests of the superiorerror model
against submodels.

1% quantile of background intensities are excluded. This assump-
tion is not in contradiction to our experiments because the magni-
tude of smallest intensities is sufficiently far away from zero and
no background intensities larger than foreground are observed in
practice.

6.5 Model selection for superior error model
Submodels obtained by omitting an effect are tested by likelihood-
ratio tests against full model 26 and 26’, respectively. Forthis
purpose, parameters are fitted by maximum likelihood estimation
(Pinheiro et al., 2000) instead of restricted maximum likelihood
method. Resultingp-values are displayed in Table 3. Only the effect
accounting for preparation specific background correctionǫ

(1)
p is

not clearly significant. We decided to includeǫ
(1)
p , because the full

model has superiorAIC. Additionally, elimination of weak but true
effects can cause a so calledomission bias(Miller et al., 1984). This
means that estimated time courses could be biased if true butweakly
significant effects are excluded from a the model. On the basis of
our data, it is not possible to decide finally if there is a preparation
specific background variation.

For the full data set, a regression coefficient ofb = 0.98 ± 0.04
was estimated for background correction. The confidence interval is
in agreement with ratioslog(F )/ log(B) corresponding tob = 1.
Nevertheless a likelihood-ratio test is significant withp < 2.2e−16.

A qq-plot (Figure 5) for the superior error model No. 26’ shows
agreement of residuals with normal distribution. Additionally a scat-
ter plot of residuals against predicted values shows no pattern (see
Fig. 6).

6.6 Matrix notation
The superior mixed effects model 26’

log(Fostpg) = Oo + Tost +
“

b + ǫ(1)p + ǫ(1)pg

”

log(B∗)

+ǫ(2)p + ǫ(2)pg + εostpg

ǫ(1)p ∼ N(0, σ
(1)
1 ), ǫ(1)pg ∼ N(0, σ

(1)
2 ), ǫ(2)p ∼ N(0, σ

(2)
1 ),

ǫ(2)pg ∼ N(0, σ
(2)
2 ), ε∗ ∼ N(0, σ) , (13)

can be written in matrix notation as

~Fpg = Xpg
~β + Zpg~γpg + ~εpg (14)

where
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Fig. 5. QQ-plot of residuals of the superior model against normal distribu-
tion.
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Fig. 6. Residuals of the superior error model show no dependency on
predictions of the model.

• ~Fpg ∈ M(npg × 1) are arrays containing allnpg log-
foreground intensities of preparationp on gelg.

• Xpg ∈ M(npg × nfixed) are model matrices. Without loss of
generalityXpg can be written as

Xpg =
“

~Bpg X
O
pg X

T
pg

”

(15)

where
`

XO
ij

´

pg
∈ {0, 1} indicates whether observablej has

an influence on data pointi of preparationp on gelg. Simi-
larly,

`

XT
ij

´

pg
∈ {0, 1} indicates whether time effectj has an

influence on data pointi. ~Bpg are log-background intensities
of considered preparation and gel.

• ~β ∈ M(nfixed × 1) is an array containing all fixed effects.
Model 26’ has

nfixed = 1 + no +
X

o,s

nt(o, s) (16)
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Table 4. Measured time dependent observables of insulin signaling
pathway.

Observable Description IP Antibody Insulin treatment

O1 Activated IR IR Py20 1e-7 nm
O2 Activated IR IR Py20 1e-5 nm
O3 Activated IRS-1 IRS-1 Py20 1e-7 nm
O4 Activated IRS-1 IRS-1 Py20 1e-5 nm
O5 PI3K binding IRS-1 PI3K 1e-7 nm
O6 PI3K binding IRS-1 PI3K 1e-5 nm
O7 Activated ERK-1 - ppERK-1 1e-7 nm
O8 Activated ERK-1 - ppERK-1 1e-5 nm
O9 Activated ERK-2 - ppERK-2 1e-7 nm
O10 Activated ERK-2 - ppERK-2 1e-5 nm

fixed parameters. If model matricesXpg are chosen as descri-
bed above, it holds

~β =

0

@

b
~O
~T

1

A . (17)

The first entry of~β is the regression coefficientb of background
correction followed by observable and time effects.

• Zpg ∈ M(npg × 4) are model matrices for random effects. In
our model, every data point is influenced by all four random
effects. This yields to

Zpg =

0

@

log ((B1)pg) log ((B1)pg) 1 1
. . .

log
`

(Bnpg )pg

´

log
`

(Bnpg )pg

´

1 1

1

A . (18)

npg is the number of data points of preparationp on gelg.

• ~γpg ∈ M(4 × 1), ~γpg ∼ N(~0,Ψ2) denote arrays containing
random effects coefficients of preparationp and gelg. The
correlation matrix is

Ψ =

0

B

B

B

@

σ
(1)
pg 0 0 0

0 σ
(1)
g 0 0

0 0 σ
(2)
pg 0

0 0 0 σ
(2)
g

1

C

C

C

A

. (19)

• ~εpg ∼ N(~0, σ2
I) denotes uncorrelated observational noise of

varianceσ2.

6.7 Time courses for all data and error models
Error models for constant normalizer proteins contain onlyeffects
corresponding to background, biological preparation variability,
gel-to-gel differences and observed proteins. For time dependent
signaling proteins, the models have to be extended to estimate time
effects after insulin stimulation. Within the applied parameter esti-
mation process, observed total variability is split to all considered
effects in a model. Both, incomplete models and models containing
effects that are not required show increased confidence intervals for
time effects. Moreover, model assessment criteria are worse because
of large residuals and/or large number of parameters. Thesecriteria

Table 6. Model assessment criteria for testing the assumption of time and
treatment independence of housekeeping proteins.

npar AIC BIC pks SNR

model 26 13 -98 -33 0.008 3.7
model 26 + treatment effects 34 -9.1 162 0.0019 3.7
model 26 + time effects 92 268 735 0.18 3.9
model 26 + time and treat. effects 245 705 1981 0.0056 4.2

AIC and BIC prefer a model without time and treatment effects. We concluded that the
selection of housekeeping proteins based on biological prior knowledge is appropriate.

and p-values of Kolmogorov-Smirnov test checking for normally
distributed residuals are displayed in Table 5.

In accordance to our result obtained from housekeeping proteins,
model 26’ is superior in 2 out of 5 criteria. Observed advantage of
log-transformation and background subtraction on log-scale is again
confirmed.

Obtained time courses for all considered models are displayed in
Figures 7 to 9. Rows correspond to different observables which are
displayed in Table 4. A zigzag shape of some time courses emerge
because neighboring time points are mostly not on the same gel.
This causes a badly identifiable parameter which determineshow
time effects of even and uneven time points have to be merged.
This is no problem if gel effects are modeled by a random variable,
because only one parameter has to be estimated for all gels.

Error models without application of log-transformation show
large error bars (Figures 7). If log-transformation is applied and
systematic errors are treated multiplicatively, error bars are decre-
ased (Figures 8). Qualitatively similar results can be seenin Figures
9 where a regression parameter is estimated for background correc-
tion. This step improves model assessment criteria and leads to the
overall best model No. 26’. For this model log-transformed fore-
ground intensities are used as response variable, preparation and gel
effects are modeled as random variables and a gel specific random
regression parameter is estimated for background correction.

Although, all models yield qualitatively similar shapes for time
dependency, the estimated dynamic behavior depends on the chosen
model. One possibility to avoid this dependency would be amodel
averagingprocedure. Here, a weighted average of all estimated time
courses would be calculated. WeightswM are given by the poste-
rior probability of considered modelM . This posterior probability
can be approximated up to first order by the exponential of Bayes’
Information criterion BICM of modelM (Kasset al., 1994):

wM =
exp(−BICM

2
)

P

m
exp(−BICm

2
)

. (20)

Because model 26’ has a clearly superior BIC, this model would
contribute mainly in a model averaging process (w26′ ≈ 1).

Recapitulating, all appropriate error models lead to qualitatively
similar time courses. Nevertheless, the obtained time effects depend
on applied models. This emphasizes the need of proper error
models for the analysis of immunoblotting and immunoprecipitation
measurements.
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Table 5. Comparison of error models for time course measurements.

Model No. model npar AIC BIC pks SNR TR

1’ F∗ = Oo + Tost + ε∗ 74 56500 56900 1.6e-58 0.28 2.1
2’ F∗ = Oo + Tost + Pp + Gpg + ε∗ 185 54400 55400 8.6e-26 2 7.4
3’ F∗ = Oo + Tost + ǫp + ǫpg + ε∗ 76 52300 52700 4.6e-28 1.9 6.5
4’ S∗ = Oo + Tost + ε∗ 74 55300 55700 3.4e-83 0.3 2.4
5’ S∗ = Oo + Tost + Pp + Gpg + ε∗ 185 53700 54700 2.4e-38 1.6 5.1
6’ S∗ = Oo + Tost + ǫp + ǫpg + ε∗ 76 51700 52100 9.5e-39 1.6 5.8
7’ R∗ = Oo + Tost + ε∗ 74 3130 3530 3.2e-13 0.59 4.3
8’ R∗ = Oo + Tost + Pp + Gpg + ε∗ 185 2740 3730 7.4e-5 1 6.8
9’ R∗ = Oo + Tost + ǫp + ǫpg + ε∗ 76 2980 3390 1.3e-5 0.92 8.2
10’ log(F∗) = Oo + Tost + ε∗ 74 3900 4290 0.00014 0.47 3.5
11’ log(F∗) = Oo + Tost + Pp + Gpg + ε∗ 185 2630 3620 0.02 1.5 8.2
12’ log(F∗) = Oo + Tost + ǫp + ǫpg + ε∗ 76 2870 3280 0.12 1.4 8.6
13’ log(S∗) = Oo + Tost + ε∗ 74 4860 5260 0.0019 0.59 5.4
14’ log(S∗) = Oo + Tost + Pp + Gpg + ε∗ 185 4100 5080 0.0013 1.38.8
15’ log(S∗) = Oo + Tost + ǫp + ǫpg + ε∗ 76 4260 4670 0.00011 1.29.5
16’ log(R∗) = Oo + Tost + ε∗ 74 807 1200 0.031 0.62 5.1
17’ log(R∗) = Oo + Tost + Pp + Gpg + ε∗ 185 430 1420 0.77 1 8.0
18’ log(R∗) = Oo + Tost + ǫp + ǫpg + ε∗ 76 773 1180 0.68 0.93 8.8
19’ F∗ = Oo + Tost + b B∗ + ε∗ 75 54700 55100 3.6e-60 1.6 2.6
20’ F∗ = Oo + Tost + b B∗ + Pp + Gpg + ε∗ 186 53700 54700 2.8e-40 2.6 4.2
21’ F∗ = Oo + Tost + b B∗ + ǫp + ǫpg + ε∗ 77 51600 52100 6e-41 2.5 3.5

22’ F∗ = Oo + Tost + (b + ǫ
(1)
p + ǫ

(1)
pg ) B∗ + ǫ

(2)
p + ǫ

(2)
pg + ε∗ 81 51200 51600 4.8e-45 2.9 2.6

23’ log(F∗) = Oo + Tost + b log(B∗) + ε∗ 75 799 1200 0.024 2.9 5.1
24’ log(F∗) = Oo + Tost + b log(B∗) + Pp + Gpg + ε∗ 186 382 1370 0.5 3.6 9.0
25’ log(F∗) = Oo + Tost + b log(B∗) + ǫp + ǫpg + ε∗ 77 737 1150 0.63 3.5 7.9

26’ log(F∗) = Oo + Tost + (b + ǫ
(1)
p + ǫ

(1)
pg ) log(B∗) + ǫ

(2)
p + ǫ

(2)
pg + ε∗ 81 490 923 0.0052 4.2 8.0

Abbreviation∗ is used instead of all occuring indices in a model, e.g. indices of all predictor variables and an index for replicate measurements. Best values are
underlined and the5 superior values of each model assessment criterion are highlighted in bold face. In accordance with results obtaind from housekeeping proteins,
log-transformation improves performance. Model26’ is superior for2 out of6 criteria.

6.8 Housekeeping proteins
β-actin, gp96 and hsc70 are widly used housekeeping proteins(Li et
al., 2002; Picard, 2002; Suzukiet al., 2000; Schillinget al., 2005b).
In addition, we considered total insulin receptor and totalinsulin
receptor substrate concentrations as constant because there are no
biological indications that both molecule concentrationsare chan-
ged in mouse hepatocytes after insulin stimulation within the first
hour.

Based on this biological prior knowledge we usedβ-actin, gp96,
hsc70, IRtotal and IRS-1total to determine an error model for constant
proteins in Section 4.2.

To validate the assumption that housekeeping proteins are indeed
independent on stimulation and constant over time, the obtained
superior error model for housekeeping proteins is enlargedby time
and treatment effects.

Table 6 shows thatAIC and BIC are clearly superior for the
model without time and treatment effects. P-values obtained by a
Kolmogorov-Smirnov test indicate that violations from theassump-
tion of normally distributed residuals are similar for the considered
four models. Because variance of residuals is always decreased by
an enlargement of model 26, signal to noise ratioSNR is not very
meaningful for comparison of considered models with submodel 26.
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Fig. 9. Estimated time effects for error models with fitted regression parameter for background correction. Untransformed foreground intensities are displayed
in blue whereas log-transformed intensities are plotted ingray color. Model 26’ is overall best model selected by our model assessment criteria.
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