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6 SUPPLEMENT
6.1 Experimental data

Time courses of phosphorylated insulin receptorjIBnd insulin
receptor substrate (IRS=Las well as binding of PI-3 kinase to
IRS-1 and phosphorylation of extracellular regulated §néERK-

manufacturer’s instructions. For quantitative measurgmef lumi-
niscence, LAS-3000 from Fujifilm (Raytest, Straubenhef&ér-
many) was used. Luminescence was quantified using 2D fesilit
of the AIDA® imaging software.

6.2 Additive and multiplicative noise

1* and ERK-2) as functional outcome are measured for different|n Section 3.1 an additive error model

insulin stimulations. In addition, total concentratiorisiR, IRS-

1, ERK-1 and ERK-2 and of housekeeping proteins gp96, hsc70,

[-actin are measured. Further, positive and negative dsnare
performed within every stimulation with insulin. Total pein con-
centrations and concentrations of housekeeping protemsat
affected by insulin stimulation and are therefore congdeo be
constant.

Cells used for measurements are primary hepatocytes of mice

origin isolated as previously described (Klingmuelkgral., 2006)
Isolation procedure is done with cells from two mice live@ells
are incubated for different times with insulin 24 hours afto-
lation. After incubation with insulin, cells are harvestadd cell
pellets are incubated in lysis buffer (10mM Tris-HCI PH 7150
mM NaCl, 5 mM EGTA, 5 mM EDTA, 1 mM NaVO,, 20 mM NaF,
20 mM Na;P2O7, 1% Triton x-100, protease inhibitors). For immu-
noprecipitation, 50Q:g protein is mixed with protein A sepharose
(Sigma, Deisenhofen) previous coated with antibodiesnsgr S-
1 or IR. Immunoprecipitated proteins as well as total cedlates

separated by SDS/PAGE and transferred to Immobilon P mem-

branes (Millipore, Schwalbach, Germany). It could be shohat
randomized gel loading enables correction of within gebmloge-

neities (Schillinget al., 2005b). Following this approach gels are

loaded in non-chronological time order.

Membranes are incubated with antibodies against Tyrogins-p
phorylated sites (PY-20, BD Heidelberg, Germany), IRS-pqldte
biotechnology) IR (Santa Cruz), gp96 (9G10.F8.2, NeoMaxke

Asbach, Germany), hsc 70 (B-6, Santa Cruz), ppERK (V8031

Promega), ERK (V1141, Promega) apdactin (AC-15, S) and
stained with ECL-plus (Amersham, Freiburg, Germany) folfg
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y:a—l—ﬁw—&—s,awN(QUE) (1)

as well as a model

§=PFo+Bra™n , g~ N0 @)
with multiplicative noise were introduced. A more generaidal
with additive and multiplicative noise

y =60+ Bian+e ®)

is dominated by additive noisefor small concentrations and by
multiplicative noisen for large concentrations. Unfortunately, an
exact transformation leading to Gaussian noise does net fox
model (3) and intensity dependency of measurement errors cannot
be removed completely. The most appropriate transformasa
generalized log-transformation (Durbét al., 2004), (Rockeet al.,
2003)

2
y=log <y’—ﬂo+ (v — o) + j—) (4)

n
which leads to symmetric errors with first order signal inetegient
variance. Transformed data points can be analysed equilate

(1) (see Gelleet al. (2003); Hubeet al. (2002, 2003)).

Generalized log-transformation requires knowledge alpaua-
metersfo, o<, o, Which can be estimated using a general maxi-
mum likelihood approach (Honerkamp, 1993; Roekeal., 1995)
or by estimatings. and 3o from data with low andr,, from data

with high intensities (Gelleet al., 2003).

Note, that for large signal intensities — 3o > o2/o7, €.9.
small additive noiser. < o, generalized log-transformation cor-
responds to a simple log-transformationyof— 3, and model(3)
becomes equivalent to modél). For small signaly)’ — 8y <
a?/a%, e.g.o. < oy, measurements consist primarily of obser-
vational noise. In this case, transformatiot) reduces toy ~
oc/on.

(© Oxford University Press 2007.
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Fig. 1. Foreground intensities are correlated with backgrounensities.
These correlations cannot be removed by background stibtrad his is
indicated by the arrows.

6.3 Potential response variables
Background constitutes a systematic bias of measuremémts.

immunoblotting, signalsS are usually calculated by background

subtraction

S=F-B (5)

to eliminate this bias. However, if measurements of baakgdcare
very noisy, this step may introduce additional variability this
case, it could be superior to abandon from background diwrec

If foreground and background intensities are stronglyelated,
e.g. by a common multiplicative error, it could be supermapply
a background correction by division. Ratios

r=L

- ®)

are more correlated with underlying true protein concéiung if
there is a strong common multiplicative effect in foregrouas
well as in background intensities. This circumstance isstlated
by a simulation study in Section 6.4. Actually, Figure 1 shahat
measured foreground and background intensities are $jreog
related. Background subtraction does not remove theselabons
completely. This fact is indicated by the arrows in Figure 1.

To check the hypothesis that background correction by idivis
is feasible, repeated measurements of housekeepingnz ateithe
same gel are used to assess reproducibility. Figure 2 shedats/e
variability for raw foreground intensities, for backgralisubtrac-
ted intensities as well as for ratios foreground over bamigd.
The latters show the smallest variability of arouht% for mea-
surement on the same gel ahf% within the same preparation.
In contrast, raw foreground intensities have a variabityaround

within gels and preparations within preparations
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Fig. 2. Ratios foreground / background leads to clearly smalleative
variability. In fact background subtraction increasesalality in compari-
son with uncorrected raw foreground intensities. Boxesirrdche medians
indicates 50% quantiles of observed relative residuals.
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Fig. 3. QQ-plot of foreground intensities without and after log-
transformation against normal distribution shows the fiené the trans-
formation.

For measurements of housekeeping proteins, the underpyorg
tein concentration is constant, e.g. independent from & sti-
mulation. Therefore repeated observations can be useddoae
the distribution of technical and biological noise.

A possibility to assess assumptions about distributionod$enis
a plot of theoretical quantiles against observed quantifedistri-
bution of observations coincide with theoretical disttibn, such a
“quantile-quantile plot” or “qg-plot” result in a straight line with

27% and40%, respectively. Propagation of errors in foreground andslope 1. A deviation from a straight line is a qualitativet@rion to

background intensities leads to a variability of signaltaoted by
background subtraction of aroud% within gels ands7% within
preparations.

Decreasing variability by multiplicative background crtion

assess the assumption of normal distributed noise.

QQ-Plots of raw and log-transformed foreground intensitie
against normal distribution confirms that log-transforiorat is
required to obtain normally distributed measurements Bgare

is a consequence of inhomogeneity of gels, which seems to be 3).

multiplicative influence on foreground as well as on backg
intensities.

Additionally, log-transformed intensities agrees bettéth the
assumption of normally distributed noise. This is indicatg orders




Kreutz et al

Table 1. Comparison of repeated measurements of housekeeping
proteins with normal distribution.

Response variable  Abbreviation Kolmogorov-Smirnov test
Foreground F p<le—19

Signals S p=22e—19

Signal ratios R p=18e—8

log-foreground log(F) p=0.224

log-signals log(.S) p =0.0014

log-ratios log(R) p = 0.00027

AKolmogorov-Smirnov test shows that log-transformatisnréquired to
obtain normally distributed noise.

of magnitude largep-values obtained by Kolmogorov-Smirnov test
(see Table 1).

6.4 Simulation study

In this section, it will be illustrated by a simulation stuthat mul-
tiplicative background correction is superior if strongltiplicative
noise affects both, foreground as well as background iittess

Scanned foreground intensity is composed of background and

concentration dependent signal intensity. An evident gemknd
correction procedure for estimation of signgiwould be a back-
ground subtraction

S=F—-B. )

However, immunoblotting suffers from several systematidtipli-
cative errors. These errors affect foreground as well akgraand
intensities commonly. For such correlated multiplicativeise,
signal ratios

R=F/B (8)

foreground over background lead to more accurate estimatio
underlying concentrations than background subtractiorillUstrate
this fact, foreground is simulated according to

F=rS+B 9)
with a signal to background ratio parameteSignals
S=zvye™ +z(l—7)e™ +e1, (10)

i~ N(0,0p,),t=1,2 , &1~ N(0,0-)

consist on multiplicative lognormal distributed nois& and e"?
and additive Gaussian noise. It is assumed thay,; is the common
error which affects background, too. Parametet [0, 1] is used to
vary the proportion of this common error. True underlyingtpim
concentration is denoted hy Background intensities are simulated
according to

B=~e™ +(1-—

v)e™ ez . (11)

n3 ~ N(07U773) y €2 7 N(07U€2)

cor ( background, foreground )
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Fig. 4. Fory > 0.65, corresponding to a correlation of foreground and
background of aboud.7, signal ratios are better correlated to underlying
protein concentrations than signals obtained after backgt subtraction.

Table2. Chosen parameters for simulation study.

Parameter Description Parameter value
r Signal to background ratio 10
n Number of simulations 100
N Number of data points 1000
~ Fraction of common error {0,0.1,...,1}
x True concentrations ~ N(0,1)
€1 Additive noise in signals ~ N(0,0.1)
€2 Additive noise in background ~ N(0,0.1)
m Common multiplicative noise  ~ N(0, 1)
72 Multiplicative noise ofS ~ N(0,1)
73 Multiplicative noise ofB ~ N(0,1)

with underlying true protein concentrations are used to ane
background subtraction with signal ratios. For positivitedénces

Ac = cor(R,z) — cor(F — B, x) (12)

of correlations, signal ratios are more accurate estiraabbrthe
underlying protein concentration dynamics.

Figure 4 showsAc obtained by simulations for different values
of parametery. For smally, foreground and background intensities
are only weakly correlated and signdls— B should be used for
background correction. However, for largdackground correction
by division is superior. For our simulation, above a thrédhaf
~ = 0.65 corresponding to a correlation between foreground and
background of around.7, signal ratios become more accurate than

wherens denotes the uncorrelated fraction of multiplicative noise background subtraction.

corresponding te for signals.
The intention of a background correction procedure is tarowp
the determination of underlying protein dynamics. Cotiels

Realistic values are assumed for parameters (see Tableh@). T
obtained result depends only weakly on chosen parameteesal
Since ratiosR diverge for background intensities near zero, lower

10
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Table 3. Model selection of superior models.

4
Tested effect p-value p-value ” B
for model 26  for model 26’ [

3 2 ]

Time and stimulaton  7° < 2.2e—16 < 2.2e—16 g

Background B 1.58¢e — 15  6.67e — 16 —

Preparation specifi eél) 0.095 1.67e — 3 2 0 i

Preparation effects ef) 4.13¢ — 5 4.0le — 3 -2

Gel specificB Y <22e-16 <2216 a

Gel effects D <22 -16 <22 —16 7 -2 ]
©

p-values obtained by likelihood-ratio tests of the supegaror model
against submodels.

-4 -2 0 2 4
normal distribution

1% quantile of background intensities are excluded. Thésiap-

tion is not in contradiction to our experiments because thgmi

tude of smallest intensities is sufficiently far away frommazand

no background intensities larger than foreground are @bdein

practice.

Fig. 5. QQ-plot of residuals of the superior model against normstrithu-
tion.

6.5 Model selection for superior error model

Submodels obtained by omitting an effect are tested byiltiketd-
ratio tests against full model 26 and 26°, respectively. Hos
purpose, parameters are fitted by maximum likelihood esitima
(Pinheiroet al.,, 2000) instead of restricted maximum likelihood
method. Resulting-values are displayed in Table 3. Only the effect
accounting for preparation specific background correctifdh is
not clearly significant. We decided to incluelﬁ), because the full
model has superiodIC. Additionally, elimination of weak but true L .
effects can cause a so calleahission biagMiller et al., 1984). This -0.5¢ L L A
means that estimated time courses could be biased if truvedaly '
significant effects are excluded from a the model. On theshafsi
our data, it is not possible to decide finally if there is a preion -1 ‘ ‘ ‘ ‘
specific background variation. -3 -1 1 3
For the full data set, a regression coefficienbof 0.98 + 0.04 predictions [a.u.]
was estimated for background correction. The confidenegvalis
in agreement with ratiokg(f”)/ log(B) corresponding té = 1. Fig. 6. Residuals of the superior error model show no dependency on
Nevertheless a likelihood-ratio test is significant with: 2.2¢—16. predictions of the model.
A qg-plot (Figure 5) for the superior error model No. 26’ sksow
agreement of residuals with normal distribution. Additiiy a scat-

ter plot of residuals against predicted values shows nepafsee e Iy € M(nyg x 1) are arrays containing ath,, log-
Fig. 6). foreground intensities of preparatipron gelg.

residuals [a.u.]
=

e X, € M(npg X niixed) @are model matrices. Without loss of

6.6 Matrix notation generalityX,, can be written as

The superior mixed effects model 26’
X, = (é X0 XTI ) (15)
log(Fostpg) = Oo + Tost + (b +eV 4 65319)) log(Bx) " v e
@, @ where (X7) € {0,1} indicates whether observabjehas
+ep +epg +€ i Pe ini i imi

P Pg ostpg an influence on data poiritof preparationp on gelg. Simi-
larly, (X7 0,1} indicates whether time effegthas an

eél) ~ N(0,0‘§l)), e~ N(0, aél)), 2 ~ N(0, aiQ)), a ”)pg €{0,1} g

e g influence on data point Epg are log-background intensities

2
) ~ N(0,087), e« ~ N(0,0) , (13) of considered preparation and gel.
can be written in matrix notation as ° ﬁ € M(nfixed X 1) is an array containing all fixed effects.
_ - . . Model 26’ has
Fyg = XpgB + ZpgTpg + Epg (14)
niixed = 1+ no + »_ (0, 5) (16)

where

0,8

11



Kreutz et al

Table 4. Measured time dependent observables

of insulin signalingTable 6. Model assessment criteria for testing the assumption of tmd

pathway. treatment independence of housekeeping proteins.
Observable Description IP Antibody  Insulin treatment npar AIC  BIC pks SNR
O, Activated IR IR Py20 le-7 nm model 26 13 -98 -33  0.008 3.7
O2 Activated IR IR Py20 le-5nm model 26 + treatment effects 34 -9.1 162 0.0019 3.7
O3 Activated IRS-1  IRS-1  Py20 le-7 nm model 26 + time effects 92 268 735 0.18 3.9
Oy Activated IRS-1  IRS-1  Py20 le-5nm model 26 + time and treat. effects 245 705 1981 0.0056 4.2
Os PI3K binding IRS-1 PI3K 1le-7 nm
Og¢ PI3K binding IRS-1  PISK le-5nm AIC and BIC prefer a model without time and treatment effetée concluded that the
O7 Activated ERK-1 - ppERK-1 1le-7 nm selection of housekeeping proteins based on biologicat griowledge is appropriate.
Og Activated ERK-1 - ppERK-1 1e-5nm
Og Activated ERK-2 - ppERK-2 1e-7 nm
O10 Activated ERK-2 - ppERK-2 1le-5nm

fixed parameters. If model matric&s,, are chosen as descri-
bed above, it holds

g 17)

SN Qe

The first entry of(?is the regression coefficiehbf background
correction followed by observable and time effects.

e Z,y, € M(npy x 4) are model matrices for random effects. In

our model, every data point is influenced by all four random

effects. This yields to
log ((B1)pg)

IOg((Bnpg)pg) 10%((‘3771';7;;)129) 11

nypg IS the number of data points of preparatjoon gelg.

e Jpg € M(4 x 1),7,5 ~ N(0, ®?) denote arrays containing
random effects coefficients of preparatipnand gelg. The
correlation matrix is

log ((B1)pg) 11
Zypg

. (18)

a0 0 0
0o o 0 o0
0 0
0 0 0

T = (19)

ot

® Zpy ~ N(ﬁ, o*1) denotes uncorrelated observational noise of

varianceos?.

6.7 Timecoursesfor all data and error models

Error models for constant normalizer proteins contain @ffgcts
corresponding to background, biological preparation alality,
gel-to-gel differences and observed proteins. For timesddent
signaling proteins, the models have to be extended to estitimae
effects after insulin stimulation. Within the applied paeter esti-
mation process, observed total variability is split to ahsidered
effects in a model. Both, incomplete models and models aunt
effects that are not required show increased confidencevaisefor
time effects. Moreover, model assessment criteria areeNmsause
of large residuals and/or large number of parameters. Téréseia

and p-values of Kolmogorov-Smirnov test checking for normally
distributed residuals are displayed in Table 5.

In accordance to our result obtained from housekeepingimst
model 26’ is superior in 2 out of 5 criteria. Observed advgetaf
log-transformation and background subtraction on lodesisaagain
confirmed.

Obtained time courses for all considered models are disgdlay
Figures 7 to 9. Rows correspond to different observablesiwaie
displayed in Table 4. A zigzag shape of some time coursesgamer
because neighboring time points are mostly not on the same ge
This causes a badly identifiable parameter which deterntioas
time effects of even and uneven time points have to be merged.
This is no problem if gel effects are modeled by a random fateia
because only one parameter has to be estimated for all gels.

Error models without application of log-transformationogh
large error bars (Figures 7). If log-transformation is aggbland
systematic errors are treated multiplicatively, errorsbare decre-
ased (Figures 8). Qualitatively similar results can be se&igures
9 where a regression parameter is estimated for backgramelce
tion. This step improves model assessment criteria and leathe
overall best model No. 26’. For this model log-transformedef
ground intensities are used as response variable, prepasaid gel
effects are modeled as random variables and a gel specifioman
regression parameter is estimated for background coorecti

Although, all models yield qualitatively similar shapes fone
dependency, the estimated dynamic behavior depends ohdkerc
model. One possibility to avoid this dependency would ecaalel
averagingprocedure. Here, a weighted average of all estimated time
courses would be calculated. Weights; are given by the poste-
rior probability of considered modél/. This posterior probability
can be approximated up to first order by the exponential oeBay
Information criterion BIG, of model M (Kasset al., 1994):

exp(—25M )

wnm =

(20)

Because model 26’ has a clearly superior BIC, this model @oul

contribute mainly in a model averaging processg = 1).
Recapitulating, all appropriate error models lead to dgatliely

similar time courses. Nevertheless, the obtained timeeffdgepend

on applied models. This emphasizes the need of proper error

models for the analysis of immunoblotting and immunopriéaijon

measurements.

12
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Table 5. Comparison of error models for time course measurements.

Model No. model Npar AIC BIC pks SNR TR
1 Fo = Oo+ Tost +ex 74 56500 56900 1.6e58 0.28 2.1
2 Fo = Oo+Tost + Pp+Gpg +ex 185 54400 55400 8.6e-26 2 7.4
3 Fo = Oo+ Tost+ep+ cpg + x 76 52300 52700 4.6e-28 1.9 65
4 Si = Oo+ Tost +ex 74 55300 55700 3.4e-83 0.3 2.4
5 Se = Oo+ Tost + Pp+ Gpg + s 185 53700 54700 2.4e-38 1.6 5.1
& Se = Oo+ Tost + €p+ epg +x 76 51700 52100 9.5e-39 1.6 5.8
7 Re = Op+ Tost +ex 74 3130 3530 3.2e-13 059 4.3
g Ri = Oo+ Tost + Pp+ Gpg +&x 185 2740 3730 7.4e5 1 68
9 Re = Oo+ Tost + ep+ cpg +x 76 2980 3390 1.3e-5 092 82
10 log(Fi) = Op+ Tost +cx 74 3900 4290 0.00014 0.47 35
i 10g(Fy) = Oo+ Tost + Pp + Gpg + €« 185 2630 3620 002 15 82
12 10g(F) = Oo+ Tost + €p + €pg + €= 76 2870 3280 012 14 86
13 l0g(Se) = O+ Tost + &x 74 4860 5260 0.0019 0.59 5.4
14 10g(Sx) = Oo+ Tost + Pp+ Gpg + &« 185 4100 5080 0.0013  1.388
15 10g(Sx) = O+ Tost + €p + pg + €x 76 4260 4670 0.00011  1.295
16 log(R«) = Oo+ Tost +ex 74 807 1200 0031 062 5.1
17 log(Re) = Oo+ Tost + Pp+ Gpg + ex 185 430 1420 077 1 80
18 log(Re) = Oo+ Tost+ ep+ epg + cx 76 773 1180 068 093 88
19 Fi = O+ Tost +bBs +ex 75 54700 55100 3.6e-60 1.6 2.6
20 Fe = O+ Tost +bBi+ Pp+ Gpg + e« 186 53700 54700 2.8e-40 2.6 4.2
21 Fo = Oo+ Tost +bBu+ep+epg +cx 77 51600 52100 6e-41 25 35
22 F. Oo+ Tost + b+ + i) Bu + €2 + €2 e, 81 51200 51600 4.8e-45 29 2.6
23 log(F.) = Op+ Tost + b log(B) + e 75 799 1200 0.024 29 51
24 10g(Fy) = Oo+ Tost + b log(By) + Pp + Gpg + €« 186 382 1370 05 36 90
25 10g(Fy) = Op+ Tost + b log(Ba) + €p + epg + €» 77 737 1150 063 35 7.9
260 log(Fy) Oo+ Tost + (b+ ¢S +¢55)) log(Bu) + €l + €52+ 8L 490 923 0.0052 42 8.0

Abbreviation = is used instead of all occuring indices in a model, e.g. isliof all predictor variables and an index for replicate roggments. Best values are
underlined and thé superior values of each model assessment criterion arédtigdd in bold face. In accordance with results obtaindrfioousekeeping proteins,
log-transformation improves performance. Mo@él is superior for2 out of 6 criteria.

6.8 Housekeeping proteins REFERENCES

[-actin, gp96 and hsc70 are widly used housekeeping prafeies Durbin, B., Rocke, D. (2004) Variance-stabilizing transfiations
al., 2002; Picard, 2002; Suzuét al., 2000; Schillinget al., 2005b). for two-color microarraysBioinformatics 19, 1360-1367.

In addition, we considered total insulin receptor and tatallin Geller, S., Gregg, J., Hagerman, P., Rocke, D. (2003) Toansf
receptor substrate concentrations as constant becauseatigeno mation and normalization of oligonucleotide microarraytaga
biological indications that both molecule concentratiane chan- Bioinformatics 19, 1817-1823.

ged in mouse hepatocytes after insulin stimulation withia first ~ Honerkamp, J. (1993) Stochastic Dynamical Systéntl.

hour. Huber, W., Heydebreck, A., Sueltmann, H., Poustka, A., Vin-

Based on this biological prior knowledge we usgdctin, gp96, gron, M. (2002) Variance stabilization applied to micregrdata
hsc70, IRyta and IRS-114 to determine an error model for constant  calibration and to the quantification of differential exgsmn,
proteins in Section 4.2. Bioinformatics 18, 96-104.

To validate the assumption that housekeeping proteinsidee=d  Huber, W., Heydebreck, A., Sueltmann, H., Poustka, A., X6ng
independent on stimulation and constant over time, theirsdxda M. (2003) Parameter estimation for the calibration andararé
superior error model for housekeeping proteins is enlabyetime stabilization of microarray dat&tat Appl Genet Mol BioR, 3.
and treatment effects. Kass, R., Raftery, A. (1994) Bayes Factoi3ep. of Statistics,

Table 6 shows thatl/C and BIC are clearly superior for the University of Washingtar254.
model without time and treatment effects. P-values obthinea  Li, Z., Dai, J., Zheng, H., Liu, B., Caudill, M. (2002) An irgeated

Kolmogorov-Smirnov test indicate that violations from #msump- view of the roles and mechanisms of heat shock protein gp96-
tion of normally distributed residuals are similar for thensidered peptide complex in eliciting immune responséront Bioscj 7,

four models. Because variance of residuals is always deetelay d731-d751.

an enlargement of model 26, signal to noise r&W R is not very  Miller, A.J. (1984) Selection of Subsets of Regression aflgs,
meaningful for comparison of considered models with subeh26. Journal of the Royal Statistical Society #7(3),389-425.

Picard, D. (2002) Heat-shock protein 90, a chaperone falirfgl
and regulationCell Mol Life Scj 59, 1640-1648.

13



Kreutz et al

model 1’ model 2’ model 3’ model 4’ model 5’ model 6’ model 7’ model 8 model 9’

i
:

:

=

S
SIEIAEIEIRIEE

IEEEEEEED
FEIEIEIE

BN AEIES
EErAEaEIEIELE:

010

FPEEEEEEED
EREEEEIEEIEE

time [a.u.]

Fig. 7. Estimated time effects of 10 measured observables for grodels 1'-9'. For models 1'-3’ (blue color) raw foregroundénsities are used as response
variable. Background subtraction is applied for model§'4black) and ratios foreground over background are usethfudels 7°-9’ (magenta). Models with
fixed gel effect show a zigzag shape of time courses due toly lhtifiable parameter.
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Fig. 8. Estimated time effects of regarded observables afterrimgsformation. Log-foreground intensities are used gsorese variable for models 10'-12’
(gray color). Models using log-signals (13'-16") are dispin green color and models for log-ratios are plotted in red
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Fig. 9. Estimated time effects for error models with fitted regresgiarameter for background correction. Untransformeegiamund intensities are displayed
in blue whereas log-transformed intensities are plottegtaty color. Model 26’ is overall best model selected by oudei@ssessment criteria.
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