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Abstract

Phase synchronization analysis is frequently applied to data originating for example from Physics and Life Sciences. Statistical properties

for quantities measuring phase synchronization have not been revealed. We derive an analytic significance level for a frequently used phase

synchronization measure. Its performance is demonstrated for a system of coupled oscillators.
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1. Introduction

The field of Nonlinear Dynamics has brought to the forefront

novel concepts, ideas, and techniques to analyze and character-

ize time series of complex dynamic systems. Especially syn-

chronization analysis to detect interactions between nonlinear

self-sustained oscillators has made its way into the daily rou-

tine in many investigations [1–3].

Following the observations and pioneering work of Huy-

gens, the process of synchronization has been found in many

different systems such as systems exhibiting a limit cycle or

a chaotic attractor. Several different types of synchronization

have been found for these systems ranging from phase syn-

chronization as the weakest form of synchronization via lag

synchronization to generalized or complete synchrony [4–9].

Thereby, phase synchronization analysis has gained particu-

lar interest since it relies only on very weak coupling between

the oscillators. It has been shown that even chaotic oscilla-

tors are able to synchronize their phases for considerably weak

coupling between them [4]. To quantify the process of synchro-

* Corresponding author. Fax: +49 761 203 7700.

E-mail address: schelter@fdm.uni-freiburg.de (B. Schelter).

nization, different measures have been proposed [10,11]. Two

frequently used measures are a measure based on entropy and a

measure based on circular statistics, which is the so called mean

phase coherence [12]. Both measures quantify the sharpness of

peaks in distributions of the phase differences. In the following

we concentrate on the mean phase coherence.

The mean phase coherence is normalized to [0,1] with a

value of one indicating high synchrony. Hardly any work is de-

voted to the statistical properties of the mean phase coherence.

However, a proper statistical assessment of the results obtained

by phase synchronization analysis is an indispensable prerequi-

site for a reliable application to empirical data. Values of zero or

one are hardly observable. Contamination with noise, either ob-

servation noise or dynamic noise, alone prevents the clear-cut

decision about the presence of phase synchronization.

Several approaches are conceivable that might be able to in-

fer phase synchronization. Frequently used approaches based

on surrogate data might give a hint whether or not an observed

value for the mean phase coherence is significantly different

from zero [11,13,14]. However, there are pitfalls and limita-

tions related to surrogate data tests that have been dealt with

by [15,16]. Surrogate techniques like phase randomization suf-

fer from the problem, that not only the interaction between the

systems is neutralized but also the systems themselves are lin-
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earized. This might lead to a rejection of the null-hypothesis

of independent nonlinear systems which is investigated in this

Letter.

A second approach to test for phase synchronization is based

on testing for peaks in the distribution of the phase differences.

This can be achieved by comparing the phase difference distri-

bution with a uniform distribution. The Kolmogorov–Smirnov

test [17] is utilized in this study. Third, a test suggested by

Refs. [18,19] based on the asymptotic distribution of the mean

phase coherence is also investigated.

For the latter two tests the test statistics is derived under

the assumption of independent samples. Thus, they are not ex-

pected to work properly in the case of dynamical systems. We

propose a theoretical approach utilizing the asymptotic proper-

ties of the estimator of the mean phase coherence. These theo-

retical considerations lead directly to a derivation of a critical

value for a given α-significance level that can be calculated in a

numerically efficient way. It allows detection of phase synchro-

nization in noisy systems based on non-repetitive realizations

of the systems. Similarities to the test statistics presented in

Refs. [18,19] are discussed.

We illustrate the performance of this significance level in

an application to stochastic synchronizing Rössler oscillators.

For these noisy oscillators the onset of phase synchronization is

determined utilizing this significance level.

The Letter is organized as follows. After a brief introduc-

tion of the mean phase coherence in Section 2, we discuss

alternative naïve tests that fail, i.e., they produce false posi-

tive conclusions, in Section 3. Thus, motivating the necessity

for a novel test, we derive the asymptotic distribution under

the hypothesis of absent phase synchronization for the mean

phase coherence in Section 4. Due to the central limit theorem

on functional spaces, the rigorous derivation of this distribution

is possible for a wide range of data generating processes. The

process dependent parameters that emerge during the derivation

can be estimated from data in a numerical efficient way. This is-

sue is addressed in Section 5, followed by the application of the

proposed significance level to a coupled Rössler system in Sec-

tion 6.

2. Phase synchronization: Mean phase coherence

In order to detect phase synchronization between two cou-

pled self-sustained oscillatory systems a suitable definition of

phase and amplitude of a real-valued observed signal is re-

quired. This can be realized, if the considered oscillations are

characterized by a narrow frequency band [20,21]. Let x(t) be

the real-valued signal satisfying the mentioned property. The

analytic signal is then given by

ψ(t) = x(t) + ix̂(t) = A(t)eiϕ(t),

where A(t) is the amplitude and ϕ(t) the phase. The imaginary

part of the analytic signal can be obtained by the Hilbert trans-

form [22]

x̂(s) = π−1P.V.

∫

x(t)

s − t
dt

of the signal, in which P.V. refers to Cauchy’s principle value.

The phase ϕ(t) now yields a suitable basis for the synchroniza-

tion analysis. Please note that the derivations below do not rely

on the definition of the phase using the Hilbert transformation.

Several other definitions are also conceivable.

Phase synchronization of two coupled, oscillatory systems

occurs if the n : m phase locking condition is satisfied [4]

(1)
∣

∣nϕx(t) − mϕy(t)
∣

∣ = |Φn,m| < const,

where ϕx(t) and ϕy(t) denote the phases of the time series x(t)

and y(t), respectively, and n,m are suitable integers. Since the

phase is defined between [−π;π] and in order to correct for

phase jumps, induced by the presence of dynamical or observa-

tion noise, not the phase difference Φn,m itself but

(2)Ψn,m = Φn,m mod 2π

is investigated. A sharp peak in the distribution of Ψn,m can

be associated with a synchronized state between the oscillators.

Here, a commonly used quantity, measuring the sharpness of

the distribution of Ψn,m is the mean phase coherence [12]

(3)R2
n,m = E

[

cos(Φn,m)
]2 + E

[

sin(Φn,m)
]2

,

where E[·] denotes the expectation value. The mean phase co-

herence is Rn,m = 1 for a constant phase difference between the

two processes and Rn,m = 0 for a uniformly distributed phase

difference in case of non-synchronized oscillators. It has been

shown that this quantity is considerably different from zero

even in the case of weak coupling, which occurs in the case

of phase synchronization.

Let φi , i = 1, . . . ,N , be equidistantly sampled data of Φn,m,

where the time span between the observations is 	t . For sake

of simplicity we suppress the subscript n,m in the following.

Assuming that the process generating the sample φi is ergodic,

an estimate of R2 in Eq. (3) is given by

R̂2
N =

(

N−1
N

∑

i=1

cos(φi)

)2

+
(

N−1
N

∑

i=1

sin(φi)

)2

= N−2
N

∑

i,j=1

(

cos(φi) cos(φj ) + sin(φi) sin(φj )
)

(4)= N−2
N

∑

i,j=1

cos(φi − φj ).

In order to test against the null hypothesis of the absence of

phase synchronization, H0 :R2 = 0, several ad hoc tests have

been suggested that are assessed in Section 3. Motivated by the

fact that theses tests do not work properly, the asymptotic dis-

tribution of the estimate R̂2
N under H0 is derived in Section 4.

3. Motivation and naïve tests

Often used tests for the presence or absence of phase syn-

chronization are based on surrogate data, e.g., [11,14]. These

tests suffer from the problem, that they are based on too strict

mathematical assumptions in contrast to [15,16]. The inference
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from surrogate data tests are, thus, possibly hazardous [23].

Here, we concentrate on the most naïve approach of surrogates,

the Fourier transformation based surrogates. We tested the null

hypothesis using 100 surrogates in the case of absent coupling

between two stochastic Rössler oscillators [24]

ẋ1,2 = −ω1,2y1,2 − z1,2 + ση1,2,

ẏ1,2 = ω1,2x1,2 + ay1,2,

(5)ż1,2 = b + (x1,2 − c)z1,2.

Dynamic noise influence is modeled by Gaussian distributed

random variables η1,2 ∼ N (0,1) leading to the variance σ 2 of

the noise term ση1,2. Using a = 0.15, b = 0.2, c = 10, and

ω1,2 = 1 ± 0.015 Hz leads to chaotic oscillations for the de-

terministic system [4]. The sampling rate is 10 Hz. For the

synchronization analysis only the x-components of the Rössler

oscillators are examined. Without loss of generality, the phases

are estimated using the Hilbert transformation [22].

We investigated sample sizes between 100 and 1,000,000

data points with a standard deviation of the noise of σ = 0.6.

The fraction of rejections of the null hypothesis was 100% for

all simulations. Thus, using the standard version of a surrogate

data test falsely rejects the null hypothesis in all investigated

settings and is inappropriate for synchronization analysis, since

it tests for linearity of the involved processes.

The Kolmogorov–Smirnov test [17] for comparison of the

phase difference distribution to a uniform distribution on

[−π,π] also leads to 100% rejections of the null hypothesis.

Again, we analyzed two uncoupled stochastic Rössler systems

and tested sample sizes between 100 and 1,000,000 data points

with a standard deviation of the noise of 0.6. The same result

was obtained for the naïve test suggested in Refs. [18,19] based

on the distribution

(6)2NR̂2
N

d
≈ χ2

2 ,

where χ2
2 denotes the χ2-distribution with two degrees of free-

dom. The latter two tests assume independence of the phase

difference values which is not the case for dynamical systems.

Our simulation study demonstrates that also a large sample size

does not provide a way out of this dilemma.

Thus, we derive an analytic significance level in the follow-

ing that takes explicitly account for the dependence structure of

the phase differences for dynamical processes.

4. The distribution of R̂
2
N

under H0

Formulating the phase-difference φi at time ti = i	t as an

increment process φi = φi−1 + 	φi , than under H0 the incre-

ments 	φi are strictly stationary for all sampling intervals 	t .

Now, consider φi as a stochastic process and let us assume that

the increments 	φi are representing an α-mixing process [25].

Precisely, let Fm
l = σ(φl, . . . , φm) denote the smallest sigma-

algebra such that all random variables φl, . . . , φm are measur-

able for some 0 � l � m. The process φi is said to be α-mixing

if the mixing coefficient

α(k) = sup
l�0

sup
{

P(A ∩ B) − P(A)P (B): A ∈ F
l
0, B ∈ F

∞
l+k

}

satisfies limk→∞ α(k) = 0, where P(·) denotes the probability

measure. In other words, the statistical dependencies are van-

ishing for infinitely distant events. Under this condition, it is

possible to derive the asymptotic distribution of R2
N in the ab-

sence of phase synchronization.

As proven in Appendix A we can replace the generally un-

known evolution of φ by the following drift diffusion process

(7)dφ̃t = ωdt +
√

D dWt ,

where ω is the mean angular velocity of the phase differ-

ence, dWt is the increment of the Brownian motion and D

the diffusion constant. The phases φi can be approximated by

φi ≈ φ̃i	t = φ̃t leading to the asymptotic distribution of R̂2
N

under the null hypothesis H0. The procedure of estimating the

coefficients ω and D from empirical data is addressed below.

Additionally, the initial distribution of φ0 = 0 with probability

one can be assumed without loss of generality, since an over-all

phase cancels out calculating the mean phase coherence.

To determine the distribution R̂2
N under H0 consider the fol-

lowing random variables

XN = N−1
N

∑

i=1

cos(φi) and

(8)YN = N−1
N

∑

i=1

sin(φi).

The solution of Eq. (7) is given by φi ∼ N (ωti,Dti), where

N (µ,σ 2) denotes the Gaussian distribution with mean µ and

variance σ 2. Thus, for the phase model under H0, Eq. (7), the

expectation values of E[XN ] and E[YN ] yield

E[XN ] = N−1
N

∑

j=1

cos(ωtj )e
− D

2 tj and

(9)E[YN ] = N−1
N

∑

j=1

sin(ωtj )e
− D

2 tj ,

where tj = j	t . The latter expressions are due to

1√
2πσ

∫

cos(x)e
− (x−µ)2

2σ2 dx = cos(µ)e− σ2

2

and

1√
2πσ

∫

sin(x)e
− (x−µ)2

2σ2 dx = sin(µ)e− σ2

2 .

Expressing cos(ωtj ) and sin(ωtj ) by their polar representa-

tions and evaluating the geometric sums
∑N

j=1(·)j in Eq. (9)

leads to

E[XN ] = 1

N

(

f (t1) − f (tN ) + e−D	t (f (tN−1) − 1)

(1 − e−D	t/2)2

)

=O
(

N−1
)

and
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E[YN ] = 1

N

(

g(t1) − g(tN ) + e−D	tg(tN−1)

(1 − e−D	t/2)2

)

=O
(

N−1
)

with f (tj ) = cos(ωtj )e
− D

2 tj and g(tj ) = sin(ωtj )e
− D

2 tj . Espe-

cially the fact that E[XN ] =O(N−1) and E[YN ] =O(N−1) is

important for the covariance matrix that is discussed next.

The covariance matrix of ZN = (XN , YN ) can be calculated

using C = Cov(ZN ) = E[Z′
NZN ] − E[Z′

N ]E[ZN ], where Z′
N

indicates the transposition of ZN . Since E[ZN ] = O(N−1) it

can be approximated by its second moment with a remainder of

order N−2. Thus, C = Cov(ZN ) = E[Z′
NZN ] + O(N−2) and

we obtain

C = N−2
N

∑

i,j=1

(

E[cos(φi) cos(φj )] E[cos(φi) sin(φj )]
E[cos(φi) sin(φj )] E[sin(φi) sin(φj )]

)

(10)+O
(

N−2
)

.

Expanding the diagonal entries of the covariance matrix, the

expectation values can be represented by 1
2 (E[cos(φi − φj )] ±

E[cos(φi + φj )]). The sum in Eq. (10) contains the case where

i = j , for which follows that C = O(N−1) and, thus, NC =
O(1). Thereby, it is guaranteed that Eq. (10) can be approxi-

mated by neglecting the term of O(N−2).

Since cos(φi) and sin(φi) are strongly mixing sequences,

the central limit theorem for mixing processes [29] holds and,

therefore, ZN converges in distribution to the bivariate normal

distribution

(11)
√

NZN
d→N (0,NC) as N → ∞.

Since C is positive definite and symmetric, we can decom-

pose C = QDQ′, where Q is orthogonal and D is diagonal.

Setting

(12)Z̃N D
1
2 Q′ = ZN

it follows that Z̃N = (X̃N , ỸN ) ∼ N (0,1) for N → ∞. This

is due to the fact that the positive definiteness guarantees that

the inverse (D
1
2 Q′)−1 exists. Hence, Z̃N = (D

1
2 Q′)−1ZN and

by Eq. (11), E[Z̃N ] → 0 for N → ∞. Moreover, E[Z̃′
N Z̃N ] =

E[Z′
N (QDQ′)−1ZN ] = E[Z′

N (C)−1ZN ] → 1 for N → ∞.

Since the first and the second moment coincides with the mo-

ments of the standard Gaussian distribution and the space of

Gaussian distributed random variables is closed with respect to

linear transformations, we can state from Eq. (11) that ZN
d→

N (0,1). According to Eq. (4) and by the definition of ZN we

can represent the estimator of the mean phase coherence by

R̂2
N = ZNZ′

N . Inserting Eq. (12) in the previous expression, we

obtain R̂2
N = Z̃DZ̃′. The mean phase coherence R̂2

N can there-

fore be quantified using the eigenvalues

R̂2
N = λ1X̃

2 + λ2Ỹ
2,

where λ1, λ2 are the eigenvalues of C, given by

(13)λ1/2 = tr C

2
±

√

(tr C)2

4
− det C.

The eigenvalues λ1, λ2 determine the asymptotic distribution

of the mean phase coherence under H0. The distribution of R̂2
N

can be approximated by a superposition of two χ2-distributions

with one degree of freedom, χ2
1 . Since λ1/2 > 0, we can further

estimate an upper limit of this distribution by

(14)R̂2
N

d
≈ tr C · χ2

1 .

Note, that for independent realizations with λ1 = λ2 the distri-

bution yields

(15)R̂2
N

d
≈

χ2
2

2N
,

a statistics that was suggested by [18,19].

To obtain the asymptotic distribution for non-independent

realizations the trace of the covariance matrix given by Eq. (10)

tr C = N−2
N

∑

i,j=1

(

E
[

cos(φi) cos(φj )
]

+ E
[

sin(φi) sin(φj )
])

(16)= N−2
N

∑

i,j=1

E
[

cos(φi − φj )
]

has to be calculated to estimate the asymptotic properties of

R̂2
N under H0. The approximation in Eq. (14) combined with

the relation (16) yields

(17)R̂2
N

d
≈ R2

N · χ2
1 .

Note that this expression reveals the exact mean of R̂2
N ,

thus Eq. (14) also yields the exact expectation value, since

E[χ2
1 ] = 1 under the null hypothesis. For the phase diffusion

the distribution of the phase difference above is normally dis-

tributed with mean ω|ti − tj | and variance D|ti − tj |, compare

Eqs. (8) and (9). We therefore obtain,

tr C = N−2
N

∑

i,j=1

e− D
2 |ti−tj | cos

(

ω|ti − tj |
)

= 1

N
+ 2

N

N−1
∑

s=1

(

1 − s

N

)

e− D
2 ts cos(ωts).

Abbreviating ξ = e− D
2 	t+iω	t and f (tj ) = e− D

2 tj cos(ωtj ),

tr C = N−1

(

1

2
+ ξ

1 − ξN−1

1 − ξ
− ξ

1 − ξN+1

N(1 − ξ)2
+ ξN

1 − ξ

)

+ c.c.

= N−1

(

1 + 2
f (t1) + f (tN ) − e−D	t

(1 − e−D	t/2)2

)

+O
(

N−2
)

can be calculated finally, where c.c. is referred to as the complex

conjugation of the previous expression. This distribution of the

estimated mean phase coherence can be approximated by

(18)R̂2
N ∼ N−1

(

1 + 2
f (t1) + f (tN ) − e−D	t

(1 − e−D	t/2)2

)

χ2
1 .

This approximation is valid only for a large sample size N .

To obtain a sufficient approximation of the distribution of

R̂2
N under H0, the mean angular velocity ω and the diffusion

constant D have to be reliably estimated.
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5. The estimation of ω and D

The estimation of ω can be performed by identification of

the linear trend ωti for i = 1, . . . ,N in φi obtained by linear

regression, such that

(19)ω̂ =
∑N

i=1 tiφi
∑N

i=1 t2
i

,

where again ti = i	t . Since linear regression is used, the vari-

ance of the estimator scales with 1/N . Stationarity was used

here, whereas for the estimation of the diffusion constant D

the functional central limit theorem has to be taken into ac-

count. Since D is related to the variance of the phase increments

	φi = φi − φi−1,

D = lim
N→∞

1

	tN
Var

(

N
∑

i=1

	φi

)

= lim
N→∞

1

	t

N−1
∑

k=−N+1

(

1 − k

N

)

γ (k)

(20)= 1

	t

∞
∑

k=−∞
γ (k),

where γ (k) = E[(	φi − E[	φi])(	φi+k − E[	φi+k])] is the

auto-covariance function of the phase increments 	φi . The

auto-covariance function is a substantial part of Eq. (20), such

that the correlations of the phase increments cannot be ne-

glected in the estimation.

To deal with the problem of correlated phase increments,

non-overlapping blocks are build up out of the phase increments

in a manner such that we achieve approximately independent

blocks. This approach is similar to the one used in block boot-

strap [31,32]. Finding such non-overlapping blocks is possible

if the particular time series is strongly mixing which was one

of the central requirements of the functional central limit theo-

rem. It is further assumed without loss of generality that for a

given block-length l the number of blocks b is an integer num-

ber, otherwise the time series of the increments can sufficiently

be truncated. We define the total phase increment of each block

by

(21)δj =
l

∑

i=1

	φ(j−1)l+i, j = 1, . . . , b = N

l
.

The empirical variance of δj divided by l	t therefore yields an

appropriate estimate for D and is given by

(22)D̂ = 1

l	t
b−1

b
∑

j=1

(δj − lω̂	t)2.

Here, the free parameter, the block-length l, has to be selected.

If, e.g., the block-length was too small, the estimate of D could

be strongly biased due to the correlations. On the other hand, if

l is too large D̂ itself shows a rather high variance. The optimal

block-length should balance both effects. This can be achieved

if the mean-squared-error MSE = Variance + Bias2 is mini-

mized with respect to the block-length l. In Appendix B, an

approximation of MSE is derived which yields

MSE ≈ (	t)−2

(

l−2C1 + 2l

N
C2

)

,

C1 =
( ∞

∑

k=−∞
|k|γ (k)

)2

, and

(23)C2 =
( ∞

∑

k=−∞
γ (k)

)2

.

The optimal block-length is given by the minimum of Eq. (23),

thus lopt = (NC1/C2)
1
3 . Certainly, both constants C1 and C2

are unknown in the first place, moreover if C2 was known

the diffusion constant could be calculated using Eq. (20) di-

rectly. Instead, rough estimates of these constants are used to

determine an almost optimal block-length, where the outcome

of Eq. (20) is directly linked to the estimate of C2. Under

the assumption that the auto-covariance function decays ex-

ponentially, such a rough estimate is given by the following

scheme [32]:

(1) Estimate the auto-correlation function of the increments

	φi .

(2) Fit ϕ(k) = ϕk to the envelope of the auto-correlation func-

tion.

(3) Compute the estimate of the optimal block-length l̂ by

l̂ = (4N)1/3

(

ϕ

1 − ϕ
+ ϕ2

(1 − ϕ)2

)2/3

×
(

1 + 2
ϕ

1 − ϕ

)−2/3

.

The variance of the estimator of D can be derived from the re-

sults in Appendix B. The variance scales with 1/b, the number

of independent blocks. The MSE of D scales with N−2/3.

In summary, the statistical properties of the mean phase co-

herence have been derived. Please note that we do not cover all

possible situations that might be faced in real-world applica-

tions. For instance, noise induced phenomena are not addressed

in the above derivation. However, as long as the assumptions

of the test statistics are fulfilled, a reasonable significance level

will be obtained. To this aim, the parameters that are defined

by the realization of the process, i.e., the mean angular ve-

locity and the diffusion coefficient, can be estimated follow-

ing the procedures above. An application to empirical data is

feasible. To illustrate the performance of the proposed signifi-

cance level, we test it on simulated data in the following sec-

tion.

6. Performance of the significance level

To assess the proposed critical value at a particular signifi-

cance level, a system of two coupled stochastic Rössler oscilla-

tors [24]
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Fig. 1. Power of the proposed significance level in dependence on data length and noise level. In subsequent rows the noise strength is varied, while between columns

the sample size is different. The horizontal line indicates a 5% level, which is the fixed significance level in our study. The continuous line shows the power of the

proposed significance level dependent on the coupling strength. The dotted lines in (a), (b), and (d) indicate the fraction of critical values below one.

ẋ1,2 = −ω1,2y1,2 − z1,2 + ε1,2(x2,1 − x1,2) + σ1,2η1,2,

ẏ1,2 = ω1,2x1,2 + ay1,2,

(24)ż1,2 = b + (x1,2 − c)z1,2

is investigated. Dynamic noise influence is modeled by

Gaussian distributed random variables η1,2 ∼ N (0,1) leading

to the variance σ 2
1,2 of the noise term σ1,2η1,2. Using a = 0.15,

b = 0.2, c = 10, and ω1,2 = 1 ± 0.015 Hz leads to chaotic os-

cillations for the deterministic system [4]. The sampling rate is

10 Hz. For the synchronization analysis only the x-components

of the Rössler oscillators are examined. Without loss of gen-

erality, the phases are estimated using the Hilbert transforma-

tion [22].

The coupling strength between the two oscillators is mod-

eled by the parameters ε1,2. For this system the onset of phase

synchrony is achieved for a bidirectional coupling strength of

0.03 in the noise-free case. We varied the bidirectional coupling

strength between both Rössler oscillators, the noise of each

Rössler oscillator σ1,2η1,2 as well as the length of the sample

simulated for each Rössler oscillator to quantify the coverage as

well as the power of the proposed significance level. The cov-

erage measures the number of false positive conclusions in the

absence of phase synchronization and has to be controlled, i.e.

there should be not more than α% false positive conclusions for

an α-significance level. The α-significance level can be derived

from Eq. (14) by

(25)Rα
N,crit = tr C · χ2

1,α,

where χ2
1,α denotes the α-quantile of the χ2-distribution with

one degree of freedom. The power measures the ability to de-

tect a true phase synchronization between the oscillators by the

fraction of correctly rejected null-hypotheses. In the following,

100 realizations for every parameter set were simulated to de-

termine power and coverage of the proposed significance level.

In Fig. 1 the results are shown. The sampling length is var-

ied between columns ranging from 8192 to 32,768. Subsequent

rows reflect different noise levels σ1,2 in the range between 0.2

and 0.8. The bidirectional coupling strength is varied for each

parameter combination in the range from 0 to 0.06. These cou-

pling strengths are sufficient to warrant phase synchrony in the

noise free case. The horizontal line in each subplot corresponds

to the 5% level of significance derived in the previous sections.
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First, we would like to emphasize that for absence of cou-

pling between the Rössler oscillators the coverage keeps to or

below the 5%-significance level. In other words, the critical

value for the mean phase coherence prevents erroneous conclu-

sions in the case of absent coupling. Second, for high coupling

strength and sufficiently large noise and sampling interval the

power reaches values of 100%, which clearly indicates that a

high power of the proposed significance level is achieved for

reasonable parameter combinations (Fig. 1(c, e, f, g–l)). The

steepness of several power curves especially for a large sam-

ple size, moreover, emphasizes the performance for the level of

significance in general, see for instance Fig. 1(c).

A more detailed characterization of the power curves yields

some interesting properties. To simplify our statements, we fo-

cus our interpretations on non-zero coupling strength between

the oscillators in the following if not otherwise stated. In gen-

eral, the performance increases for increasing amount of data

and decreases for higher noise levels. This behavior is intu-

itively expected and for example revealed in the difference be-

tween Fig. 1(e) and (k). For constant sampling size, the noise

level is twice as high in Fig. 1(k). The coupling value for which

a 100% power is reached is shifted from the coupling strength

of 0.02 (e) to the slightly higher coupling strength 0.03 (k).

However, the onset of detection of an interaction between the

oscillators is shifted to slightly lower coupling strengths for the

higher noise variance. This effect is due to finite size effects

which distinguishes the behavior of the significance level when

it has not reached its asymptotic regime. The finite size effects

are mainly influenced by the diffusion constant. If the diffusion

constant is large, the amount of data is effectively higher. There

are more independent data points since the system is faster mix-

ing. For the Rössler system this aspect has been discussed in

Ref. [33].

The consequence that the assumptions are not fulfilled is

even more illustrative if small sample sizes are investigated.

Higher noise levels can even increase the performance not only

for the onset of detection of interaction but also for higher cou-

pling strengths (1st column). Note that the power in (a) decays

after an increase up to 0.65 at a coupling strength of 0.025 again

when the coupling strength is further increased. This is caused

by critical values of or higher than one, preventing detection

of significant results. This effect emerges in the simulations

shown in Fig. 1(a), (b), and (d). The dotted line shows the frac-

tion of critical values that are below one. In those cases, where

the power decreases again, the critical value is, thus, to a cer-

tain extent close to or higher than one. The equation for the

critical values enables understanding of this phenomenon. The

χ2-distribution multiplied by the trace of matrix C is not lim-

ited to one as the mean phase coherence. This occurs especially

for low noise and small sample sizes and represents a finite size

effect.

For the investigated ranges of couplings an increase in the

noise, however, allows the statistics to become applicable and

therefore shifts the power curve to higher values of the power

for higher coupling strengths. Once a particular noise value

is exceeded, in our case 0.6, the power does not decrease

any more. Alternatively the asymptotic behavior can also be

achieved, when the number of data points is enlarged. This

is revealed by the plots in the first row. Doubling the sample

size is almost sufficient to shift this drop in power to very high

coupling strength. Four times larger sample size guarantees the

power to stay at 100% for the investigated coupling strength.

For absent coupling between the oscillators the coverage

keeps below the 5%-significance level for small noise variance.

This is due to the approximation of the sum of two independent

χ2
1 -distributions with one χ2

1 -distribution. The approximation is

conservative and thus, the significance level is conservative in

those cases. Since the power increases rapidly this conservative

behavior for absent coupling does not hamper the applicability

of the proposed significance level. Therefore, it is not necessary

to approximate the sum of two independent χ2
1 -distributions

more exactly, which would lead to a much more complex ex-

pression for the significance level. Moreover, for higher noise

variances that are usually expected in the majority of applica-

tions the coverage is 5% as desired by the significance level.

For higher coupling strengths than shown in Fig. 1 the sta-

tistics is not necessarily in its asymptotic. A critical value of or

higher than one would be observed preventing any conclusions

about a coupling between the oscillators. Whenever a critical

value of or higher than one is obtained, further investigations

are necessary as to which extent this belongs to a true result or

to a missing of asymptotic behavior of the system. In this sense

the significance level prevents false positive conclusions as it

indicates when its assumptions are not fulfilled. Moreover, the

length of the necessary segments to estimate the diffusion coef-

ficient is an indicator whether or not the process is sufficiently

mixing. If the length of the segments is too large, one should be

cautious when drawing conclusions.

Additionally, the proposed significance level is not capable

of distinguishing coupling between oscillators and for instance

a signal propagation. One has to ensure in the first place, that

one is in the regime of coupled synchronizing oscillators. This

problem is very common in time series research and there are

suggestions how to distinguish synchronizing oscillators and,

e.g., signal propagation in the first place [34].

7. Conclusion

We derived the distribution of the test statistics for the mean

phase coherence that leads to a critical value for a correspond-

ing significance level that allows to test for a non-zero syn-

chronization value. Its performance has been demonstrated in

a simulation study based on coupled stochastic Rössler oscil-

lators. The coverage of the significance level is conservative.

Moreover, the level of significance is characterized by a steep

increase in power. One major advantage of the proposed signifi-

cance level lies in the fact that the suggested procedure provides

information about its applicability to the problem at hand. If

the segment length necessary for the estimation of the diffusion

term is too large compared to the time series length, indicat-

ing that the system is either non-mixing or that the mixing rate

is too slow, the proposed significance level should not be used

which is indicated by the proposed procedure. To put it the other

way around, if the diffusion constant is large, short data seg-
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ments are sufficient to reliably apply the proposed significance

level. In contrast to the naïve tests, false positive conclusions

about the synchronization in cases, where these conclusions

cannot be inferred, are prevented by the proposed test when it

is indicating that it was not applicable.

In summary, the proposed significance level works well for a

large variety of coupling strengths, noise variances, and sample

sizes. It provides, thus, a powerful test for the presence of phase

synchrony.
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Appendix A. Functional limit theorem

Assume that the process space is endowed with the Skoro-

hod topology. The Skorohod topology is defined by the metric

d(·,·) on the space D[0,1] of cadlag functions on [0,1]. A cad-

lag function on [0,1] is a real-valued function that fulfills

• lims↑s0 x(s) exists for every s0 ∈ (0,1],
• lims↓s0 x(t) = x(s0) exists for every s0 ∈ (0,1].

In general, we have to rescale the time t , i.e., s = t/tmax ∈
[0,1]. Let Λ denote the class of strictly increasing continu-

ous mappings of [0,1] onto itself [26,27]. Then, the distance

d(x, y) is the infimum of those positive ε for which there exists

an λ ∈ Λ with

sup
s∈[0,1]

{

|λ(s) − s|
}

� ε and

sup
s∈[0,1]

{
∣

∣x(s) − y
(

λ(s)
)
∣

∣

}

� ε

for x(s), y(s) ∈ D[0,1].
Then, the functional central limit theorem [27,28] states that

the sufficiently rescaled sum of the centered increments con-

verge weakly to Brownian motion on [0,1], i.e., there exist

functions λn ∈ Λ such that

lim
n→∞

xn

(

λn(s)
)

= x(s) and

lim
n→∞

λn(s) = s

uniformly in s. The xn are the sequence that converge weakly

to Brownian motion.

Appendix B. Derivation of the mean squared error

In this appendix, the mean-squared-error for the estimation

of the diffusion constant

D̂ = 1

l	t
b−1

b
∑

j=1

(δj − lω̂	t)2

= 1

l	t
b−1

b
∑

j=1

l
∑

r,m=1

(	φ(j−1)l+r − ω̂	t)

× (	φ(j−1)l+m − ω̂	t)

= 1

	t
b−1

b
∑

j=1

l−1
∑

k=−l+1

γ̂j (k)

is derived, where γ̂j (k) is the empirical auto-covariance func-

tion of block j . The bias E[D̂] − D can be calculated using the

value of D as derived in Eq. (20). The bias then reads

E[D̂] − D = 1

	t
b−1

b
∑

j=1

l−1
∑

k=−l+1

E
[

γ̂j (k)
]

− D

= 1

	t
b−1

b
∑

j=1

l−1
∑

k=−l+1

(

1 − |k|
l

)

γ (k) − D

≈ 1

	t

∞
∑

k=−∞

(

1 − |k|
l

)

γ (k) − D

= − 1

l	t

∞
∑

k=−∞
|k|γ (k).

The variance can also be derived analytically. It becomes

Var(D̂) =
(

1

	t

)2

b−2 Var

(

b
∑

j=1

l−1
∑

k=−l+1

γ̂j (k)

)

≈
(

1

	t

)2

b−1 Var

( ∞
∑

k=−∞
γ̂j (k)

)

=
(

1

	t

)2

b−1 Var
(

Per(0)
)

,

where the latter expression denotes the variance of the peri-

odogram at frequency zero. This is asymptotically given by

Var
(

Per(0)
)

= 2

( ∞
∑

k=−∞
γ (k)

)2

,

see, e.g., [30]. Setting C1 and C2 as in Eq. (23) and substituting

b = N/l, an approximation of the mean-squared-error is finally

given by

MSE = Variance + Bias2

≈ (	t)−2

(

l−2C1 + 2l

N
C2

)

.
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