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Partial Phase Synchronization for Multivariate Synchronizing Systems

Björn Schelter,1,2,3,* Matthias Winterhalder,1,2,3 Rainer Dahlhaus,4 Jürgen Kurths,5 and Jens Timmer1,2,3

1FDM, Freiburg Center for Data Analysis and Modeling, University of Freiburg, Eckerstraße 1, 79104 Freiburg, Germany
2Bernstein Center for Computational Neuroscience Freiburg, University of Freiburg, Germany

3Physics Department, University of Freiburg, Hermann-Herder Straße 3, 79104 Freiburg, Germany
4Department of Applied Mathematics, University of Heidelberg, Im Neuenheimer Feld 294, 69120 Heidelberg, Germany

5Nonlinear Dynamics Group, Institute of Physics, University of Potsdam, 14415 Potsdam, Germany
(Received 21 December 2005; published 26 May 2006)
0031-9007=
Graphical models applying partial coherence to multivariate time series are a powerful tool to
distinguish direct and indirect interdependencies in multivariate linear systems. We carry over the concept
of graphical models and partialization analysis to phase signals of nonlinear synchronizing systems. This
procedure leads to the partial phase synchronization index which generalizes a bivariate phase synchro-
nization index to the multivariate case and reveals the coupling structure in multivariate synchronizing
systems by differentiating direct and indirect interactions. This ensures that no false positive conclusions
are drawn concerning the interaction structure in multivariate synchronizing systems. By application to
the paradigmatic model of a coupled chaotic Roessler system, the power of the partial phase synchro-
nization index is demonstrated.
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Analyzing interactions between components of a com-
plex network is of genuine interest in various fields of
physics. Understanding the characteristic behavior in
such networks is of equal importance as the inference of
networks’ structures from the observation of the networks’
behavior. In particular, we address the detection of inter-
dependencies in multivariate dynamic systems.

Various analysis techniques have been suggested to
analyze interactions in dynamic systems in diverse fields
of research [1–12]. When more than two processes are
analyzed, one has to face the problem that complex inter-
action structures between the processes may arise. For
example, two processes in a multivariate system do not
have to interact directly. Therefore, bivariate analysis is
often not sufficient to reveal the correct interaction struc-
ture, i.e., distinguishing direct and indirect interactions. In
order to avoid false positive conclusions about the inter-
dependence structure of the investigated multivariate sys-
tem, the applied analysis technique should distinguish
direct and indirect interactions which is impossible for
bivariate techniques alone.

For linear systems, the partial spectral coherence was
introduced [13] and applied [14,15] to discriminate direct
and indirect connections. Graphical models applying par-
tial coherence have been introduced to reveal the interde-
pendence structure in multivariate systems consisting of
linear stochastic processes [16]. If a significant bivariate
coherence is detected between two processes, which be-
comes nonsignificant utilizing partial coherence, the cor-
responding connection is unmasked as an indirect one. An
indirect interdependence between two processes, which is
mediated by other processes, is therefore distinguishable
using partial coherence analysis. As a result of this, false
positive conclusions are prevented in linear systems. An
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intuitively interpretable graph represents the investigated
processes as vertices and direct interrelations are repre-
sented by edges between the corresponding vertices.

In this Letter, we carry over the concept of graphical
models and partialization analysis to nonlinear synchro-
nizing systems. To this aim, considering an N-dimensional
dynamic process X1; . . . ; XN , the partial cross spectra
SXkXljXZ between Xk and Xl and the autospectra SXkXkjXZ
of Xk conditioning on all remaining processes XZ fXZjZ �
1; . . . ; N; Z � k; lg are defined by

SXkXljXZ�!� � SXkXl�!� � SXkXZ �!�S
�1
XZXZ
�!�SXZXl�!�

(1)

and by

SXkXkjXZ �!� � SXkXk�!� � SXkXZ�!�S
�1
XZXZ
�!�SXZXk�!�:

(2)

SXkXl�!�, SXkXZ�!�, and SXZXZ�!� denote the multivariate
autospectra and cross spectra, which can be estimated, e.g.,
by smoothing the corresponding periodograms
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after tapering the time series to avoid misalignment [17].
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Inverting and renormalization of the spectral matrix
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is a numerically efficient method to estimate the partial
autospectra and cross spectra �S�1�ij � const� SXiXjjXZ
[16]. The information about the linear interrelation be-
tween the processes Xk and Xl conditioned on the remain-
ing examined processes XZ is contained in the partial
coherence

PCoh XkXljXZ�!� �
jSXkXljXZ�!�j����������������������������������������������

SXkXkjXZ �!�SXlXljXZ�!�
q : (6)

A graphical model reflecting the partial correlation struc-
ture consists of a set of vertices V � 1; . . . ; N and a set of
edges E, where an edge between k and l is present if
PCohXkXljXZ �!� is nonzero [16]. We mention that there is
a similar concept for ordinary random variables, e.g.,
covariance selection models [18,19].

For nonlinear systems, in contrast, apart from many
other analysis techniques, like for instance bispectral
analysis [20,21], the investigations of phase synchroniza-
tion have gained particular interest [8,9,22–25]. Even for
chaotic oscillatory processes and for low coupling
strengths between the processes, a synchronization of
phase signals has been observed [23].

Similar to the analysis of linear systems, in several
applications a network of more than two processes is
observed; each pairwise combination has been analyzed
separately in order to detect a synchronization in these
multivariate nonlinear systems [24,26]. Furthermore, clus-
ter analysis approaches have been proposed to process
multivariate data sets [25].

Nevertheless, disentangling directly and indirectly
coupled oscillators remains an unsolved problem. If, for
instance, two independent oscillators are coupled to one
common oscillator, phase synchrony would also be ob-
served between the indirectly coupled oscillators. False
positive conclusions about the underlying coupling scheme
would be drawn in this example using pairwise phase
synchronization analysis.

In the following, we derive a procedure to generalize the
concept of partialization analysis to nonlinear synchroniz-
ing systems. To this aim, a phase ��t� of a real-valued
oscillatory signal X�t� has to be defined leading to

V�t� � A�t�ei��t� � A�t�Q�t�: (7)

One way, but not the exclusive way, utilizes Gabor’s ana-
lytic signal approach [27],

V�t� � X�t� � iXh�t� � A�t�ei��t� � A�t�Q�t�; (8)
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applying the Hilbert transformation of X�t� to obtain the
imaginary part Xh�t�. Alternative approaches are, for in-
stance, based on wavelet transformations [28,29]. Using
the polar representation of V�t�, the amplitude A�t� and the
phase ��t� are defined. Bivariate synchronization analysis
is based on Q�t�. We approach partial phase synchroniza-
tion analysis on the basis of the time series Q�t� by iden-
tification of the function A�t� as a taper window for Q�t�
and using the concept of partialization similar to the linear
theory.

Plugging Qk�t� � exp�i�k�t�� in the Eqs. (3) and (4) of
the periodograms leads to

Per QkQl
�!� /

X
t

Qk�t�e
�i!t

X
t

Ql�t�
	ei!t (9)
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X
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and

Per QkQk
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X
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0
; (11)

respectively.
To introduce the partial phase synchronization index for

coupled nonlinear oscillators k and l, the periodogram
values of all frequencies are summed up leading to

Rk;l � d
X
!

PerQkQl
�!� �

1

T

X
t

ei��k�t���l�t��; (12)

with some appropriately chosen constant d ensuringRk;k �
1. We emphasize that only the phase differences ��k�t� �
�l�t�� between the oscillators are contained in the expres-
sion for Rk;l.

The expression (12) is identical to a bivariate phase
synchronization index [30]

jRn;mk;l j �

���������
1

T

XT

t�1

ei�
n;m
k;l �t�

��������� (13)

for n � m � 1. The synchronization index Rn;mk;l quantifies
the sharpness of peaks in the histograms of the phase
difference �n;m

k;l � n�k�t� �m�l�t� for appropriate inte-
gers n and m. It is normalized between zero and one. A
value close to 1 is obtained for an almost constant phase
difference jn�k�t� �m�l�t�j � j�

n;m
k;l �t�j< const; n; m 2

Z which has also been observed between two nonidentical
chaotic oscillators [23]. For the extension of phase syn-
chronization to nonlinear stochastic oscillators, the distri-
bution of �n;m

k;l �t� � �n;m
k;l �t� mod2� is investigated [8].

For linear systems the autospectra and cross spectra
enter the spectral matrix (5) to estimate the partial auto-
spectra and cross spectra [Eq. (1) and (2)] leading to partial
coherence [Eq. (6)]. The derivation above proved that for
synchronizing systems the spectral matrix (5) has to be
substituted by
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FIG. 1. (a) Graph for the simulated coupling scheme in the
Roessler system. The direct coupling between oscillators �2 and
�3 is absent. (b) Graph based on bivariate synchronization
analysis. An additional but spurious edge between oscillator �2

and �3 is present.
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FIG. 2 (color online). The partial phase synchronization index.
Coupling strengths between oscillators �1 and �2 and between
oscillators �1 and �3 are varied between 0 and 0.3, for an absent
coupling between �2 and �3. Values of the bivariate phase
synchronization index (upper row) and partial phase synchroni-
zation index (lower row) are shown. When comparing the
bivariate phase synchronization index R2;3 with the partial phase
synchronization index R2;3j1 it becomes clear that the interaction
between oscillator �2 and �3 is mediated by �1 since R2;3 �

R2;3j1.
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with entries Rk;l :� Rn;mk;l [Eq. (13)], which are the pairwise
synchronization indices. The asterisk denotes complex
conjugation. In the following we refer to this matrix as
synchronization matrix. Caused by the proved analogy
between spectral and synchronization theory, the inverse
PR � R�1 of the synchronization matrix R immediately
leads to the definition of the n:m partial phase synchroni-
zation index

Rk;ljZ �
jPRklj���������������������

PRkkPRll
p (15)

between Xk and Xl conditioned on the remaining processes
fXZjZ � 1; . . . ; N; Z � k; lg. It replaces the partial coher-
ence [Eq. (6)] for synchronizing systems. As for partial
coherence, where the indirect interactions are character-
ized by an absent partial coherence accompanied by a
bivariate significant coherence [16], the following holds:
If the bivariate phase synchronization index Rk;l is consid-
erably different from zero, while the corresponding multi-
variate partial phase synchronization index Rk;ljZ 
 0,
there is strong evidence for an indirect coupling between
the processes Xk and Xl. Graphical models applying partial
phase synchronization analysis are defined by the
following:

An edge E between the oscillators k and l in a partial
phase synchronization graph is missing, if and only if Rk;ljZ
is small compared to Rk;l.

Three coupled stochastic Roessler oscillators
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0
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i; j � 1; 2; 3 (16)

are a genuine example of a system consisting of weakly
coupled self-sustained stochastic oscillators. The parame-
ters are set to a � 0:15, b � 0:2, c � 10, !1 � 1:03,
!2 � 1:01, and !3 � 0:99 yielding a chaotic behavior in
the deterministic case. For the noise term �j�j a standard
deviation of �j � 1:5 is chosen and �j is standard
Gaussian distributed. Both the bidirectional coupling
"1;3 � "3;1 between oscillator �1 and oscillator �3, and
the bidirectional coupling "1;2 � "2;1 between oscillator
20810
�1 and oscillator �2 are varied between 0 and 0.3. Both
synchronization phenomena, phase and lag synchroniza-
tion, are contained in this range of coupling strengths. The
oscillators �2 and �3 are not directly coupled since "2;3 �
"3;2 � 0. The coupling scheme is summarized in Fig. 1(a).

In the following an example of 1:1 synchronization of
the X components is investigated. The bivariate synchro-
nization index R1;2 as well as R1;3 increases when the
corresponding coupling strength is increased, indicating
phase synchronization (Fig. 2 upper row). Once a sufficient
amount of coupling exists between oscillators �1 and �2 as
well as between �1 and �3, a nonvanishing bivariate syn-
chronization index R2;3 between the not directly coupled
3-3
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oscillators �2 and �3 is observed (Fig. 2 upper row). This
high but spurious phase synchronization is caused by the
common influence from oscillator �1 onto �2 and �3. The
bivariate synchronization analysis suggests the coupling
scheme between the three Roessler oscillators summarized
in Fig. 1(b), containing the additional but spurious edge
between oscillator �2 and �3.

In Fig. 2 (lower row) the results of partial phase syn-
chronization analysis are shown. While R1;2j3 as well as
R1;3j2 are essentially unchanged compared to the bivariate
synchronization indices, R2;3j1 stays almost always below
0.1 and is therefore considerably smaller than R2;3 in the
area of spurious synchronization. This strongly indicates
the absence of a direct coupling between oscillators �2 and
�3. This results in the graph presented in Fig. 1(a), repre-
senting the correct coupling scheme.

The proposed approach relies on the extracted phase. A
definition of the phase signal is possible whenever the
analytic signal circulates around the phase space origin
as it the case in many applications such as cardiorespira-
tory systems or systems investigated in neuroscience, geo-
science, etc. In those cases, where an application of an
analytic signal is not possible, but where it is nonetheless
possible to motivate concepts like phase synchronization
by means of, for instance, recurrences, further investiga-
tion is inevitable [31].

In summary, we introduced graphical models applying
partial phase synchronization to phase signals of multi-
variate synchronizing oscillators. This multivariate exten-
sion is essential when analyzing multivariate systems to
avoid false positive conclusions about the underlying cou-
pling scheme. To this aim, we derived an index quantifying
synchronization by applying a partialization analysis to the
analytic signal of the oscillators, which also gives a firm
mathematical basis for the often applied but only heuristi-
cally introduced synchronization index. Inverting the syn-
chronization matrix yields the concept of partial phase
synchronization, that has been shown to differentiate direct
and indirect coupling in a multivariate system of nonlinear
synchronizing oscillators. In a forthcoming paper, we will
present the applicability of this novel approach to empiri-
cal data.
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