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ABSTRACT

Motivation: Modelers in Systems Biology need a flexible
framework that allows them to easily create new dynamic models,
investigate their properties and fit several experimental datasets
simultaneously. Multi-experiment-fitting is a powerful approach to
estimate parameter values, to check the validity of a given model,
and to discriminate competing model hypotheses. It requires
high-performance integration of ordinary differential equations and
robust optimization.

Results: We here present the comprehensive modeling framework
PottersWheel (PW) including novel functionalities to satisfy these
requirements with strong emphasis on the inverse problem, i.e.
data-based modeling of partially observed and noisy systems
like signal transduction pathways and metabolic networks. PW
is designed as a MATLAB toolbox and includes numerous user
interfaces. Deterministic and stochastic optimization routines are
combined by fitting in logarithmic parameter space allowing
for robust parameter calibration. Model investigation includes
statistical tests for model-data-compliance, model discrimination,
identifiability analysis and calculation of Hessian- and Monte-Carlo-
based parameter confidence limits. A rich application programming
interface is available for customization within own MATLAB code.
Within an extensive performance analysis, we identified and
significantly improved an integrator-optimizer pair which decreases
the fitting duration for a realistic benchmark model by a factor over
3000 compared to MATLAB with optimization toolbox.

Availability: PottersWheel is freely available for academic usage
at http://www.PottersWheel.de/. The website contains a detailed
documentation and introductory videos. The program has been
intensively used since 2005 on Windows, Linux and Macintosh
computers and does not require special MATLAB toolboxes.
Contact: maiwald@fdm.uni-freiburg.de

Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

PottersWheel (PW) evolved within close collaborations of experi-
mentalists and modelers of the German HepatoSys initiative.
Therefore, modeling of experimental data has been the central

*To whom correspondence should be addressed.

objective for its development from the beginning. Two experiences
were our main guidelines:

(1) In order to identify models which are compliant with existing
biological knowledge and new laboratory measurements,
the modeler requires easy interactive access to investigate
the dynamic properties of the model. To generate new
hypotheses about the reaction network or to postulate new
system variables, intensive working with a model is crucial,
always in close relation to the measurements. The necessary
functionalities range from real-time changing of parameter
values and characteristics of driving input functions to
efficient refinement of the model structure itself.
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Powerful fitting procedures are required to calibrate model
parameters in the context of several experimental datasets,
often under different experimental settings and with different
sets of measured species. Model-data-compliance and model
discrimination should be quantified by statistical tests.

In an international online survey for scientists working in Systems
Biology Klipp et al. (2007) evaluated the responses from 125
modelers and experimentalists concerning preferred modeling tools
and required features. Many researchers appreciated MATLAB as
a framework which can be extended with custom programs easily.
In general, they expected a good software to be easy to install and
use, flexible, fast and efficient, obtained for free, equipped with
powerful analysis methods and good graphics capabilities, and well
documented and SBML-compatible. PottersWheel is designed to
meet these requirements in the academic community setting. In
2006, it was released to the public as the first MATLAB toolbox
to provide real time, graphical user interface-based interactive
modeling including multi-experiment fitting with highly optimized
model integration. Since then, the experiences and needs of
numerous international users were incorporated into the software
resulting in a very stable and rich modeling framework. Integration
with the current version PW 1.6 is up to 900 times faster than with
MATLAB integrators.

Existing modeling software like the SBToolbox (Schmidt and
Jirstrand, 2006), the commercial MATLAB SymBiology toolbox,
or COPASI (Hoops et al., 2006), originate from the direct problem
where system properties are to be analyzed based on a given model
and on parameter values. PW, on the other hand, originates from
the inverse problem, where for existing data a model has to be
identified ((Tarantola, 2004)). This approach requires application of
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statistical concepts concerning calculation of confidence intervals
for calibrated parameters, identifiability analysis and statistical
tests for model discrimination and the model-data-compliance. In
addition, PW introduces a new approach to save experimental
settings within data files. After coupling a model to a dataset, the
experimental condition is translated into an external driving input
function. Optionally the SD of the measurements can be estimated.

Deterministic modeling of dynamical systems involves the
following steps:

(1) Model creation: Creation of one or more models being
systems of differential equations representing hypotheses
about a biological network.

(2) Fitting to experimental data: Automatically or manually
adjusting model parameters in normal or logarithmic space
until the distance between model trajectory and experimental
data points is minimized. Use of statistical tests to quantify
model-data-compliance.

(3) Model refinement: Changing the model structure to minimize
discrepancies between the fitted model and the experimental
data.

(4) Investigating the kinetic model properties: Comparing
systematically model trajectories for different parameter
values or input functions.

(5) Analysis of fitted parameter values: Identifiability, correlation
and confidence intervals of fitted parameter values.

(6) Model selection: Comparing competing models qualitatively
and based on statistical tests.

(7) Prediction and experimental verification: Generating
experimentally testable predictions for new system inputs or
parameter values.

(8) Saving of reports and workspace: Exchange of fits, reports
and stored workspaces with collaborators.

(9) Exchange of models: Saving of the final model in standardized
format, e.g. SMBL.

PW provides a comprehensive set of functions for each of these
steps within one framework. In this article, we present the key
functionalities of the toolbox, quantify their performance, and
discuss the novel implementation of important methodological
concepts concerning parameter identifiability, confidence intervals
and statistical tests for model validation and discrimination. Further
details and figures are provided in the Supplemental Material.

2 APPROACH

2.1 Workflow

Figure 1 illustrates the workflow of modeling with PW. Either a
biochemical reaction scheme is implemented by the modeler into a
PW model definition file, or an SMBL model (Finney and Hucka,
2003) is imported. Alternatively, a raw set of ordinary differential
equations (ODE) can be used to create a PW ODE model for which
the reaction network can optionally be reconstructed. Loading of
the model into the so-called repository list results in the compilation
of a C/FORTRAN MEX file. Then, the model can be used for
model visualization or methods of the direct problem, e.g. sensitivity
analysis. In order to approach the inverse problem, one or more
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Fig. 1. PW workflow as described in Section 2.1.

datasets have to be attached to the model either by simulation or
from an external data source. Optionally, the SD of the data points
can be estimated. Several model-data-couples can be combined for
multi-experiment fitting. Afterwards, a variety of fit-based analyses
are available investigating, for example, the identifiability and
confidence intervals of the calibrated parameters. Finally, each
analysis can be appended into an automatically generated report
saved as a html, doc or pdf file. The central graphical user interfaces
to operate within the workflow are the main PW window including a
list of model-data-couples (Supplementary, Fig. 1) and the so-called
Equalizer providing direct access to functionalities concerning the
inverse problem (Fig. 2).

2.2 Creating an apoptosis example model

A realistic, medium sized model with 13 species, 41 reactions,
and 13 kinetic parameters serves as an example to demonstrate
the functionalities of PW. The model has been suggested by
Legewie et al. (2006) and describes the feedback control of
caspase-3 and caspase-9 in the intrinsic apoptosis signaling pathway
(Supplementary, Fig. 3). The authors provided an SBML model

2038



PottersWheel

ﬁight button column: A
F1:Single fit, F2/3:Fit sequence
FB:Boosted fit

A: Animated time course

T: Switch time/stimulus domain
O:Figure overwriting (on/off)
Fit only x0, k, or s; Cancel fit
Save current values as fit

Single fit analysis
Residuals analysis

Fit scatter plots

(Fit sequence analysis

Standard deviation estimation
MOTA identifiability analysis

Chi-square landscapes
\Jrajectories of best fits Y,

Optimizers in normal/log parameter space:\
Direct search Levenberg-Marquardt
Trust region Simulated Annealing

Left slider: Fine tuning )
Right slider: Order of magnitude
Text box:  Parameter value

List box:  Selected parameter/

Save values for simulations
Reset/Disturb parameter values|

-} PW Cqualizer -- N = 136, Chisq - 167.764, Chisg/N = 1.23356, D = 8.17721

\Open input designer }
(Left button column: ) 1 a0 _J 3
n main PW window ]

Ope o dC‘ @ TrustRegion (og) - ;' - =

Arrange figures on screen (o= AT

Integrate and draw trajectories = () fizz)| 000861538 0.015542 211932¢-005 | 0.000

Show model graph C8_hinds_actives, ol Co_releases_PNIC3_act_via_CHN
3 B _ C3_act_via_CE  |C9_act C9_rele

Save current figures 1 C3_act_via_C9 ca_act C9_releases_) — |activeC

Selected slider for key control ) O [sim smlgg_ac_t i C9_releases )  |activeC3_bind: [activeC

Set of disturbed parameters JCRand. [ Reset ]t o s % ﬁmg-&;& .:cl‘:zgs-'eles éﬂfg

Set of fixed parameters | Distub_| activeC3_releases_X Aprod ¥ C9_prod ¥ X _prod

\[nformation for model & last fit) |[__info_J[_inpw | -Prod Vi< 3 £ > |4

Fig. 2. PW Equalizer. The PW Equalizer comprises 10 pairs of sliders. Each pair can be attached to one of the fitted parameters in the list box below the
slider pair. The left slider is used for fine-tuning and the right slider changes the magnitude of the selected parameter. Text boxes on the one hand reflect the
current parameter value and can on the other hand be used directly to specify a certain value. Thirty-three buttons and combo boxes provide direct access to

the most important functions concerning multi-experiment fitting and analysis.

which can be imported into PW. In order to investigate the increased
statistical power to discriminate competing model hypothesis and
to calibrate unknown parameters, we extended the model by
two driving input functions representing an externally specified
concentration of cyto-c and SMAC. The structure of the final model
definition file is explained in the supplement comprising also an
automatically generated model visualization.

2.3 Integration performance

During parameter calibration, the model trajectories have to be
calculated thousands of times until an optimal parameter setting
is found. Hence, high integration speed is a crucial prerequisite for
interactive dynamical modeling of experimental data. PW applies
the following strategy to meet these requirements:

(1) Use of fast and accurate FORTRAN integrators.

(2) The differential equations are saved and compiled as C MEX
files. If possible, the integrator, interface and model are
compiled into one single executable file.

(3) The merit function is dynamically generated with improved
numerical performance.

(4) Calculation of observables and residuals is also based on
dynamical C MEX files.

Currently, six FORTRAN integrators are supported by PW, being
described in Hairer and Wanner (1996). We use the MATLAB
interface of Ludwig (2006), which we extended in two cases to
increase speed by circumventing calls between integrator and the
model equations. Our modification improves the integration time
by an additional factor of 10-35. The integrators are RADAUS,
RADAU, SEULEX, DOP853, DOPRI5 and ODEX. The first

three integrators are applicable to stiff differential equations,
where the time-scales of the variables have huge differences
in their range. In order to compare the integration time and
accuracy for a given model, PW supports all seven MATLAB
integrators. A short description of each integrator can be found in
the Supplementary Material.

The right hand side of the differential equations including
algebraic equations, interpolation formulas and events is saved and
compiled as a C MEX file when a model is loaded into PW. For
the apoptosis model, this approach is 20 times faster than calling a
MATLAB ODE function. We compare the performance of the 13
integrators by:

(1) Total integration time.

(2) Accuracy, measured as the averaged absolute distance of the
integrated trajectory to a highly accurate integration with
RADAU with 10~ !! absolute and 1078 relative tolerance.

(3) Number of calls of the right hand side of the ODE system.
(4) Time per call of the right hand side.

The relative and absolute tolerances of the integration are usually
setto 1073 and 1076, respectively. The RADAU integrator is tested
with a variety of tolerances to illustrate the effect on integration time
and on the number of calls to the ODE and to serve as a gold standard
for the estimation of the integration accuracy. The integrations were
applied on a Macintosh laptop with Intel Core 2 Duo 2.4 GHz with
2 GB RAM.

Figure 3 compares in detail the integration time and deviation
for 23 different integration strategies. In summary, a compiled
DOPRIS including the ODE is approximately 900 times faster than
using the reference MATLAB odel5s with a MATLAB ODE. If
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Fig. 3. Integration time and accuracy. Left panel: the mean integration time of all 13 supported integrators with specified relative and absolute tolerance
(Trer, Taps) is displayed. The integrator either includes the ODE (Rows 1 and 2) or is attached to an ODE compiled as C MEX file or saved as a normal
MATLAB function. The reference is the MATLAB integrator ODE15s for stiff systems with a MATLAB ODE (last row, integration time 0.14 s, deviation
2% 10~%). DOPRIS5 for non-stiff systems is 919 times faster if the ODE is included (Row 1) and 26 times faster using a MEX ODE (Row 13). RADAUS, a
stiff integrator, is 162 times faster with included ODE (Row 2) and 11 times faster with a MEX ODE (Row 3) compared to the reference. Increasing RADAU
integration accuracy by 10> doubles the integration time (Rows 5—10). Right panel: integration with RADAU using high tolerances of 10~ and 10~ ! serves
here as a gold standard to estimate the accuracy of all integrators by quantifying the mean deviation between the calculated trajectories. RADAUS (tolerances
1073 and 107°, Row 2) is not only faster than ODEIS5s, but also five times more accurate.

the ODE is not compiled into the integrator executable, DOPRIS
is still 26 times faster. Using RADAUS that is applicable to stiff
systems, an integration time 160 (incl. ODE) or 11 (attached ODE)
times smaller than for the reference is achieved. Simultaneously,
RADAUS results in a five times smaller deviation than the reference
compared to the trajectory of the gold standard. Figure 6 of the
Supplementary Material compares the number of ODE calls and the
time per call.

2.4 Optimization performance
The x2 merit function which is optimized within PW to fit the model

y=y(t;p) is
N o v(fe 2
xz(p>=2<w> , (1)

i=1 i
with y; being data point i with SD o; and y(#;;p) being the
model value at time point i for parameter values p. For normally
distributed measurement errors, this corresponds to a Maximum
Likelihood estimation (see Supplementary Material, Section 9.1).
Five implementations of optimizers are available: direct search, trust
region, Levenberg—Marquardt, genetic algorithm and simulated
annealing. The direct search method (MATLAB; (Lagarias et al.,
1998)) is only useful for illustration purposes or small models.
The trust region (MATLAB optimization toolbox; (Coleman and
Li, 1996)) and Levenberg—Marquardt (Nielsen, 2006) algorithms
are powerful deterministic least-square optimizers. The simulated
annealing (Ingber, 1989) and genetic algorithms (MATLAB genetic
algorithm toolbox; (Goldberg, 1989)) are stochastic approaches able

to handle local minima, but requiring more time. We quantify the
accuracy of the optimization by the average deviation D of the np
fitted parameters to the true parameters:

n : )
1 4 1 1
D:Zmax(p.ﬁt,ptrue) )

i i
p i=1 Ptrue Pt

A deviation of value 1 indicates a perfect fit. A higher value
indicates that on average the fitted value is D times higher than
the true one or visa versa. Figure 4 exemplifies the result for the
Levenberg—Marquardt algorithm. The initial guess for all parameters
is the default value 0.1 corresponding to a mean deviation over
1000. After 598 function calls the deviation decreases to 1.0994,
i.e. the parameters are on average only 10% higher or lower
than the true values. This performance is based on the optimizer
properties and on the PW framework allowing to fit in logarithmic
parameter space, because the true parameter values span five orders
of magnitude. Table 1 compares the results of Levenberg—Marquardt
with trust region, simulated annealing, direct search and genetic
algorithm. Optimization in normal parameter space was in no case
successful, stressing the importance of fitting functionalities in
logarithmic space. Please see the Supplementary Material for a
detailed description of the performance analysis.

2.5 Multi-experiment fitting

A key functionality of PW is multi-experiment fitting, where
several datasets are fitted simultaneously. The datasets should derive
preferably from different experimental conditions, e.g. different dose
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Fig. 4. Optimization performance of Levenberg-Marquardt. (A): Deviation
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red) reaches 1.0994 after around 240 iterations. After the final iteration, the
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more than 30% from the true value. (B): Parameter values during fitting. (C):
x2-value during fitting and fit settings.

Table 1. Optimization performance

Optimizer Deviation  Correct pars.  Fun. calls  Limits
Levenberg—Marquardt  1.0994 13/13 598 107
Trust region 1.0995 13/13 2184 107
Simulated annealing 12.62 12/13 10323 400
Direct search 165807 5/13 7651 100
Genetic algorithm 188 3/13 40000 103

Deviation of 1 corresponds to a perfect fit. Correctly determined parameters have a
deviation below 30%. The required function calls are proportional to the fitting time.
Limits around the true value are used during calibration stressing the high performance
of the Levenberg—Marquardt and trust region optimizers.

levels, pulses or ramp stimulations. The externally changed species,
e.g. the ligand in models of signal transduction pathways, is called
driving input. Figure 5 illustrates the power of multi-experiment
fitting when applied to the apoptosis model. If only one experiment
is available for model fitting with four observables and continuous
stimulation by cyto-c and SMAC, the calibrated parameters possess
a broad distribution with a relative SD often above 100% —
they share non-identifiabilities. Including additional experiments
with different combinations of pulsed and continuous stimulations
resolves the non-identifiability for many parameters. In order to
identify groups of parameters which are involved in a functional
relationship, a fit sequence analysis reveals linear correlated pairs
of parameters (see Supplementary Material, Fig. 16). Applying the
incorporated MOTA algorithm ((Hengl er al., 2007)), also non-
linear dependencies between an arbitrary number of parameters
are detected. Altogether, nine parameters are affected by a non-
identifiability, distributed in six groups with three to five parameters.
Please, see the Supplementary Material for further details.

2.6 Confidence intervals

Calculation of confidence intervals on the estimated parameter
values requires that the parameters are identifiable. If a Maximum
Likelihood estimator is used to calibrate the parameters, the
confidence intervals can be determined based on the Hessian of
the objective function at the optimum (Marsili-Libelli ez al., 2003).
Since PW uses a weighted least-square optimization, this is the case
for normally distributed errors. Otherwise, a Monte-Carlo approach
is preferable, where new datasets have to be generated based on
the fitted model and an adequate observation error model (Press
et al., 1999). PW supports both strategies, which are described
in the Supplementary Material. The Supplementary Figure 20
demonstrates the difference between a normal fit sequence using
the same dataset for fitting and a Monte-Carlo fit sequence.

2.7 Statistical tests

Two questions arise when experimental data is modeled:

(1) Is the model statistically compliant with the data?

(2) If two models are compliant with the data, which one should
be taken?

In order to answer the firs question, usually the goodness-of-fit is
determined, i.e. the distance between model and data is related to
the expected value if the models were true: a Xz—test is applied
(Press et al., 1999). For the second question, it is important to
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parameter distribution decreasing the relative uncertainty from over 100% to below 2% for 11 of 17 parameters (D). Note that the distribution represented
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distributions.

verify whether the models are nested, i.e. whether one model is an
extension of the other model. In this case a likelihood-ratio test with
high statistical power can be applied (Lehmann, 1986). Criteria like
an Information Criterion (AIC) and Bayesian information criterion
(BIC) are suggested to establish a ranking of models (Akaike, 1973;
Schwartz, 1978). In the Supplementary Material, the methods are
described in more detail and are applied to a reduced and enlarged
apoptosis model, showing that the reduced model is significantly
not compliant with the data. The extended model by construction
sufficiently describes the data with a lower x 2_value than the ori ginal
model. However, a likelihood ratio test reveals that the improvement
is statistically not significant. The involved statistical functions are
available in the PW framework.

2.8 Advanced modeling techniques

We shortly summarize which further modeling techniques are
available within PW. Please see the Supplementary Materials for
detailed descriptions. Model families allow for creating basis and
dependent models in order to reduce redundant work, when the basis
model is changed. Rules, start value assignments and events are

algebraic equations evaluated during or before integration or when
certain conditions are fulfilled. Basal states depending on parameter
values require either sufficient integration before stimulation or
should be set directly by start value assignments. Rule-based
modeling is useful to cope with combinatorial complexity. Derived
variables and parameters help to focus on important subsystems or
to analyze functions of parameters. Soft constraints allow to include
implicit algebraic equations or inequalities into the optimization.
Delay reactions, based on the linear chain trick (MacDonald, 1976)
are important for the modeling of black box elements, e.g. the
time lag between translation and transcription. We determined the
SD of the delay t by means of Laplace transformation, which
is described in the Supplementary Material. Residual analysis
provides an additional means to validate the model-data-compliance
based on distribution and auto-correlation properties. Automatic
visualization is supported for the complete network or subsections.
Network reconstruction can be applied to a set of differential
equations with unavailable reaction scheme. A mapping dialog
simplifies the coupling of model observation functions to external
data files. Estimation of SDs for experimental data is based on
smoothing splines. Powerful reporting facilities, means to store the
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workspace and saving of a model into the standard SBML format
allows for efficient work and exchange of modeling results with
collaborators.

3 DISCUSSION

PW is a comprehensive framework for data-based modeling in
Systems Biology comprising multi-experiment fitting in normal and
logarithmic parameter space. This is a crucial approach for model
calibration in Systems Biology, where parameters are often spread
over several orders of magnitude and systems can be observed
only partially with relatively large measurement noise. Hessian- and
Monte-Carlo-based calculation of confidence intervals are necessary
to assess the possible range of the true parameter values.

PW integrates statistical tests for model-data-compliance,
model discrimination and identifiability analysis for non-linear
relationships between an arbitrary number of parameters. In order
to resolve non-identifiabilities, we developed a user interface
where characteristics of driving input functions corresponding to
experimental conditions can be changed in real time. This could
be applied in the context of experimental design as suggested in
Maiwald et al. (2007) and Apgar et al. (2008). A variety of advanced
modeling techniques is supported, as for example, consideration
of implicit algebraic equations or inequalities during parameter
calibration.

PW is a high-performance scientific yet user-friendly and
customizable modeling framework. The program is tested for
Windows, Linux and Mac systems and requires no special MATLAB
toolboxes. PW is highly optimized through replacing time-crucial
functions by new developed and existing C or FORTRAN code
including just-in-time compilation. This increases integration speed
up to 900 times compared to MATLAB integrators for a realistic
benchmark system. We incorporated a fast Levenberg—Marquardt
algorithm resulting in parameter calibration 3000 times faster than
using MATLAB with the optimization toolbox. This is a crucial
requisite for interactive real-time data-based modeling in Systems
Biology and beyond.
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