
Dynamical Modeling and Multi-Experiment Fitting with
PottersWheel – Supplement

Thomas Maiwald and Jens Timmer
Freiburg Center for Data Analysis and Modeling

University of Freiburg, Germany
maiwald@fdm.uni-freiburg.de

June 10, 2008

Abstract

This supplement provides detailed information about the functionalities of the Potters-
Wheel toolbox as described in the main text. For further information please use the
documentation which is available at www.PottersWheel.de.

1

Contents

1 The main graphical user interfaces 4
1.1 Main window . 4
1.2 Equalizer . 5

2 Creating an apoptosis example model 6
2.1 The model definition file . 6

2.1.1 Header . 7
2.1.2 Dynamic variables . 7
2.1.3 Reactions . 7
2.1.4 Dynamic parameters . 7
2.1.5 Algebraic equations (rules) . 7
2.1.6 Observables . 8
2.1.7 Driving input functions . 8

2.2 Graphical visualization of the reaction network 8

3 Integration performance 10
3.1 Stiff differential equations . 10
3.2 FORTRAN integrators . 10
3.3 MATLAB integrators . 11
3.4 Dynamical compilation of ODE as C MEX file 11
3.5 Comparing integration time and accuracy 11

4 Optimization performance 14
4.1 Fitting in logarithmic parameter space . 15
4.2 Hybrid stochastic & deterministic approach 15
4.3 Direct search . 16
4.4 Trust region . 17
4.5 Levenberg-Marquardt . 18
4.6 Simulated annealing . 19
4.7 Genetic algorithm . 20

5 Driving input 21
5.1 Analytic interpolation . 21
5.2 Smoothing spline interpolation . 21
5.3 Designing new driving inputs . 21

6 Multi-Experiment Fitting 22
6.1 Local and global parameters . 23
6.2 Application to the apoptosis model . 23

7 Fit and model analysis 24
7.1 Fit sequence analysis . 24
7.2 Parameter identifiability . 26
7.3 System properties in case of non-identifiabilities 26
7.4 Sensitivity Analysis . 27
7.5 Stimulus dependent view . 29
7.6 Residual analysis . 29

2

8 Confidence intervals 30
8.1 The χ2 landscape . 30
8.2 Hessian-based confidence intervals . 30
8.3 Monte-Carlo approach . 32
8.4 Comparison of confidence intervals . 32

9 Statistical tests 33
9.1 Maximum Likelihood approach . 33
9.2 χ2 test . 33
9.3 Likelihood ratio test for nested models . 34
9.4 AIC and BIC . 35

10 Advanced modeling techniques 36
10.1 Model families . 36
10.2 Algebraic equations: Rules, start value assignments and events 36
10.3 Basal states . 36
10.4 Naming conventions . 37
10.5 Rule based modeling for combinatorial complexity 37
10.6 Derived variables and parameters . 38
10.7 Soft constraints . 38
10.8 Delay reactions . 38
10.9 Network reconstruction . 39
10.10Subnetworks . 39
10.11Model refinement . 39

11 Experimental data 40
11.1 Mapping dialog . 40
11.2 Calculation of standard deviations . 40

11.2.1 Direct specification . 40
11.2.2 Error-model-based . 40
11.2.3 Smoothing-spline-based . 41

12 Reports, workspace, and SBML 42

A System requirements and the PottersWheel API 43

B Standard deviation for linear-chain-trick 43

3

Figure 1: The PottersWheel main user interface.

1 The main graphical user interfaces

All key functionalities of PottersWheel are available by command line and via 30 graph-
ical user interfaces. The mostly used interfaces are the main window comprising a list
of available models and data sets, and the equalizer including sliders to change model
parameters in real time. Both interfaces share a common set of keyboard shortcuts.

1.1 Main window

Fig. 1 displays the PottersWheel main user interface. Below the menu, 24 buttons provide
direct access to the most important functions concerning model, data, and fits handling
and to open other interfaces like the equalizer, the outliers dialog, or the report designer.
Checkboxes control the set of shown graphs: Driving input functions, observables, dy-
namic and/or derived variables.

Two list boxes represent the current working state. The upper list, also called the
repository list, displays all loaded models. To each model, one or more simulated or
external data sets may be attached. The currently active data set can be changed in the
’Data & Fits’ dialog (see button in second column). In order to fit a model to a data
set, they have to be combined to the lower list box by pressing the ’Combine’ button.
For multi-experiment fitting, several model-data-couples can be selected before they are
combined. The models can be fitted preferably after automatic arranging of all figures.
Alternatively, the equalizer can be started to select a certain optimizer and parameter
space before fitting or to manually adjust parameter values.

4

Fit sequence analysis
Single fit analysis
Residuals analysis
Standard deviation estimation
MOTA identifiability analysis
Fit scatter plots
Chi-square landscapes
Trajectories of best fits

Left button column:
Open main PW window
Arrange figures on screen
Integrate and draw trajectories
Show model graph
Save current figures
Selected slider for key control
Set of disturbed parameters
Set of fixed parameters
Information for model & last fit

Right button column:
F1: Single fit, F2/3: Fit sequence
FB: Boosted fit
A: Animated time course
T: Switch time/stimulus domain
O: Figure overwriting (on/off)
Fit only x0, k, or s; Cancel fit
Save current values as fit
Save values for simulations
Reset/Disturb parameter values
Open input designer

Optimizers in normal/log parameter space:
Direct search Levenberg-Marquardt
Trust region Simulated Annealing

Left slider: Fine tuning
Right slider: Order of magnitude
Text box: Parameter value
List box: Selected parameter

Figure 2: The PottersWheel Equalizer.

1.2 Equalizer

The PottersWheel Equalizer (Fig. 2) comprises 10 pairs of sliders. Each pair can be
attached to one of the fitted parameters in the list box below the slider pair. The left
slider is used for fine-tuning and the right slider changes the magnitude of the selected
parameter. Text boxes on the one hand reflect the current parameter value and can on
the other hand be used directly to specify a certain value.

The chosen optimizer (direct search, trust region, Levenberg-Marquard, or simulated
annealing, see section 4) can be selected in normal or logarithmic parameter space. The
’Go’ button starts an analysis, as in the example of Fig. 2 a fit sequence analysis based on
80% of the best fits. ’F1’ fits the data set one time. ’F2’ and ’F3’ apply a fit sequence (see
section 7.1), and ’FB’ applies a hybrid fitting including a deterministic and a stochastic
optimizer (see section 4.2). ’A’ opens an animation of the time course, ’T’ switches
between time-domain and stimulus domain, and ’O’ turns overwriting of figures on and
off which is useful to compare trajectories for different parameter settings in one figure.
The buttons ’x0’, ’k’, and ’s’ fit only start values x0, dynamical parameters k or scaling
parameters s instead of all parameters as specified in the fit settings. ’Input’ starts the
driving input designer where the effect of new experimental settings, e.g. pulsed or ramp
stimulations can be investigated.

5

cyto c Apaf-1 Casp9 Casp3

Casp8

SMAC XIAP

Death receptorsStress

Bax, Bid

‘Intrinsic pathway’

Mitochondria

Apoptosis

‘Extrinsic
pathway’

Figure 3: The apoptotic signaling pathway. Legewie et al. developed a detailed mathemat-
ical model for the gray colored subsystem of the apoptotic signaling pathway, which we use to
demonstrate the functionalities of PottersWheel. We included the effect of cyto-c and SMAC as
externally given driving input functions, in order to demonstrate the increased statistical power
when multi-experiment fitting is applied under different experimental conditions corresponding
to different characteristics of the cyto-c and SMAC time courses (Picture by S. Legewie).

2 Creating an apoptosis example model

A realistic medium sized model with 13 species, 41 reactions, and 13 kinetic parameters
serves as an example to demonstrate the functionalities of PottersWheel. The model has
been suggested by Legewie et al. (2006) and describes the feedback control of caspase-
3 and caspase-9 in the intrinsic apoptosis signaling pathway (see Fig. 3). In order to
investigate the increased statistical power to discriminate competing model hypothesis
and to calibrate unknown parameters, we extended the model by two external driving
functions representing an externally specified concentration of cyto-c and SMAC.

2.1 The model definition file

The systems biology markup language (SBML) has been designed to enable a standardized
way to express, store, and exchange kinetic models based on reaction networks (Finney
and Hucka, 2003). The supplement of Legewie et al. contains an SBML 2 level 1 file
with all species and reactions of the system. Via the PottersWheel GUI or pwImportSBML
the model can be imported into a PW model definition file, which is constructed as a
Matlab function and contains the reaction network, initial values for the system species,
parameter values, algebraic equations, observables, and driving input functions. In order
to take advantage from the PottersWheel naming conventions (compare section 10.4), we
renamed the original species. The sections of the resulting file are displayed in excerpts
in the following. The PottersWheel documentation at www.PottersWheel.de contains a
detailed description of model definition files and the utilized help functions like pwAddR

6

for adding of a reaction. The complete model is available on the same web-site.

2.1.1 Header

Since a PottersWheel model definition file is constructed as a MATLAB function, it has
to start with the function keyword. Afterwards an empty model m is created which will
be filled in the following paragraphs.

function m = Legewie_Apoptosis()

m = pwGetEmptyModel();

2.1.2 Dynamic variables

The dynamic variables section specifies the initial value for all species wich are
non-zero at t = 0. Other species are collected automatically from the reactions
paragraph.

% m=pwAddX(m, ID, startValue)
m=pwAddX(m, ’activeA’, 20);
m=pwAddX(m, ’C9’, 20);

2.1.3 Reactions

For each reaction reactants, products, modifiers such as enzymes, parameters, and
the reaction kinetics are specified. In the rate signature, ri, pi, mi, and ki are
placeholders for the i-th reactant, product, modifier, and parameter of the current
reaction, respectively. This way, the rate signature does not change from reaction
to reaction as long as the underlying kinetics is the same. Reactions 1 and 2 read:

%pwAddR(m, reactants, products, modifiers,type,options,rateSignature,params)
m=pwAddR(m,{’C9’,’X’}, {’C9_X’}, {}, ’C’, [], ’k1*r1*r2’, {’C9_binds_X’});
m=pwAddR(m,{}, {’activeA’},{}, ’C’, [], ’k1’, {’A_prod’});

2.1.4 Dynamic parameters

All dynamic parameters have to be specified if their value or initial guess for fitting
is known. Otherwise, they will be set to the default value of 0.1.

% m=pwAddK(m,ID, value)
m=pwAddK(m,’C9_binds_activeA’, 0.002);
m=pwAddK(m,’C9_releases_activeA’, 0.1);

2.1.5 Algebraic equations (rules)

The apoptosis model contains three algebraic equations, where three parameters
have a fixed relationship to other parameters. This can be expressed by a rule (see
section 10.2):

% m=pwAddRule(m,lhs, reactants, parameters, ruleSignature)
m=pwAddRule(m,’C3_act_via_activeA_C9’,{},{’C3_act_via_C9’},’70*k1’);

7

2.1.6 Observables

Observables are the interface between a mathematical model and experimental mea-
surements. Usually, the dynamical system is only partially observed and some
species are only measurable as a sum. For example Western blotting measurements
do not distinguish between free and XIAP bound caspase-3, since the complexes
are denatured before quantification. Hence, the sum ’C3 + C3 X’ is measured as
’C3 obs’. A default error model can be specified in order to estimate the standard
deviation of measurements (see section 11.2). We here use 10% relative and 10%
absolute error (relative to the maximum of the measured species).

% m=pwAddY(m,rhs, ID, scalingParameter, errorModel)
m=pwAddY(m,’activeA’ ,’activeA_obs’,’scale_activeA_obs’,’0.1*y+0.1*max(y)’);
m=pwAddY(m,’C3+C3_X’,’C3_obs’, ’scale_C3_obs’, ’0.1*y+0.1*max(y)’);

2.1.7 Driving input functions

In order to drive the dynamical system, input functions are required representing
the experimental setting. In the below example, the CytoC concentration is char-
acterized as a step function jumping at time point 0 to a value of 2. The SMAC
concentration on the other hand is given as a pulsed stimulation: At time point 0
the concentration jumps to 2 and after 10 minutes it returns to 0. Combination
of different experimental settings, i.e. different driving input functions, is a crucial
aspect in multi-experiment fitting (see sections 5 and 6).

% m = pwAddU(m, ID, uType, uTimes, uValues)
m = pwAddU(m, ’CytoC’, ’steps’, [-1 0], [0 2]);
m = pwAddU(m, ’SMAC’, ’steps’, [-1 0 10], [0 2 0]);

2.2 Graphical visualization of the reaction network

The chemical reaction network is automatically visualized using the graphviz en-
gine (Gansner and North, 2000). Reaction types are color coded. In large networks,
sub-systems comprising all reactions related to a specific species can be displayed
to allow for error checking.

Fig. 4 illustrates the reaction network of the apoptosis model. The external
driving input functions, cyto-c and SMAC, are drawn as yellow octagons. Other
species are blue ellipses. Blue arrows correspond to reactions with not more than one
reactant and one product, whereas green arrows reflect multi-molecular reactions.
Black arrows represent enzymatically triggered reactions, where the effect of the
enzyme, i.e. modifier is dashed in red.

8

CytoC

SMAC

activeA

A

6 25

activeA_C9

1

30

C9

26

activeA_activeC9_X

2

37

activeC9_X

34

activeA_C9_X

3

29

C9_X

28

activeC9

35

activeA_activeC9

4

36

24

5

X

27

inhibitedX

7

8

9

activeC3

32

10 11

12

13

14

C3

31

1516

17

18

activeC3_X

19

33

20

21

22

23

Figure 4: Automatic model visualization. In the reaction network of the blue colored
system species, green and brown triangles represent their sources and sinks, respectively. Blue
arrows correspond to reactions with not more than one reactant and one product, whereas green
arrows reflect multi-molecular reactions. Black arrows represent enzyme-catalyzed reactions,
where the effect of the enzyme, i.e., the modifier, is indicated by a red dashed line. Species
that are manipulated by experimental conditions (e.g. by extracellular stimulation), so called
driving inputs, are displayed as yellow octagons.

9

3 Integration performance

During parameter calibration, the model trajectories have to be calculated thou-
sands of times until an optimal parameter setting is found. Hence, high integration
speed is a crucial prerequisite for interactive dynamical modeling of experimental
data. PottersWheel applies the following strategy to meet these requirements:

1. Use of fast and accurate FORTRAN integrators.

2. The differential equations are saved and compiled as C MEX files. If possible,
the integrator, interface, and model are compiled into a single executable.

3. The merit function of the optimizer is dynamically generated containing no
overhead or slow MATLAB functions like eval statements.

4. Calculation of observables or residuals is also based on dynamical C MEX files.

In the following, we describe the integrators and compare their performance
with MATLAB built-in integrators, which can used interchangeably within Potters-
Wheel. A total number of 13 integrators is currently available. Using the function
pwCompareIntegrators, the user can determine the most appropriate one for the
modeling problem at hand.

3.1 Stiff differential equations

Dynamical systems including many chemical reaction networks may be stiff, i.e. the
time-scales of the variables can have huge differences in their range. Not all integra-
tors can handle this situation. An indication of stiffness are parameter values of dif-
ferent order of magnitude. Within PottersWheel, the function pwCheckForStiffness

detects this property. Even if the differential equations of the model are not stiff for
the initial or fitted parameter values, during parameter calibration regions of the
parameter space where the system behaves stiff may be crossed.

3.2 FORTRAN integrators

Currently, six FORTRAN integrators are supported by PottersWheel, being de-
scribed in Hairer and Wanner (1996). We use the MATLAB interface of Ludwig
(2006), which we extended in two cases to reduce overhead by circumventing calls
between integrator and the model equations. Our modification improves the integra-
tion time by an additional factor of 10-35 and requires either FORTRAN compilers
for Linux/Mac or the lcc compiler for Windows computers. The integrators are:

1. RADAU5: Implicit Runge-Kutta method of order 5 with dense output.

2. RADAU: Implicit Runge-Kutta method of variable order, switching automat-
ically between orders 5, 9, and 13.

3. SEULEX: Extrapolation method based on linearly implicit Euler method.

4. DOP853: Explicit Runge-Kutta method of order 8(5,3) with dense output of
order 7.

10

5. DOPRI5: Explicit Runge-Kutta method of order 5(4) with dense output of
order 4.

6. ODEX: Extrapolation method (GBS) with dense output.

Integrators 1-3 are suitable for stiff problems.

3.3 MATLAB integrators

All MATLAB integrators can be used within PottersWheel:

1. ode45: Explicit Runge-Kutta (4,5), Dormand-Price. One-step solver requiring
only the solution at the preceding time point (Dormand and Prince, 1980).

2. ode15s: Variable order solver based on the numerical differentiation formulas
(NDFs). Multi-step solver (Shampine and Reichelt, 1997; Shampine et al.,
1999).

3. ode23: Explicit Runge-Kutta (2,3), Bogacki and Shampine. One-step solver
(Bogacki and Shampine, 1989).

4. ode23s: Modified Rosenbrock of order 2. One-step solver (Shampine and Re-
ichelt, 1997).

5. ode23t: Implementation of the trapezoidal rule (Shampine et al., 1999).

6. ode23tb: Implementation of TR-BDF2, an implicit Runge-Kutta formula with
a first stage that is a trapezoidal rule step and a second stage that is a backward
differentiation formula of order 2 (Shampine and Hosea, 1996; R. E. Bankand
W. C. Coughran et al., 1985).

7. ode113: Variable order Adams-Bashforth-Moulton PECE solver. Multi-step
solver (Shampine and Gordon, 1975).

Integrators ode15s, ode23s and ode23tb are applicable to stiff problems.

3.4 Dynamical compilation of ODE as C MEX file

The right hand side of the differential equations including algebraic equations, in-
terpolation formulas and events is saved and compiled as a C MEX file when a
model is loaded into PottersWheel. For illustration purpose and to compare the
numerical performance, the model can also be saved as a MATLAB file. For the
example model, calling the C MEX file is 20 times faster than calling the MATLAB
function.

3.5 Comparing integration time and accuracy

We compare the 13 integrators on the basis of the medium sized apoptosis example
model comprising 13 species and 41 reactions. Their performance was determined
by four criteria:

1. Total integration time

11

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

ODE15s, Matlab ODE (0.001, 1e−06)
ODE15s, MEX ODE (0.001, 1e−06)
ODE113, MEX ODE (0.001, 1e−06)
ODE23tb, MEX ODE (0.001, 1e−06)

ODE23t, MEX ODE (0.001, 1e−06)
ODE23s, MEX ODE (0.001, 1e−06)
ODE23, MEX ODE (0.001, 1e−06)
ODE45, MEX ODE (0.001, 1e−06)

ODE45, Matlab ODE (0.001, 1e−06)
ODEX, MEX ODE (0.001, 1e−06)

DOPRI5, MEX ODE (0.001, 1e−06)
DOPRI853, MEX ODE (0.001, 1e−06)

SEULEX, MEX ODE (0.001, 1e−06)
RADAU, MEX ODE (1e−08, 1e−11)
RADAU, MEX ODE (1e−07, 1e−10)
RADAU, MEX ODE (1e−06, 1e−09)
RADAU, MEX ODE (1e−05, 1e−08)
RADAU, MEX ODE (0.0001, 1e−07)

RADAU, MEX ODE (0.001, 1e−06)
RADAU5, Matlab ODE (0.001, 1e−06)

RADAU5, MEX ODE (0.001, 1e−06)
RADAU5 incl. ODE (0.001, 1e−06)
DOPRI5 incl. ODE (0.001, 1e−06)

reference
1.39

1.34
1.27

1.09
1.02

3.66
4.35

1.63
19.02

26.14
17.48

9.41
5.68

6.58
8.07

9.67
10.52
10.85

1.02
10.88

162.21
918.79 times faster than reference (ODE15s, Matlab ODE)

Integration time [sec]
0 2 4 6 8 10 12 x 10

−4

reference
1

0.56
0.23

0.25
0.16

0.32
6.57
6.57

0.26
0.74

0.37
0.17

NaN (RADAU 1e-08, 1e-11 is here the gold standard)
3007.75
1076.99
374.07
112.88

5.31
5.31
5.31
5.31

0.74 times more accurate than reference (ODE15s)

Absolute deviation from RADAU Integration (1e−8, 1e−11)

Integration deviationIntegration time

Figure 5: Integration time and accuracy. Left: The mean integration time of all 13
supported integrators with specified relative and absolute tolerance is displayed. The integrator
either includes the ODE (rows 1 and 2) or is attached to an ODE compiled as C MEX file or
saved as a normal MATLAB function. The reference is the integration time using MATLAB
integrator ODE15s for stiff systems with a MATLAB ODE (ca. 0.1 seconds, last row). DOPRI5
for non-stiff systems (first row) is 919 times faster if the ODE is included, else 26 times faster
using a MEX ODE (row 13). RADAU5, a stiff integrator, is 162 times faster (second row)
with included ODE and 11 times faster with a MEX ODE compared to the reference. Calling
RADAU with increasing integration accuracy leads to a slightly longer integration time. Right:
Integration with RADAU using high tolerances of 10−8 and 10−11 serves here as a gold standard
to estimate the accuracy of all integrators by quantifying the mean deviation between the
calculated trajectories. RADAU5 (10−3, 10−6)(row 2) is not only faster than ODE15s, but also
5 times more accurate.

12

0 100 200 300 400 500 600 700 800

ODE15s, Matlab ODE (0.001, 1e−06)
ODE15s, MEX ODE (0.001, 1e−06)
ODE113, MEX ODE (0.001, 1e−06)
ODE23tb, MEX ODE (0.001, 1e−06)

ODE23t, MEX ODE (0.001, 1e−06)
ODE23s, MEX ODE (0.001, 1e−06)
ODE23, MEX ODE (0.001, 1e−06)
ODE45, MEX ODE (0.001, 1e−06)

ODE45, Matlab ODE (0.001, 1e−06)
ODEX, MEX ODE (0.001, 1e−06)

DOPRI5, MEX ODE (0.001, 1e−06)
DOPRI853, MEX ODE (0.001, 1e−06)

SEULEX, MEX ODE (0.001, 1e−06)
RADAU, MEX ODE (1e−08, 1e−11)
RADAU, MEX ODE (1e−07, 1e−10)
RADAU, MEX ODE (1e−06, 1e−09)
RADAU, MEX ODE (1e−05, 1e−08)
RADAU, MEX ODE (0.0001, 1e−07)

RADAU, MEX ODE (0.001, 1e−06)
RADAU5, Matlab ODE (0.001, 1e−06)

RADAU5, MEX ODE (0.001, 1e−06)
RADAU5 incl. ODE (0.001, 1e−06)
DOPRI5 incl. ODE (0.001, 1e−06)

reference
x 1

x 1.14
x 1.82

x 1.4
x 6.75

x 1.17
x 1.37
x 1.37

x 1.75
x 1.26

x 1.96
x 3.42

x 5.66
x 4.92

x 3.98
x 3.37

x 2.99
x 3.05
x 3.05
x 3.05

Number of ODE calls

ODE calls per Integration

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

reference
17.55
18.13
19.89
22.63
17.75

21.92
19.21

0.96
22.18
20.3
22.59
19.03
21.59
19.78
17.73
19.14
18.86
19.87

0.99
19.56

Time per ODE call [sec]

Time for calling the ODE

ODE part of integrator executable ODE part of integrator executable

Figure 6: ODE calls per integration. Left: RADAU5 with external ODE file calls the ODE
3 times more often than the reference integrator, ODE15s, leading to a 5 times higher accuracy
(see Fig. 5). The fast versions DOPRI5 and RADAU5 including the ODE have not an external
call to the right hand side. Right: Using a MATLAB function for the ODE takes approximately
20 times more time than a compiled C MEX ODE.

2. Number of calls of the right hand side of the ODE system

3. Time per call of the right hand side

4. Accuracy, measured as the averaged absolute distance of the integrated tra-
jectory to a highly accurate integration with RADAU with 10−11 absolute and
10−8 relative tolerance.

The relative and absolute tolerances of the integration are usually set to 10−6

and 10−3 respectively. Only the RADAU integrator is tested with a variety of tol-
erances, on the one hand to illustrate the effect on integration time and on number
of calls to the ODE and on the other hand to serve here as a gold standard for the
estimation of the integration accuracy. The integrations were applied on a Macin-
tosh laptop with Intel Core 2 Duo 2.4 GHz with 2 GB RAM.

In summary, a compiled DOPRI5 including the ODE is approximately 900 times
faster than using the reference MATLAB ode15s with an ODE as MATLAB or MEX
file. If the ODE is not compiled into the integrator executable, DOPRI5 is still 26
times faster. Using RADAU5 which is also applicable to stiff systems, reaches an
integration time 160 (incl. ODE) or 11 (attached ODE) times smaller than for the
reference. Simultaneously, RADAU5 reaches a 5 times smaller deviation than the
reference compared to the trajectory of the gold standard.

13

4 Optimization performance

The χ2 merit function which is optimized within PottersWheel to fit the model
y = y(t; p) is

χ2(p) =
N∑
i=1

(
yi − y(ti; p)

σi

)2

, (1)

with yi being data point i with standard deviation σi and y(ti; p) being the model
value at time point i for parameter values p. This setting belongs to the group
of non-linear least square problems. If the measurement errors are normally dis-
tributed, the minimization of the weighted least-square error corresponds to ap-
plying a Maximum Likelihood estimator for the unknown parameters (see section
9.1). The PottersWheel documentation provides a short introduction into numeri-
cal optimization based on the book of Nocedal and Wright (1999). The χ2 value is
under the null hypothesis of a data compliant model with identifiable parameters
distributed like a χ2 distribution with f = N−np degrees of freedom. Unidentifiable
parameters increase the degrees of freedom. The expectation value of a χ2 distri-
bution equals to its degrees of freedom. Therefore, we display the normalized value
χ2/N . A value larger than 1 indicates that the model with the current paramter
values can not explain the experimental data sufficiently. Section 9 discusses in
more detail how statistical tests can be applied to quantify the model validity.

Currently, five implementations of optimizers are available within PottersWheel:
Direct search, trust region, Levenberg-Marquardt, genetic algorithm, and simu-
lated annealing. The direct search method is only useful for illustration purposes
or small models. The trust region and Levenberg-Marquardt algorithms are pow-
erful deterministic least-square optimizers. The simulated annealing algorithm is
as a stochastic approach able to handle local minima, but requires more time. We
analyse the performance of the genetic algorithm to demonstrate that it is not suit-
able for model fitting. We quantify the accuracy of the optimization by the average
deviation D of the np fitted parameters to the true parameters:

D =
1

np

np∑
i=1

max

(
pifit
pitrue

,
pitrue
pifit

)
(2)

A value of 1 indicates a perfect fit. A higher value indicates that on average the
fitted value is D times higher than the true one or visa versa. As the next sub-
sections demonstrate, only the trust region and Levenberg-Marquardt algorithms
are able to calibrate the parameters of an identifiable apoptosis model with 13 ob-
servables and low noise until the parameter deviation is below 10%. For this, the
Levenberg-Marquardt routine requires ∼ 600 function calls and the trust region
approach 2200. The direct search method has, as an unconstrained optimizer, a
very high deviation of 16,000,000% after 8000 function calls. Simulated annealing
requires 10,000 function calls to reach a deviation of 1260%, which however is only
based on the deviation of one parameter. The genetic algorithm results in a devia-

14

Figure 7: Local minima. Three parameters (C9 act, C9 releases X, activeC3 binds X) were
changed systematically in logarithmic space. The figure shows all parameter combinations with
the same χ2/N value of 2.18. If the initial guess for a deterministic optimizer is set within the
upper right manifold, the global optimum located in the lower left manifold can not be reached:
a stochastic optimizer is required. The figure can be reproduced with pwChiSquareMan.

tion of 18800% after 40,000 function calls.

Before fitting, the parameters were set to the default value of 0.1 and the limits of
possible parameter values were set to 107ptrue and ptrue/107 for the trust region and
Levenberg-Marquardt algorithms, to 100ptrue and ptrue/100 for the direct search, to
1000ptrue and ptrue/1000 for the direct search, and 400ptrue and ptrue/400 for the
simulated annealing. If the default value of 0.1 was not inside the permitted range
of parameter values, it was shifted accordingly.

4.1 Fitting in logarithmic parameter space

If parameter limits extend several orders of magnitude, it is strongly recommended
to fit in logarithmic parameter space, which was done in the performance analysis.
This leads to a better representation of small parameter values pwSetLogFitting.
In fact, the trust region and Levenberg-Marquardt methods were unable to locate
a satisfying minimum in normal space.

4.2 Hybrid stochastic & deterministic approach

With pwFitBoost, the trust region and simulated annealing strategy in normal and
logarithmic parameter space are combined consecutively in order to reduce local
minima. This hybrid approach takes more time, but is superior for complicated
optimization problems compared to a single optimization method. Fig. 7 illustrates
a situation where a stochastic optimizer is required.

15

4.3 Direct search

The direct search method is the fminsearch algorithm as implemented in MAT-
LAB. It uses the simplex search method of Lagarias et al. (1998), is not constrained,
and does not use numerical or analytic gradients.

This optimizer does not exploit the structure of non-linear least square problems,
e.g. only the squared sum over all weighted residuals is taken into account. In
addition, no lower and upper parameter limits can be specified, making it difficult
to control the optimization within reasonable borders to take into account a prior
knowledge about the dynamic system. In our test scenario the direct search method
actually increased on average the distance of the parameter values to the true ones,
compared to the initial guess. Consequently, the direct search algorithm is not
recommended.

0 500 1000 1500 2000 2500 3000 3500 4000

102

103

104

105

106

Fit: χ2/N=43.257 χ2=19119.6 N=442 p=13

Iteration

χ2 /N

Method: Linesearch
Maximum number of iterations reached

Algorithm: Nelder−Mead simplex direct search
Parameter space: log

Function calls: 7651
Iterations: 4000

pValue(N): 0
pValue(N-p): 0

AIC: 76504.3
AICc: 76505.1

BIC:76557.5

0 500 1000 1500 2000 2500 3000 3500 4000

10−8

10−6

10−4

10−2

100

102

104

Iteration

Pa
ra

m
et

er
 v

al
ue

C9_binds_activeA
C9_releases_activeA
C3_act_via_C9
C9_act
C9_releases_X
activeC3_binds_X
activeC3_releases_X
A_prod
C9_prod
X_prod
C3_prod
degradation
C9_binds_X

0 500 1000 1500 2000 2500 3000 3500 4000

100

101

102

103

104

105

106

107

Iteration

D
ev

ia
tio

n
(1

=
p

er
fe

ct
 fi

t)

Final iteration
Dmax=1809927.52
Dmean=165807.59

A

C

B

Figure 8: Optimization performance of direct search. A: Deviation compared to true
parameters. The dashed red line displays the mean deviation over all parameters. B: Parameter
values during fitting. C: χ2 value during fitting and fit settings.

16

4.4 Trust region

The lsqnonlin algorithm of the MATLAB optimization toolbox is used as trust
region approach. It is based on the interior-reflective Newton method described in
Coleman and Li (1996) and Coleman and Verma (2001). Each iteration involves the
approximate solution of a large linear system using the method of preconditioned
conjugate gradients (PCG).

This optimizer exploits the structure of non-linear least square problems and
simultaneously renders possible to specify limits for parameter values during cali-
bration. It requires more function calls than the Levenberg-Marquardt optimizer,
in the example case with a factor of 4. If the optimization toolbox is available and
crucial limits for parameters exist, this is the method of choice.

0 50 100 150

100

101

102

103

104

105

106

107

Fit: χ2/N=0.832975 χ2=368.175 N=442 p=13

Iteration

χ2 /N

Method: Trust Region
Exit: Change in X smaller than TolX.

Algorithm: large−scale: trust−region reflective Newton
Parameter space: log

Function calls: 2184
Iterations: 155

First order opt: 0.203049
CG iterations: 720

TolX: 1e−010
TolFun: 1e−010
MaxIter: 10000

pValue(N): 0.984639
pValue(N−p): 0.995522

AIC: 1498.7
AICc: 1499.55

BIC: 1551.89

0 50 100 150

10−8

10−6

10−4

10−2

100

102

Iteration

Pa
ra

m
et

er
 v

al
ue

C9_binds_activeA
C9_releases_activeA
C3_act_via_C9
C9_act
C9_releases_X
activeC3_binds_X
activeC3_releases_X
A_prod
C9_prod
X_prod
C3_prod
degradation
C9_binds_X

0 50 100 150

100

101

102

103

104

105

Iteration

D
ev

ia
tio

n
(1

=
p

er
fe

ct
 fi

t)

Final iteration
Dmax=1.302
Dmean=1.0995A B

C

Figure 9: Optimization performance of trust region. A: Deviation compared to true
parameters. The dashed red line displays the mean deviation over all parameters. B: Parameter
values during fitting. C: χ2 value during fitting and fit settings.

17

4.5 Levenberg-Marquardt

An unconstrained approximate Gauss-Newton approach with Levenberg-Marquardt
damping and successive updating of Jacobian approximation is available in the im-
moptibox of Nielsen (2006). We modified the smarquardt algorithm slightly to fit
into the PottersWheel framework.

This optimizer is very fast and accurate. The only drawback are missing limits
for parameter values during calibration. If this is not important or the optimiza-
tion toolbox is not available for using the trust region approach, this Levenberg-
Marquardt implementation is recommended.

C9_binds_activeA
C9_releases_activeA
C3_act_via_C9
C9_act
C9_releases_X
activeC3_binds_X
activeC3_releases_X
A_prod
C9_prod
X_prod
C3_prod
degradation
C9_binds_X

0 50 100 150 200 250 300

10−5

10−4

10−3

10−2

10−1

100

101

102

Iteration

Pa
ra

m
et

er
 v

al
ue

0 50 100 150 200 250 300

100

101

102

103

104

Iteration

D
ev

ia
tio

n
(1

=
p

er
fe

ct
 fi

t)

Final iteration
Dmax=1.3018
Dmean=1.0994

A B

0 50 100 150 200 250 300

100

101

102

103

104

105

106

107

Fit: χ 2/N=0.832975 χ2=368.175 N=442 p=13

Iteration

χ2 /N

Method: smarquardt
Exit: Stopped by small x−step

Algorithm: Levenberg−Marquardt
 with Jacobian Approximation

Parameter space: log
Function calls: 598

Iterations: 295
TolX: 1e−010

TolFun: 1e−010
MaxIter: 10000

pValue(N): 0.984639
pValue(N−p): 0.995522

AIC: 1498.7
AICc: 1499.55

BIC: 1551.89

C

Figure 10: Optimization performance of Levenberg-Marquardt. A: Deviation compared
to true parameters. The dashed red line displays the mean deviation over all parameters. B:
Parameter values during fitting. C: χ2 value during fitting and fit settings.

18

4.6 Simulated annealing

Ingber (1989) developed a fast simulated annealing algorithm. It is an algorithm to
statistically find the best global fit of a nonlinear non-convex cost-function. The al-
gorithm permits an annealing schedule for temperature T decreasing exponentially
in annealing-time. We use the asamin MATLAB interface by Sakata (2001).

This optimizer generally copes better with local minima, but requires many
function calls to locate the optimum. In the test scenario all but one parameter were
calibrated accurately after 10,000 calls. It is recommended to use this method if a
satisfying result can not be achieved with the trust region or Levenberg-Marquardt
methods or as a cross-check.

0 10 20 30 40 50 60 70 80 90 100

100

101

102

103

104

105

106

107

Fit: χ2/N=1.11777 χ2=494.056 N=442 p=13

Iteration

χ2 /N

Method: Adaptive Simulated Annealing
Adaptive simulated annealing finished successfully

Parameter space: log
Function calls: 10323

Iterations: 102
pValue(N): 0.01617

pValue(N-p): 0.0437557
AIC: 2002.22

AICc: 2003.07
BC: 2055.41

100

0 20 40 60 80 100
0

50

100

150

200

250

300

350

Iteration

D
ev

ia
tio

n
(1

=
p

er
fe

ct
 fi

t)

Final function call
Dmax=148.87
Dmean=12.62

C9_binds_activeA
C9_releases_activeA
C3_act_via_C9
C9_act
C9_releases_X
activeC3_binds_X
activeC3_releases_X
A_prod
C9_prod
X_prod
C3_prod
degradation
C9_binds_X

A

0 20 40 60 80
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

Iteration

Pa
ra

m
et

er
 v

al
ue

B

C

Figure 11: Optimization performance of simulated annealing. A: Deviation compared
to true parameters. The dashed red line displays the mean deviation over all parameters. B:
Parameter values during fitting. C: χ2 value during fitting and fit settings.

19

4.7 Genetic algorithm

For illustration, we implemented an interface to the genetic algorithm ga of the
homonymous MATLAB toolbox (Conn et al., 1991; Goldberg, 1989; Conn et al.,
1997). This function does not exploit the structure of least-square optimization
problems and does not possess as strong convergence characteristics as the simu-
lated annealing approach.

After 40,000 function calls, the χ2/N value is still larger than 100, but it should
be around 1. The final deviation results in 18800%.

0 1000 2000 3000 4000 5000 6000 7000

102

103

104

105

Fit: χ2/N=108.807 χ2=48092.5 N=442 p=13

Iteration

χ2 /N

Method: Genetic Algorithm
 Optimization terminated: maximum
 number of generations exceeded

Parameter space: log
Function calls: 40001

Iterations: 7384
TolFun: 1e−010

pValue(N): 0
pValue(N−p): 0

AIC: 192396
AICc: 192397

BIC: 192449

0 1000 2000 3000 4000 5000 6000 7000

10−6

10−5

10−4

10−3

10−2

10−1

100

101

Iteration

Pa
ra

m
et

er
 v

al
ue

C9_binds_activeA
C9_releases_activeA
C3_act_via_C9
C9_act
C9_releases_X
activeC3_binds_X
activeC3_releases_X
A_prod
C9_prod
X_prod
C3_prod
degradation
C9_binds_X

0 1000 2000 3000 4000 5000 6000 7000
0

100

200

300

400

500

600

700

800

900

1000

Iteration

D
ev

ia
tio

n
(1

=
p

er
fe

ct
 fi

t)

Final iteration
Dmax=789.2869
Dmean=188.7943

A

C

B

Figure 12: Optimization performance of the genetic algorithm. A: Deviation compared
to true parameters. The dashed red line displays the mean deviation over all parameters. B:
Parameter values during fitting. C: χ2 value during fitting and fit settings.

20

Figure 13: Driving Input Designer. Type and characteristics of the driving input variables
of the dynamical system can be changed in real time. Currently selected is an exponential ramp
stimulation, which may be useful to investigate the early phase or stimulation experiment in a
stretched fashion and therefore with a higher sampling resolution.

5 Driving input

A key functionality of PottersWheel is multi-experiment fitting, where several data
sets are fitted simultaneously. The power of this approach increases if experiments
are applied under different experimental conditions, e.g. different dose levels, pulsed
or ramp stimulations. The externally changed species, e.g. the ligand in models of
signal transduction pathways, is called driving input.

The information about the experimental setting has to be saved within the data
set (see PottersWheel documentation). To integrate, values of the driving input are
required at arbitrary time points. This can be achieved by two approaches: analytic
or smoothing spline interpolation.

5.1 Analytic interpolation

The driving input is specified analytically, i.e. no measurements are available, but
the time-course is approximated by a step-wise or linear function.

5.2 Smoothing spline interpolation

If measurements of the driving input are available, they can be used for a smoothing-
spline approximation.

5.3 Designing new driving inputs

The driving input designer is a graphical user interface where the shape of each
input species can be changed in real-time (Fig. 13). Available functionalities inl-
cude continuous stimulations, pulses, ramps, exponential ramps, and sine waves.
Characteristics like pulse number or duration can be changed by sliders. This way,
new experiments can be designed, e.g. with significantly different trajectories than
that of existing experiments in order to increase the power of model selection and
parameter calibration.

21

A B
u k1

k2

k3

0.1 0.15 0.2 0.25
0

5

10

15

20

0 0.05 0.1 0.15 0.2 0.25
0

5

10

15

20

k1

k2

0.050

Figure 14: Effect of multi-experiment fitting. Left: Network with two species and three
reactions. Reaction A→ B takes place constitutively and is in parallel triggered by an external
input function, for example an extracellular stimulus. Data is simulated for different input
functions u and with 5% relative and 5% absolute error. parameter values k1 = 0.03, k2 = 0.2,
and k3 = 0.1. Right: If only one continuous stimulation experiment with u(t) = 1 is available
to determine the parameters of the system, k1 and k2 can not be estimated accurately, but
have a broad distribution depending on the initial guess of the parameter values before fitting.
In fact, only the sum k1u + k2 can be derived from the data; they are non-identifiable. If two
experiments are combined with different stimulation strength u(t) = 1 and u(t) = 2, k1 and k2

can be determined correctly and non-identifiability is resolved(red vertical lines).

6 Multi-Experiment Fitting

The statistical power to estimate parameter values or to discriminate competing
model hypotheses strongly increases if different experiments are modeled simulta-
neously. This multi-experiment fitting approach is a key functionality of Potters-
Wheel and is illustrated in Fig. 14. In a small network, species A is transformed
into species B via a constitutive reaction with rate k2A and an induced reaction,
which is triggered with reaction rate k1uA by an externally given input function
u, representing an external stimulus. Only one backward reaction exists with rate
k3B. Data sets have been simulated with 5% relative and 5% absolute error. A
sequence of 100 fits was applied, each fit starting at different initial guesses. Based
on one hypothetical continuous stimulation experiment, parameters k1 and k2 can
not be determined independently from each other, but only the sum k1u + k2 can
be derived from the data. However, if two continuous stimulations with different
values of u corresponding to different doses are available, k1 and k2 can be estimated
accurately depending on the observational noise of the measurements.

22

0 1 2 3

C9_binds_activeA
C9_releases_activeA

C3_act_via_C9
C9_act

C9_releases_X
activeC3_binds_X

activeC3_releases_X
A_prod

C9_prod
X_prod

C3_prod
degradation
C9_binds_X

Apaf_act
Apaf_deact

X_inhib
X_act

Parameter values of normal fit sequence (median = 1)

)

0 50 100 150 200 0 50 100 150 200

0

0.2

0.4

0.6

0.8

1 CytoC: pulsed

 0

0.5

1

1.5

2 SMAC: continuous

0 50 100 150 200

0

0.5

1

1.5

2 CytoC: continuous

0 50 100 150 200

0

0.5

1

1.5

2 SMAC: continuous

0 50 100 150 200
−10

0

10

20

30
C9 obs

0 50 100 150 200
−20

0

20

40

60
X obs

0 50 100 150 200
−1

0

1

2

3

4

activeA C9 obs

0 50 100 150 200
−2

0

2

4

6

8
activeC3 ob

0 50 100 150 200

0

0.5

1

1.5

2 CytoC: continuous

0 50 100 150 200

0

0.2

0.4

0.6

0.8

1 SMAC: pulsed

0 50 100 150 200

0

0.2

0.4

0.6

0.8

1 CytoC: pulsed

0 50 100 150 200

0

0.2

0.4

0.6

0.8

1 SMAC: pulsed

 C9_binds_activeA
C9_releases_activeA

C3_act_via_C9
C9_act

C9_releases_X
activeC3_binds_X

activeC3_releases_X
A_prod

C9_prod
X_prod

C3_prod
degradation
C9_binds_X

Apaf_act
Apaf_deact

X_inhib
X_act

Parameter values of normal fit sequence (median = 1)
0 1 2 3

A B

C D

Figure 15: Application of multi-experiment fitting. If only one experiment with contin-
uous stimulations for each driving input player cyto-c and SMAC (A, 4 observables, 10% rel.
+ 10% absolute error) is fitted 200 times with varying initial guess for the parameters, the
distributions of the calibrated parameter values is rather broad: The parameters are not iden-
tifiable (B). C: Combination of all four experiments leads to significantly narrowed parameter
distribution (D). Note that the distribution represented by the horizontal bars should not be
mistaken for a confidence interval (see section 11.2). Therefore, true values (red stars) may lie
outside of the parameter distributions.

6.1 Local and global parameters

Within the multi-experiment fitting approach, global and local parameters have to
be distinguished. Global parameters have the same value for each experiment. They
reflect structural parameters like rate constants. Local parameters on the other hand
obtain different values depending on the experiment. This occurs for example for
scaling parameters of observation functions for relative measurement techniques like
Western Blotting or for initial values of protein concentrations.

6.2 Application to the apoptosis model

In section 4, the four available optimizers have been tested on simulated data with
little noise and a large set of observables. When only a few species can be measured

23

with a medium noise level, how accurate can the original parameter values be ob-
tained? In a hypothetical experiment, we simulate data for C9, X, activeA C9 and
activeC3 each with an error model of 10% relative and 10% absolute error. The
box plot of Fig. 15B, points out that the fitted parameter values are very ambigu-
ous. When four experiments are combined, each with a different set of continuous
and pulsed stimulations for the two driving input species cyto-c and SMAC (see
Fig. 15A+C), the parameter values are much better calibrated which is illustrated
in Fig. 15D. The improved calibration is due to resolved non-identifiabilities by
multi-experiment fitting. Six parameters still have a medium to large standard
deviation. Either further experiments under different experimental settings corre-
sponding to new driving input functions or with a different set of observable species
are required to narrow the distribution of these parameters. In section 7.2 we will
investigate the problem of non-identifiability in more detail. Note that the distri-
butions in the box plots do not represent an estimation of the distribution of the
calibrated parameters. Strategies to determine the distribution of fitted parameters
are discussed in 11.2.

7 Fit and model analysis

7.1 Fit sequence analysis

A combination of model-data-couples can be fitted several times in a fit sequence.
The initial parameter values are drawn from a random distribution before each fit.
They are either chosen from a quasi-random-distribution between the minimum and
maximum parameter values or are drawn from an exponential distribution around
p0:

pnew = p0 · 10s·ε

Here, s represents the disturbance strength. The random number ε is drawn from
the standard normal distribution N(0, 1). Depending on the fit sequence type, p0

is either the fitted value of the last fit in the sequence, the parameter value of the
best fit in the sequence, the initial value of the last fit, or given explicitly by the user.

In a normal fit sequence, the same data set is fitted repeatedly and the distri-
bution of estimated parameter values can be used for an identifiability analysis (see
section 7.2). In a Monte-Carlo fit sequence, new data sets for each fit are generated
based on the model and an adequate observation error model and the calibrated
values may be used to estimate the confidence regions numerically (see section 11.2).

A fit sequence results in a matrix of parameter values pi,j, reflecting the value of
parameter i after the fit j. Based on this matrix, several analyses can be applied
(see Fig. 16). A subset of fits with the lowest χ2 values can be selected in order to
circumvent local minima in the parameter space (A). PottersWheel depicts mean
and variance values of the estimated parameter with histograms and boxplots (B).
Correlation analysis between pairs of parameters indicates whether and to what

24

0 5 x 10
−60

10

20
C3_act_via_C9

0 2 x 10
−40

10

20
C9_act

0 1 x 10
−30

10

20
C9_releases_X

0 2 x 10
−30

20

40
activeC3_binds_X

0 0.5 1 x 10
−30

10

20
activeC3_releases_X

0 0.05
0

5

10
A_prod

0 0.05
0

10

20
C9_prod

0 0.05
0

10

20
X_prod

0 0.2 0.4
0

10

20
C3_prod

0 1 x 10
−30

5

10
degradation

0 0.5 1 x 10
−30

10

20
C9_binds_X

0 0.05 0.1
0

10

20
Apaf_act

0 0.05 0.1
0

20

40
Apaf_deact

0 0.1
0

5

10

X_inhib

0 0.1
0

10

20
X_act

0 20 40 60 80 100 120 140 160 180 200
10

−1

10
0

10
1

10
2

Analysis of 200 fits (best 30 %)

fit number

χ2 /N

C9_binds_activeA

C9_releases_activeA

C3_act_via_C9
C9_act

C9_releases_X

activeC3_binds_X

activeC3_releases_X
A_prod

C9_prod
X_prod

C3_prod

degradation

C9_binds_X

Apaf_act

Apaf_deact
X_inhib

X_act

Correlation matrix of fit sequence

C9_binds_activeA

C9_releases_activeA

C3_act_via_C9

C9_act

C9_releases_X

activeC3_binds_X

activeC3_releases_X

A_prod

C9_prod

X_prod

C3_prod

degradation

C9_binds_X

Apaf_act

Apaf_deact

X_inhib

X_act
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A

B

C9_releases_X

X
_p

ro
d

A_prod

de
gr

ad
at

io
n

C9_releases_X

C
3_

p
ro

d

0.8135
0.814
0.8145

C

D E

2

4

6

Dendrogram

Figure 16: Fit sequence analysis. A: χ2/N value of 200 fits. Only the best 30% percent will
be analyzed further (red circles). B: Histogram of fitted parameter values. Red lines indicate
the true value. C: Detailed scatter plots reveal functional dependencies between parameters.
χ2/N value is color coded. D: A correlation analysis demonstrates which parameters share a
linear relationship. E: Hierarchical clustering of parameters based on the euclidian distance.

25

extent a linear correlation exists between the parameters (D). Detailed scatter plots
for all significant correlations reveal linear non-identifiabilities in the model struc-
ture (C). Principal component analysis determines the total number of degrees of
freedom of the system assuming linear dependencies and the two main components
are shown in a biplot analysis. Hierarchical clustering of all parameter values based
on their euclidian distance shows whether distinct local minima were found by the
optimization routine, which is not the case here (E).

7.2 Parameter identifiability

The linear correlation analysis of fitted parameter values can only detect linear
dependencies between two parameters. In order to detect nonlinear functional rela-
tionships between many parameters, Hengl et al. (2007) suggested a new approach
called MOTA, which is based on optimal transformations using the alternating con-
ditional expectation algorithm (Breimann and Friedman, 1985). MOTA is available
as a C MEX plug-in within PottersWheel. It requires a sufficient number of fits and
calculates groups of parameters sharing an unknown relationship. Each group is
characterized by the amount of explained variance (r2), the coefficient of variation
(cv), and how often the same group is detected when a different parameter is taken
as response. The most relevant groups are marked with a single or double score (for
details see Hengl et al. (2007)).

We applied a normal fit sequence of 1500 multi-experiment fits to a non-identifiable
model, namely the apoptosis model coupled to the four experiments as described
in 14. The best best 50% of the fits were analyzed. MOTA identified 17 groups of
related parameters and marked 6 with a single score. The groups are:

1. C9 releases X, A prod, C9 prod, X prod, C9 binds X (r2 = 0.994, cv = 0.207)

2. A prod, degradation, Apaf act (r2 = 0.921, cv = 0.559)

3. C9 releases X, C9 prod, X prod (r2 = 0.993, cv = 0.619)

4. C9 releases X, C9 prod, X prod, degradation (r2 = 0.998, cv = 0.27)

5. C9 act, C9 prod, X prod, C3 prod, degradation (r2 = 0.933, cv = 0.612)

6. C9 act, C3 prod, degradation (r2 = 0.972, cv = 0.395)

In summary, 9 out of 13 parameters are affected by a scored non-identifiability:
C9 act, C9 releases X, A prod, C9 prod, X prod, C3 prod, degradation, C9 binds X,
and Apaf act. This explains the strong variations in the box plot and histogram of
the parameters (Figs. 15B and 16B).

7.3 System properties in case of non-identifiabilities

If not all non-identifiabilities can be removed from the system, e.g. by further mea-
surements or reformulation of the mathematical model, statements about system

26

properties are hampered. The maximum of an unobserved state may depend from a
non-identifiable parameter. Hence, it is not allowed to take the best fit and specify
time point and value of the maximum. Instead, a distribution of values has to be
determined based on all parameter settings leading to nearly the same χ2 value or,
to be very conservative, leading to a compliant data description.

PottersWheel supports the calculation of system properties for all best fits of a
fit sequence. Also the trajectories can be plotted, illustrating the range of possible
time courses (pwTrajectoriesOfManyParameterSettings).

7.4 Sensitivity Analysis

Sensitivity Analysis or control coefficients quantify the influence of input variables
to output variables of a mathematical model. In our case, the input variables are
usually the model parameters. The output could be the system state variables or
observables themselves at one time-point, or derived characteristics like the integral
over a certain time period. Hornberg et al. (2005) discuss several characteristics
and derive summation laws for their control coefficients.

For the following measures, control coefficients can be calculated within Potters-
Wheel (see Fig. 17):

1. Peak amplitude

2. Time of peak

3. Recovery time (definition depends on the monotony of the investigated state
variable)

4. Signal duration

5. Area under curve

6. Mean value

7. Value at a certain time point

In order to increase the numerical accuracy which is required to fulfill the sum-
mation laws, PottersWheel uses a spline-interpolation to determine e.g. the value
and time of the peak and the recovery time. This requires the investigated variable
to be a sufficiently smooth function, which may not be the case in dynamic systems
with pulsed input functions, for instance.

27

0 20 40 60 80 100 120 140 160 180 200

0

0.5

1

1.5

2

2.5

Mean Value = 1.46463
Area under Curve = 140.104
Signal Duration = 95.6584
Recovery Time = 84.8838
Time of Peak = 10.7745
Peak Amplitude = 2.63481
Last Value = 0.675905

Characteristics for activeA_C9:

 C9_binds_X

 degradation

 C3_prod

−1.5 −1 −0.5 0 0.5 1 1.5

0
 −1.014−0.991
 −0.994−0.995
 −0.001

 X_prod

 C9_prod

 A_prod

 activeC3_releases_X

 activeC3_binds_X

 C9_releases_X

 C9_act

 C3_act_via_C9

 C9_releases_activeA

 C9_binds_activeA

 Sum
Peak Amplitude

Time of PeakRecovery Time
Signal DurationArea under Curve
Mean Value

A

B

Control coefficient

Time [minutes]

A
rb

itr
ar

y
un

its

Figure 17: Detailed sensitivity analysis. A: Characteristics for the variable activeA C9 are
illustrated for a recovery threshold at 30% of the peak amplitude. The recovery time represents
the time between peak and threshold crossing. The signal duration is the sum of time of peak
and recovery time. Area under curve and mean value are determined for the signal duration. B:
Control coefficients for signal characteristics (lila: mean value; red: area under curve; yellow:
signal duration; green: recovery time; light blue: time of peak; dark blue: peak amplitude).
The impact of each parameter on activeA C9 is displayed. The sum over all parameters results
to -1 or 0 which is compliant with the summation laws of Hornberg et al. (2005).

28

0 20 40 60 80 100

0

5

10

15

20

25

A
Apo 2Inputs MedNoise 4Obs, sim Apo 2Inputs MedNoise 4Obs 20080528T204844

0 20 40 60 80 100

0

5

10

15

20

activeA

0 20 40 60 80 100

0

10

20

30

40

X

0 20 40 60 80 100

0

5

10

15

20

inhibitedX

0 20 40 60 80 100

0

1

2

3

activeA C9 X

0 20 40 60 80 100

0

0.5

1

1.5

2

2.5

3

activeA C9

0 20 40 60 80 100

0

1

2

3

4

5

6

activeC3

Chisq=0, k=0.002 0.1 5e−006 0.0002 0.001 0.003 0.001 0.02 0.02 0.04 0.2 0.001 0.001 0.1 0.1 0.1 0.1 s=1 1 1 1 x0=20 20 0 4

0 20 40 60 80 100

0

0.1

0.2

0.3

activeC9

0 20 40 60 80 100

0

0.01

0.02

0.03

0.04

0.05

activeA activeC9 X

0 5 10 15 20

0

5

10

15

20

25

Dose

A

Apo 2Inputs MedNoise 4Obs, sim Apo 2Inputs MedNoise 4Obs 20080528T204844

0 5 10 15 20

0

5

10

15

20

Dose

activeA

0 5 10 15 20

0

5

10

15

20

25

30

Dose

X

0 5 10 15 20

0

5

10

15

Dose

inhibitedX

0 5 10 15 20

0

1

2

3

Dose

activeA C9 X

0 5 10 15 20

0

0.5

1

1.5

2

2.5

3

Dose

activeA C9

0 5 10 15 20

0

1

2

3

4

5

6

Dose

activeC3

Chisq=0, k=0.002 0.1 5e−006 0.0002 0.001 0.003 0.001 0.02 0.02 0.04 0.2 0.001 0.001 0.1 0.1 0.1 0.1 s=1 1 1 1 x0=20 20 0 4

0 5 10 15 20

0

0.1

0.2

0.3

Dose

activeC9

0 5 10 15 20

0

0.01

0.02

0.03

0.04

0.05

Dose

activeA activeC9 X

t = 5
t = 10
t = 50
t = 100

Figure 18: Stimulus dependent view. Several continuous stimulations with different dose-
level for cyto-c are applied. Left panel: The effect of the dose-response experiment in time-
domain. Right panel: The effect displayed over the dose level for four different time points
t = 5, 10, 50, 100 minutes.

7.5 Stimulus dependent view

For some experiments, the x axis should not be time, but rather the dosage or pulse-
duration. In this case, PottersWheel allows to switch between time and stimulus
dependent view, strongly improving the interpretation of fitted trajectories (see
Fig. 18).

7.6 Residual analysis

The residuals, i.e. the differences between model trajectory and data points, should
be Gaussian distributed and uncorrelated. Systematic deviations indicate a wrong
model or a wrong error model. If the original measurements have a non-Gaussian
distributed error, they should be transformed appropriately Kreutz et al. (2007).
The residual analysis of PottersWheel comprises the following graphs:

1. Residuals against time

2. Residuals embedded, i.e. residual i against residual i− 1

3. Autocorrelation of the residuals

4. Histogram

5. QQ-Plot

6. Residuals against predicted values

7. Predicted against observed values

29

Figure 19: χ2 landscapes. Two parameters are changed systematically and the resulting χ2

value is plotted in a 2-dimensional manifold in triple-logarithmic space. Left: The minimum
is located at the end of a long bathtube and may be reached by a powerful optimizer. Right:
Two parameters are linked in a structural non-identifiability; they yield the same χ2 value for
a large set of parameter values leading to broad (infinite) distributions of calibrated parameter
values. The figures can be reproduced with pwShowChisqLandscape

8 Confidence intervals

Calculation of confidence intervals on the estimated parameter values requires that
the parameters are identifiable. If a Maximum Likelihood estimator is used to cali-
brate the parameters, the confidence intervals can be determined based on the Hes-
sian of the objective function at the optimum. Since PottersWheel uses a weighted
least-square optimization, this is the case for normally distributed errors. Oth-
erwise, a Monte-Carlo approach is to be preferred, where new data sets have to
be generated based on the fitted model and an adequate observation error model.
PottersWheel supports both strategies, which are available from the command line
via pwConfidenceIntervals.

8.1 The χ2 landscape

Fig. 19 displays the dependency of the χ2 value when two parameters are changed
systematically. Structural non-identifiabilities as on the right lead to exactly the
same χ2 value for a large set of parameter values, rendering it impossible to locate
a unique optimum. In this case, the confidence intervals are infinite: if the initial
guesses of the parameters within a fit sequence fluctuates stronger, also the fitted
parameters values will have a broader distribution.

8.2 Hessian-based confidence intervals

The χ2 merit function which is optimized within PottersWheel to fit the model
y = y(t; (p)) is

30

0 2 4 x 10
−60

10

20

C3_act_via_C9

0 1 2 x 10
−4

0

10

20

C9_act

0 0.5 1 x 10
−30

10

20

C9_releases_X

0 0.5 1x 10
−30

20

40

activeC3_releases_X

0 0.01 0.02
0

10

20

A_prod

0 0.01 0.02
0

10

20

C9_prod

0 0.1 0.2
0

10

20

C3_prod

0 0.5 x 10
−30

10

20

degradation

0 0.5 x 10
−30

10

20

C9_binds_X

0 2 4 x 10
−60

10

20

C3_act_via_C9

0 1 2 x 10
−40

10

20

C9_act

0 0.5 1 x 10
−30

10

20

C9_releases_X

0 1 x 10
−30

10

20

activeC3_releases_X

0 0.02 0.04
0

5

10

A_prod

0 0.02 0.04
0

10

20

C9_prod

0 0.2 0.4
0

10

20

C3_prod

0 1 x 10
−30

5

10

degradation

0 0.5 1 x 10
−30

10

20

C9_binds_XA B

Figure 20: Normal and Monte-Carlo fit sequence of an identifiable model. A: His-
togram of calibrated parameter values after fitting the same data set with random initial guesses.
Red lines indicate the true value. In an identifiable model, a fit sequence to the same data set
will lead to sharp peaks, which usually do not coincide with the true values. B: Histograms for
Monte-Carlo generated data sets. If an adequate error model has been used, the distribution of
calibrated parameter values of a Monte-Carlo fit sequence can be used to estimate confidence
intervals.

χ2(p) =
N∑
i=1

(
yi − y(ti; p)

σi

)2

.

The components of the gradient and Hessian depending on the parameter vector
p are given as

∂χ2

∂pk
= −2

N∑
i=1

yi − y(ti; p

σ2
i

∂y(ti; p)

∂pk
(3)

∂2χ2

∂pk∂pl
= 2

N∑
i=1

1

σ2
i

(
∂y(ti; p)

∂pk

∂y(ti; p)

∂pl
− (yi − y(ti; p))

∂2y(ti; p)

∂pl∂pk

)
. (4)

The second term of the Hessian is often negligible (Nocedal and Wright, 1999).
Checchi and Marsili-Libelli (2005) suggest an approach to exploit a non-negligible
second term to verify the success of the optimization. Based on the approximation of
the Hessian, the covariance matrix of the estimated parameters is given as (Marsili-
Libelli et al., 2003; Press et al., 1999):

C =

(
N∑
i=1

1

σ2
i

∂y(ti; p)

∂pk

∂y(ti; p)

∂pl

)−1

.

The diagonal of C are the Hessian-based variances of the calibrated parameters.
They are calculated by pwConfidenceIntervals.

31

8.3 Monte-Carlo approach

The fitted model is used in the Monte-Carlo approach to generate M new synthetic
data sets (Press et al., 1999):

yMC
j (ti; p) = y(ti; p) + εi, 1 ≤ j ≤M

with εi taken from an adequate error distribution, e.g. ∼ N(0, σi). The model
is fitted to the M data sets and the confidence limits are given by the standard
deviation of the calibrated parameter values.

Fig. 20 displays the distribution of calibrated parameters for 100 Monte-Carlo
data sets. Their standard deviations are estimators for the standard deviations of
the fitted parameter values.

8.4 Comparison of confidence intervals

The two approaches to determine the confidence intervals are compared for an
identifiable model with 13 observables and small noise. Both methods yield similar
results. Identifiability of parameter values is an important prerequisite.

ID true value Std. by Hessian Std. by Monte-Carlo
C9 binds activeA 0.002 4.4012e-005 2.23% 4.4947e-005 2.28%

C9 releases activeA 0.1 0.0026946 2.73% 0.0027774 2.81%
C3 act via C9 5e-06 7.9406e-008 1.59% 8.4125e-008 1.68%

C9 act 0.0002 3.076e-006 1.51% 3.2636e-006 1.6%
C9 releases X 0.001 0.00017693 17.32% 0.00016578 16.23%

activeC3 binds X 0.003 8.501e-005 2.74% 9.4822e-005 3.05%
activeC3 releases X 0.001 0.00024517 25.5% 0.00026282 27.34%

A prod 0.02 0.0039089 18.77% 0.003494 16.77%
C9 prod 0.02 0.0041509 20.94% 0.0038154 19.24%
X prod 0.04 0.0071633 17.25% 0.0063447 15.28%
C3 prod 0.2 0.041051 17.13% 0.035656 14.88%

degradation 0.001 0.00018176 16.92% 0.00016506 15.37%
C9 binds X 0.001 1.0194e-005 1.03% 1.0525e-005 1.06%

32

9 Statistical tests

Two questions arise when experimental data is modeled:

1. Is the model statistically compliant with the data, i.e. what is the probability
that the model produces the data set?

2. If two models are compliant with the data, which one should be taken?

In order two answer the first question, usually the goodness-of-fit is determined,
i.e. the distance between model and data is related to the expected value if the
model were true: a χ2 test is applied. For the second question, it is important to
verify whether the models are nested, i.e. whether one model is an extension of the
other model. In this case it may be permitted to apply a likelihood-ratio test with
high statistical power Lehmann (1986). Criteria like AIC and BIC are suggested to
establish a ranking of models.

9.1 Maximum Likelihood approach

The likelihood is defined as the probability to measure yMeas given the parameters
θ. The Maximum Likelihood approach calibrates parameters in order to increase
the likelihood,

θML = max
θ

arg pr(yMeas|θ).

In the case of normally and independent distributed errors, the likelihood can be
expressed as

L(θ|yMeas) := pr(yMeas|θ)

=
∏
i

1√
2πσi

exp

(
−(yMeas

i − yModel
i)2

2σ2
i

)
.

For convenience, instead of the likelihood its logarithm is maximized – the log-
likelihood L,

L(θ|yMeas) = −
∑
i

(yMeas
i − yModel

i)2

2σ2
i

−N log
√

2π −
∑
i

log σi.

Since the second and third term do not depend on θ, it is sufficient to maximize
the first expression which is equivalent to minimizing the half χ2 value as it is done
within PottersWheel.

9.2 χ2 test

If the residuals between model and measurements follow a Gaussian distribution,
L is a sum of N squares of normally distributed quantities, each normalized to
unit variance (Press et al., 1999). L is under the null-hypothesis distributed like a
chi-square distribution χ2

N−M with N −M degrees of freedom, with M being the
number of parameters. The null-hypothesis has three parts:

33

1. The model is sufficient to explain the measurements.

2. The true standard deviations do not exceed σi.

3. The residuals are Gaussian distributed.

If for a given fitted model the obtained L is significantly incompatible with the
corresponding χ2 distribution, one can conclude that at least one of the above as-
sumptions is violated. This could mean that the model is wrong, but it could equally
mean that just the residuals are not Gaussian distributed. The latter underlines
the importance for correcting of outliers in the data or a proper error model. If
the model is compliant with the measurements, one may only conclude that the
null-hypothesis can not be rejected.

After each fit, PottersWheel calculates the p value for the given null-hypothesis
based on N −M degrees of freedom and also for N itself. This is due to situations
where some parameters are identifiable resulting in a number of degrees of freedom
between N−M and N . The result is displayed in the command window and within
a fit information figure when calling pwInfoPlotsFitting.

9.3 Likelihood ratio test for nested models

The likelihood-ratio test evaluates nested models M1 ⊂M2 with r1 < r2 parameters
to each other and determines the probability that the smaller model is sufficient to
describe the measurements (Neyman and Pearson, 1933; Bauer et al., 1988). The
null-hypothesis is based on the following assumptions:

1. The maximum-likelihood estimated parameters θ̂ are normally distributed around
the true parameters θ0, i.e.

pr(θ̂ − θ0) =
|C|− 1

2

2π
exp

(
−1

2
(θ̂ − θ0)TC−1(θ̂ − θ0)

)
with the negative inverse Hessian

Ci,j = −

(
∂2L(θ̂|yMeas)

∂θi∂θj

)−1

2. M1 is the true model.

3. M1 is equivalent to M2 with one or more fixed or depending parameters θi. All
constant θi do not belong to the border of the parameter space used to fit the
larger model M2.

4. All parameters θi are identifiable.

34

Under the null-hypothesis, 2
(
L(θ̂)− L(θ0)

)
is χ2 distributed with r2 − r1 de-

grees of freedom.

We applied this approach to a by four reactions extended and a reduced version
with one missing reaction from the apoptosis model. The result of the fits can be
summarized as follows:

Model χ2 goodness-of-fit np LRT against true model
true model 368.175 0.98 13
reduced model 681.386 0 12 0
enlarged model 361.591 0.988 17 0.16

The reduced model is not compliant with the data (goodness-of-fit: p=0). The
true and the enlarged model are, as expected, compliant with the data. The enlarged
model has a lower χ2 value, which is however not significant, i.e., taking into account
4 additional reactions can not describe the data significantly better then the original
model (pwLRT).

9.4 AIC and BIC

Information theory-based approaches may be used to establish a ranking between
competing hypotheses. Based on the Kullback-Leibler Information measure (Kull-
back, 1987), Akaike suggested the Information Criterion AIC = −2LL + 2p with
the number of parameters p (Akaike, 1973). The preferred model is the one with the
lowest AIC value. The Bayesian Information Criterion, BIC = −2LL+p ln(N) also
takes into account the number of data points N , and tends to be more conservative
than AIC (Schwartz, 1978). If the set of investigated models contains the true one,
the BIC criterion is asymptotically consistent, but this may not be the case for AIC
(Bonate, 2006).

35

10 Advanced modeling techniques

10.1 Model families

Often, a basic model is extended to investigate new hypotheses. If the basic model
is changed, usually all extended versions have to be changed, as well. In order to
avoid redundant work, model families can be used, essentially exploiting the fact,
that PottersWheel model definition files are normal MATLAB functions: In the
header section, not an empty model is created by m = pwGetEmptyModel(), but
the mother model is used, m = NameOfMotherModel().

10.2 Algebraic equations: Rules, start value assignments
and events

The mathematical model may not only comprise differential equations, but also a
set of algebraic equations, e.g. if one parameter is always defined by the fraction
of two other parameters. Algebraic equations are distinguished by the time-point
when they are evaluated:

• So called rules are evaluated before each integration step, i.e. they re-calculate
functional relationships at each time-point of the model trajectory. In SBML,
they are referred to as assignment rules.

• Start value assignments are only evaluated once, namely before integration
starts. They can be used to determine parameters depending on the initial
value of some species, e.g. in order to fulfill a basal level constraint.

• Events are algebraic equations which should be evaluated when a specified
condition becomes true, which may happen several times during a time-course.
An illustrative example is a model for a jumping ball with height h. When the
ball hits the ground, i.e. h = 0, the movement direction has to be reversed.

PottersWheel supports all kind of algebraic equations. Currently, events are only
possible for parameters and not dynamic variables.

10.3 Basal states

In the small reaction network A→ B and B → A the steady state depends on the
parameter values of forward and reverse reaction. If the steady state corresponds to
an unstimulated system, modeling of the stimulated system requires initial values in
accordance to the unstimulated case. Since this basal level depends on the parameter
values, after each parameter change, e.g. during data fitting, a new basal level has to
be calculated. If an analytic calculation like in the small network is possible, start
value assignment can be used to set the corresponding variables. Otherwise, the
system should be integrated as long as required before stimulation start in order
to reach the basal steady state level. This can be achieved within PottersWheel
by specifying m.tStart and m.tPlotStart. The integration will start at m.tStart,
whereas the plotting starts not before m.tPlotStart which is useful if the system

36

reaches basal levels only after a long time period and the time span of interest is
much shorter.

10.4 Naming conventions

PottersWheel supports arbitrary IDs for reactants, products, and modifiers (en-
zymes), as long as only letters, numbers and the underscore are used and the first
character is not a number. However, in order to make use of subreaction–networks
and combinatorial complexity functionalities, the following conventions are recom-
mended:

• Basic species start with a capital letter, e.g. Erk and Mek

• Modifications are lower case prefixes, e.g. pErk and ppErk

• Species of a complex are separated by an underscore, e.g. pR pR and Gab1 Grb2

10.5 Rule based modeling for combinatorial complexity

Suppose a protein E with n different binding states E1, ..., En and acting enzymat-
ically on the reaction A → B. An exact mathematical ODE formulation requires
the ability to distinguish all different states of E leading to n reactions. If A also
has m different states, then there are m · n reactions that need to be formulated.
This phenomenon is called combinatorial complexity (Blinov et al., 2004; Borisov
et al., 2005; Conzelmann et al., 2006). In order to keep the number of reactions
small, PottersWheel supports rule-based modeling. For this, a regular expression-
like syntax has been developed for biochemical complexes. The above example with
only one species A would be formulated as

A→ B via ∗ E ∗

with * representing any other species which is in a complex with E. Also considering
all complexes involving A would lead to

∗ A ∗ → B via ∗ E ∗

In order to keep the unknown molecules, tagged expressions can be used:

<1:*> A <2:*>→ <1> B <2>

Not only different complexes involving a molecule can be distinguished, but also
different modification states of one molecule itself. The Erk molecule exists for
example in the states Erk, pErk, ppErk with none, one, or two phosphorylations.
The expression p|ppErk represents all phosphorylated Erk molecules and *Erk all
Erk molecules.

37

10.6 Derived variables and parameters

PottersWheel supports independent display and analysis of all dynamic variables
and all observables. Beyond this, it is sometimes useful to focus on a subset of
dynamic variables or on interesting function of variables, especially while working
with large models. For this reason, derived variables can be defined depending –
similar as observables – on the dynamic variables.

Similarly, not all parameters are of interest or for some parameters only their
fraction or another functional relationship detected by identifiability analysis should
be applied in a fit sequence analysis. Then derived parameters can be defined being
functions of the dynamical parameters.

10.7 Soft constraints

Implicit algebraic equations and inequalities can be considered during parameter
calibration as soft constraints. If a soft constraint is not fulfilled, a penalty term is
added to the minimized merit function. The scaling between model-data-residuals
and constraints can be specified by a λ factor.

An example of a simple constraint is max(A)/max(B) > 5, where the maximum
of species A should be at least 5 times higher than the maximum of species B.
Advanced constraints using inline MATLAB expressions are also possible, e.g. if
species A should be 5 times higher than the value of B at the maximum of A:
max(A)/B(A == max(A)).

10.8 Delay reactions

Signal transduction pathway models often contain delays, as in the example of
protein synthesis starting from transcription to translation. Using delay integrators
for delay differential equations requires specification of the first τ seconds of the
system variables with τ being the largest occurring delay. This approach leads to
exact delays. In A

τ→ B, a step input for A would lead to a delayed step input for
B. Since many biochemical processes are not expected to last always exactly the
same period of time but follow rather a distribution of time values, PottersWheel
applies the linear chain trick suggested by MacDonald (1976) where the delay of
an input signal g(t) is approximated by N steps with equal reaction rate k:

ẋ1 = kg(t)− kx1

ẋ2 = kx1 − kx2

...

ẋN = kxN−1

The mean delay is given as τ̄ = N
k

. Its standard deviation can be calculated as
στ = τ√

N
(for a proof see section B). Hence, for a standard deviation of 33%, N = 9

steps are necessary.

38

10.9 Network reconstruction

PottersWheel supports reaction based modeling, where a set of chemical reactions is
specified and will be translated into ordinary differential equations. In addition, an
ODE system can be entered directly, e.g. if the underlying system does not derive
from a chemical network or if only the differential equations are at hand. In order to
display a graphical representation of the system, PottersWheel translates the ODE
system into a network.

Saving the apoptosis example model using pwExportCouplesToPWODE as an PW
ODE model definition file yields:

ẋ1 = −k1x1x2 + k2x6 − k1x1x10 + k2x13 − k1x1x3 + k2x5 − k1x11x1 + k2x12 + k8 − k12x1

ẋ2 = −k1x1x2 + k2x6 − k4x2x8 − k13x2x4 + k5x3 + k9 − k12x2

ẋ3 = −k1x1x3 + k2x5 + k13x2x4 − k5x3 − k12x3

. . . = . . .

ẋ14 = +k1x1x10 − k2x13 + k13x12x4 − k5x13 − k12x13

Loading an ODE model based on these equations using pwAddODEModel leads to
exactly the same reaction network as the original one. The identity can be tested
with pwCompareReactionNetworks listing all reactions occurring only in one of the
networks.

10.10 Subnetworks

If a model is created in accordance to the PottersWheel naming convention (see
section 10.4), subnetworks can be visualized and printed as reaction lists. Then, it
is possible to detect typos, missing or wrong reactions even in large networks.

10.11 Model refinement

The general concept of data-based modeling is to fit an existing model to the ob-
served experimental data, to investigate the discrepancies between model trajec-
tories and data points, and if necessary to adapt the model structure accordingly.
Changes to the model often involve time-consuming tasks, which are automated
within PottersWheel. Newly modified models can be reloaded and the experimen-
tal data is applied automatically. Fitting or analysis procedures can be formulated
as MATLAB programs, reducing the time to apply the same procedures on a refined
model. Since crucial model parsing functions are implemented as C files, loading of
a model is very fast.

39

11 Experimental data

The PottersWheel documentation provides a detailed description of the supported
format of external data files. Here we describe two important features of Potters-
Wheel concerning efficient data handling and calculation of standard deviations.

11.1 Mapping dialog

Experimental data is saved in external ASCII or Excel files with arbitrary column
names. In order to efficiently map the names of model observables to the column
names, PottersWheel provides a mapping dialog. The model-data-connection can
be saved and is reused automatically when the data set is used with the same
observation again. Often, different experiments also have a different set of measured
system species. In this case, it would be very tedious to define data-set specific model
observations to match the correct set of observed species. Instead we recommend to
set up a model observation with the union of all potentially measured species and to
select ’not available’ in the mapping dialog for unavailable species in the currently
added data set.

11.2 Calculation of standard deviations

Each data point must have a standard deviation, expressing on the one hand the
relative uncertainty to trust the data point during parameter calibration and on
the other hand to render possible statistical conclusions about the model-data-
compliance. Data sets with too high standard deviations will be compliant with
many models.

Three approaches are available in PottersWheel to determine the standard de-
viation of each data point.

11.2.1 Direct specification

In the external data sheets, the standard deviation can be entered directly using
extra columns with the prefix stdCol-, e.g. for a species saved in column ’Erk’, the
standard deviations should be saved in a column ’stdCol-Erk’.

11.2.2 Error-model-based

Often, an error model is determined based on experimental test-measurements with
known true values. Within PottersWheel, this error model can be specified together
with the observables definition in pwAddY. For example an error model with 5%
relative and 10% absolute error (relative to the maximum of the observable over all
time points) is given by σi = 0.05yi + 0.1 max(y).

40

11.2.3 Smoothing-spline-based

A spline is usually a piecewise cubic function which can be used to approximate
a discrete time series at in-between points. Smoothing splines are not forced to
coincide with the original data points allowing for smoother, less oscillating approx-
imations (Reinsch, 1967). PottersWheel uses a smoothing spline of the measured
time course to estimate the observable, ŷ. The variance of point i is estimated by

σ̂2
i =

1

2h

h∑
i=−h

(yi+h − ŷi+h)2 (5)

The window width 2h+ 1 results from the characteristics of the time course. Note
that this approach is only reasonable when a sufficiently dense sampling of the time
course is available.

Different smoothing spline algorithms are supported by PottersWheel:

1. csaps of the MATLAB spline toolbox with adjustable smoothness parameter
based on de Boor (1978).

2. mgcv splines of the free statistics program R using generalized cross validation
(Wood, 2000).

3. csvspl splines (Craven and Wahba, 1979) using the freely available MATLAB
interface of Xie (2004), again with generalized cross validation to estimate the
unknown smoothness parameter.

41

Figure 21: PottersWheel Report Designer. Every analysis of PottersWheel can easily be
appended as a section to a report. Each section contains the figures and results of the analysis,
e.g. the values of fitted parameters. Sections can be renamed, reordered, and deleted. Figures
specific to a single section can be shown. Finally, the complete report can be saved as a pdf,
doc, or html document.

12 Reports, workspace, and SBML

PottersWheel provides a powerful reporting mechanism, with which after each anal-
ysis, the current figures can be added as a section to a report object by clicking the
’Append’ button of the main user interface. The order and title of each section can
be changed in the Report Designer. Fig. 21 shows the graphical user interface after
adding several analyses to a modeling report for the apoptosis signaling pathway.
The figures specific to one section can be viewed with the ’Figures’ button. In addi-
tion, selected sections can be deleted. LATEX-like citations, such as the description
of reactions or parameters are referenced in the report using bibtex. The report can
be saved as a PDF LATEX file, as a MS Word document or an HTML web-site. The
PDF file contains in addition to the pictures also information about the analysis
results, e.g. the values of fitted parameters if a fit has been added to the report.

The complete workspace can be saved, reloaded, and shared with colleagues. In
addition, the use of custom MATLAB functions based on the PottersWheel API,
allows the modeler to reproduce each step of the modeling and helps to automate
repetitive tasks.

In order to follow the MIRIAM standard (Novere et al., 2005), modeling results
can be saved within the public, standardized SBML format.

42

APPENDIX

A System requirements and the PottersWheel API

PottersWheel requires MATLAB 7.1 or better. Since 2005, it is intensively used on
Windows, Linux and Intel Mac OS X computers, for which system specific MEX
files are available. Please contact Thomas Maiwald if you are working on a different
platform. We tested the MEX compiler setup on Windows with lcc, on Linux with
gcc 3.3, 3.4, and 4.0.3, and on Mac with i686-apple-darwin9-gcc-4.0.1.

In order to use the fast integration scheme, where the differential equations and
the FORTRAN integrator are compiled into one executable, Windows user need to
install the freely available lcc.exe and fortran.exe. This is not required for Linux
and Mac OS X, since g77 is usually already available. Please download the Potters-
Wheel documentation for further installation details.

No special MATLAB toolboxes are required, since optimization and splines al-
gorithms of freely available toolboxes are included into PottersWheel.

A steadily growing number of currently 250 documented MATLAB functions
exist to apply PottersWheel procedures within own MATLAB scripts or from com-
mand line. Please visit the documentation section at www.PottersWheel.de for an
up-to-date list and description or use help functionName within the MATLAB
command window. The following program loads a model, adds two data sets, fits
the model, and generates a pdf report including a model graph and the fitted tra-
jectories with fitted parameter values:

pwAddModel(’Model1.m’); pwDuplicate;

pwSelect(1); pwAddData(’DataSet1.xls’);

pwSelect(2); pwAddData(’DataSet2.xls’);

pwSelect(’all’); pwCombine; pwFit;

pwReportAppendGraphsAndReactions;

pwReportAppendLastStep; pwReportGenerate;

B Standard deviation for linear-chain-trick

In the linear chain trick (MacDonald, 1976), the delay of a scaled input signal g(t)
is approximated by N steps with equal reaction rate k:

ẋ1 = kg(t)− kx1 (6)

ẋ2 = kx1 − kx2 (7)

ẋ3 = kx2 − kx3 (8)
...

ẋN = kxN−1 − kxN (9)

43

Then, it holds for the mean delay time and its standard deviation:

τ̄ =
N

k
, στ =

τ̄√
N

(10)

These relations can be proven by means of the Laplace transformation defined
as

F (s) = L{f(t)} =

∫ ∞
0

e−stf(t)dt (11)

with the following properties for a suitable real-valued function f(t):

• Linearity
L{a1f1(t) + a2f2(t)} = a1L{f1(t)}+ a2L{f2(t)} (12)

• Convolution

L
{∫ t

0

f1(t− τ)f2(τ)dτ

}
= L{f1(t)}L{f2(t)} (13)

• Differentiation

L{f (n)(t)} = snF (s)− sn−1f0 − . . .− sfn−2
0 − fn−1

0 , (14)

with f ν0 = lim
t→+0

dνf(t)

dtν

• Shifting
L{f(t− b)} = e−bsF (s) (15)

• Damping
L{e−αtf(t)} = F (s+ α) (16)

• Multiplication
L{tnf(t)} = (−1)nF (n)(s) (17)

Application of the Laplace transformation to equation 6 using rules 12 and 14 yields:

L{ẋ1} = L{kg(t)− kx1} (18)

⇔ sL{x1} − x1(0) = kL{g(t)} − kL{x1} (19)

With xi(0) = 0 ∀ i ∈ {1, ..., N} this reduces to

(s+ k)L{x1} = kL{g(t)} (20)

⇔ L{x1} =
k

s+ k
L{g(t)} (21)

In parallel, it holds for ẋi

L{ẋi} = L{kxi−1 − kxi} (22)

⇔ sL{xi} = kL{xi−1} − kL{xi} (23)

⇔ (s+ k)L{xi} = kL{xi−1} (24)

⇔ L{xi} =
k

s+ k
L{xi−1} (25)

(26)

44

Hence, the Laplace transformation of xN can be written as

L{xN} =
k

s+ k
L{xN−1} (27)

=

(
k

s+ k

)2

L{xN−2} (28)

=

(
k

s+ k

)N−1

L{x1} (29)

=

(
k

s+ k

)N
L{g(t)} (30)

In order to apply the convolution property to equation 30 the back-transformation
f(t) of F (s) = (k

s+k
)N is required. For this purpose, a special case of the multipli-

cation property is considered. Let f(t) ≡ 1 with F (s) = 1
s
, then

L{tN} = (−1)NF (N)(s) (31)

= (−1)N
(

1

s

)(N)

(32)

= (−1)N(−1)NN !
1

sN+1
(33)

= N !
1

sN+1
(34)

Applying the Laplace transformation backwards one gets(
k

s+ k

)N
= kN

1

(s+ k)N
(N − 1)!

(N − 1)!
(35)

=
kN

(N − 1)!
L{tN−1}(s+ k) (36)

=
kN

(N − 1)!

∫ ∞
0

e−(s+k)t tN−1dt (37)

=
kN

(N − 1)!

∫ ∞
0

e−st e−kt tN−1dt (38)

=
kN

(N − 1)!
L{e−kt tN−1} (39)

= L
{
kNe−kt

tN−1

(N − 1)!

}
(40)

(41)

Now equation 30 reads

L{xN} = L
{
kNe−kt

tN−1

(N − 1)!

}
L{g(t)} (42)

45

which can be back transformed by means of the convolution property 13:

xN(t) =
kN

(N − 1)!

∫ t

0

τN−1e−kτg(t− τ)dτ (43)

For a real delay differential equation with delay ∆t this equation would be

xN(t) =

∫ t

0

δ(∆t− τ)g(t− τ)dτ (44)

reducing the integral to
xN(t) = g(t−∆t), (45)

i.e., the value of xN at time t equals exactly the value of g at time t−∆t. Hence,
the integral kernel of equation 43 should converge with increasing N to the delta
function, mathematically

lim
N→∞

kN

(N − 1)!
τN−1e−kτ = δ(∆t− τ) (46)

for some suitable τ = τ(k). The Laplace transformation of the delta distribution
reads

L{δ(∆t− τ)} =

∫ ∞
0

δ(∆t− τ) e−sτdτ (47)

= e−∆t s (48)

which can be regarded as

e−∆t s = lim
N→∞

(
1 +

∆t s

N

)−N
(49)

=

(
N/∆t

s+N/∆t

)N
. (50)

On the other hand, the Laplace transformation of the integral kernel in equation 43
yields

L
{

kN

(N − 1)!
τN−1e−kτ

}
=

(
k

s+ k

)N
(51)

which equals equation 50 if k = N
∆t

. Hence, a delay differential equation with delay
∆t can be approximated via the composition of N compartments with rate constant
k = N

∆t
. The question arises how strong the kernel deviates from the δ function for

finite N , e.g. measured via the standard deviation. For this, the first two moments

46

of the kernel κN are calculated:∫ ∞
0

κN(t) t dt = kN
∫ ∞

0

tN

(N − 1)!
e−ktdt (52)

= kNN

∫ ∞
0

tN

N !
e−ktdt (53)

= kNNL{tN}(k) (54)

= kNN
1

kN+1
(55)

=
N

k
(56)

= ∆t (57)

(58)∫ ∞
0

κN(t) t2 dt = kN
∫ ∞

0

tN+1

(N − 1)!
e−ktdt (59)

= kNN(N + 1)

∫ ∞
0

tN+1

(N + 1)!
e−ktdt (60)

= kNN(N + 1)L{tN+1}(k) (61)

= kNN(N + 1)
1

kN+2
(62)

=
N2 +N

k2
(63)

= (∆t)2 +
(∆t)2

N
(64)

The variance is

< κ2
N > − < κN >2 = (∆t)2 +

(∆t)2

N
− (∆t)2 (65)

=
(∆t)2

N
(66)

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. Petrov and F. Csaki,

editors, 2nd International Symposium on Information Theory, pages 267–281, Budapest. Akademiai Kiado.

Bauer, P., Pötscher, B., and Hackl, P. (1988). Model selection by multiple test procedures. Statistics, 1, 39–44.

Blinov, M. L., Faeder, J. R., Goldstein, B., and Hlavacek, W. S. (2004). BioNetGen: software for rule-based modeling of

signal transduction based on the interactions of molecular domains. Bioinformatics, 20(17), 3289–3291.

Bogacki, P. and Shampine, L. (1989). A 3(2) pair of Runge-Kutta formulas. Appl. Math. Letters, 2, 1–9.

Bonate, P. L. (2006). Pharmacokinetic-Pharmacodynamic Modeling and Simulation. Springer.

Borisov, N. M., Markevich, N. I., Hoek, J. B., and Kholodenko, B. N. (2005). Signaling through receptors and scaffolds:

independent interactions reduce combinatorial complexity. Biophys J , 89(2), 951–966.

Breimann, L. and Friedman, J. (1985). Estimating optimal transformations for multiple regression and correlation. Journal

of the Americal Statistical Association, 80, 580–598.

47

Checchi, N. and Marsili-Libelli, S. (2005). Reliability of parameter estimation in respirometric models. Water Res, 39(15),

3686–3696.

Coleman, T. F. and Li, Y. (1996). An interior trust region approach for nonlinear minimization subject to bounds. SIAM

Journal on Optimization, 6, 418–445.

Coleman, T. F. and Verma, A. (2001). A preconditioned conjugate gradient approach to linear equality constrained

minimization. Computational Optimization and Applications, 20(1), 61–72.

Conn, A., Gould, N., and Toint, P. (1991). A globally convergent augmented lagrangian algorithm for optimization with

general constraints and simple bounds. SIAM Journal on Numerical Analysis, 28, 545 572.

Conn, A., Gould, N. I. M., and Toint, P. L. (1997). A globally convergent augmented lagrangian barrier algorithm for

optimization with general inequality constraints and simple bounds. Mathematics of Computation, 66, 261 – 288.

Conzelmann, H., Saez-Rodriguez, J., Sauter, T., Kholodenko, B. N., and Gilles, E. D. (2006). A domain-oriented approach

to the reduction of combinatorial complexity in signal transduction networks. BMC Bioinformatics, 7, 34.

Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions. Numerische Mathematik , 31, 377–403.

de Boor, C. (1978). A Practical Guide to Splines. Springer.

Dormand, J. and Prince, P. (1980). A family of embedded Runge-Kutta formulae. J. Comp. Appl. Math., 6, 19–26.

Finney, A. and Hucka, M. (2003). Systems biology markup language: Level 2 and beyond. Biochem Soc Trans, 31,

1472–1473.

Gansner, E. R. and North, S. C. (2000). An open graph visualization system and its applications to software engineering.

Goldberg, D. E. (1989). Genetic Algorithms in Search , Optimization and Machine Learning. Addison-Wesley.

Hairer, E. and Wanner, G. (1996). Solving Ordinary Differential Equations II: Stiff and Differentialalgebraic Problems.

Springer Verlag.

Hengl, S., Kreutz, C., Timmer, J., and Maiwald, T. (2007). Data-based identifiability analysis of non-linear dynamical

models. Bioinformatics, 23(19), 2612–2618.

Hornberg, J. J., Bruggeman, F. J., Binder, B., Geest, C. R., de Vaate, A. J. M. B., Lankelma, J., Heinrich, R., and

Westerhoff, H. V. (2005). Principles behind the multifarious control of signal transduction. ERK phosphorylation and

kinase/phosphatase control. FEBS J , 272(1), 244–258.

Ingber, L. (1989). Very fast simulated re-annealing. Math. Comput. Modelling, 12, 967–973.

Kreutz, C., Rodriguez, M. M. B., Maiwald, T., Seidl, M., Blum, H. E., Mohr, L., and Timmer, J. (2007). An error model

for protein quantification. Bioinformatics, 23(20), 2747–2753.

Kullback, S. (1987). The Kullback-Leibler distance. American Statistician, 41, 340–341.

Lagarias, J., Reeds, J. A., Wright, M. H., and Wright., P. E. (1998). Convergence properties of the Nelder-Mead simplex

method in low dimensions. SIAM Journal of Optimization, 9, 112–147.

Legewie, S., Blüthgen, N., and Herzel, H. (2006). Mathematical modeling identifies inhibitors of apoptosis as mediators of

positive feedback and bistability. PLoS Comput Biol, 2(9), e120.

Lehmann, E. (1986). Testing Statistical Hypothesis. Wiley.

Ludwig, C. (2006). www-m3.ma.tum.de/m3/software/odes.

MacDonald, N. (1976). Time delay in simple chemostat models. Biotechnol Bioeng, 18(6), 805–812.

Marsili-Libelli, S., Guerrizio, S., and Checchi, N. (2003). Confidence regions of estimated parameters for ecological systems.

Ecological Modeling, 165, 127–146.

Neyman, L. and Pearson, E. (1933). On the problem of the most efficient tests of statistical hypothesis. Phil Trans Roy

Soc A, 231, 289–337.

Nielsen, H. (2006). Immoptibox. http://www2.imm.dtu.dk/ hbn/immoptibox.

Nocedal, J. and Wright, S. J. (1999). Numerical Optimization. Springer, New York.

48

Novere, N. L., Finney, A., Hucka, M., Bhalla, U. S., Campagne, F., Collado-Vides, J., Crampin, E. J., Halstead, M., Klipp,

E., Mendes, P., Nielsen, P., Sauro, H., Shapiro, B., Snoep, J. L., Spence, H. D., and Wanner, B. L. (2005). Minimum

information requested in the annotation of biochemical models (MIRIAM). Nat Biotechnol, 23(12), 1509–1515.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1999). Numerical Recipes in C, The Art of

Scientific Computing, 2nd ed. Cambridge University Press.

R. E. Bankand W. C. Coughran, J., Fichtner, W., Grosse, E., Rose, D., and Smith, R. (1985). Transient simulation of

silicon devices and circuits. IEEE Trans. CAD, 4, 436–451.

Reinsch, C. (1967). Smooting by spline functions. Numerische Mathematik , 10, 177–183.

Sakata, S. (2001). ASAMIN - a MATLAB gateway routine to adaptive simulated annealing software.

http://www.econ.lsa.umich.edu/.

Schwartz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.

Shampine, L. and Reichelt, M. W. (1997). The MATLAB ODE suite. SIAM Journal on Scientific Computing, 18, 1–22.

Shampine, L. F. and Gordon, M. K. (1975). Computer Solution of Ordinary Differential Equations: the Initial Value

Problem. W. H. Freeman.

Shampine, L. F. and Hosea, M. E. (1996). Analysis and implementation of tr-bdf2. Applied Numerical Mathematics, 20.

Shampine, L. F., Reichelt, M. W., and Kierzenka, J. (1999). Solving index-1 DAEs in MATLAB and Simulink. SIAM

Review , 41, 538–552.

Wood, S. (2000). Modelling and smoothing parameter estimation with multiple quadratic penalties. J.R.Statist.Soc.B 62 ,

2, 413–428.

Xie, X. (2004). gcvsplmat toolbox. http://www.stat.wisc.edu/x̃ie/.

49

	The main graphical user interfaces
	Main window
	Equalizer

	Creating an apoptosis example model
	The model definition file
	Header
	Dynamic variables
	Reactions
	Dynamic parameters
	Algebraic equations (rules)
	Observables
	Driving input functions

	Graphical visualization of the reaction network

	Integration performance
	Stiff differential equations
	FORTRAN integrators
	MATLAB integrators
	Dynamical compilation of ODE as C MEX file
	Comparing integration time and accuracy

	Optimization performance
	Fitting in logarithmic parameter space
	Hybrid stochastic & deterministic approach
	Direct search
	Trust region
	Levenberg-Marquardt
	Simulated annealing
	Genetic algorithm

	Driving input
	Analytic interpolation
	Smoothing spline interpolation
	Designing new driving inputs

	Multi-Experiment Fitting
	Local and global parameters
	Application to the apoptosis model

	Fit and model analysis
	Fit sequence analysis
	Parameter identifiability
	System properties in case of non-identifiabilities
	Sensitivity Analysis
	Stimulus dependent view
	Residual analysis

	Confidence intervals
	The 2 landscape
	Hessian-based confidence intervals
	Monte-Carlo approach
	Comparison of confidence intervals

	Statistical tests
	Maximum Likelihood approach
	2 test
	Likelihood ratio test for nested models
	AIC and BIC

	Advanced modeling techniques
	Model families
	Algebraic equations: Rules, start value assignments and events
	Basal states
	Naming conventions
	Rule based modeling for combinatorial complexity
	Derived variables and parameters
	Soft constraints
	Delay reactions
	Network reconstruction
	Subnetworks
	Model refinement

	Experimental data
	Mapping dialog
	Calculation of standard deviations
	Direct specification
	Error-model-based
	Smoothing-spline-based

	Reports, workspace, and SBML
	System requirements and the PottersWheel API
	Standard deviation for linear-chain-trick

