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Abstract: Gene regulatory, signal transduction and metabolic networks are major areas of interest
in the newly emerging field of systems biology. In living cells, stochastic dynamics play an
important role; however, the kinetic parameters of biochemical reactions necessary for modelling
these processes are often not accessible directly through experiments. The problem of estimating
stochastic reaction constants from molecule count data measured, with error, at discrete time
points is considered. For modelling the system, a hidden Markov process is used, where the
hidden states are the true molecule counts, and the transitions between those states correspond
to reaction events following collisions of molecules. Two different algorithms are proposed for
estimating the unknown model parameters. The first is an approximate maximum likelihood
method that gives good estimates of the reaction parameters in systems with few possible reactions
in each sampling interval. The second algorithm, treating the data as exact measurements, approxi-
mates the number of reactions in each sampling interval by solving a simple linear equation.
Maximising the likelihood based on these approximations can provide good results, even in
complex reaction systems.

1 Introduction

The goal of the recently emerging interest in modelling
of biological processes is to understand and describe
quantitively the dynamics of living cells. In order to attain
this goal, new experimental procedures and modelling
techniques are needed to generate and analyse relevant
biological data. The latest experimental imaging techniques
enable researchers to measure biochemical processes at the
molecular level, including small molecule counts of reac-
tants. In systems with only a few molecules, classic mass
action kinetics are no longer valid for describing the reac-
tion dynamics. Therefore the usual approach to estimating
reaction rates by fitting solutions of law of mass action
differential equations to reactant concentrations is not
appropriate.

Instead, reaction rates are determined based on the
probability of collision and reaction of individual mol-
ecules. In this article, we present two algorithms for estimat-
ing the kinetic reaction constants from time series of
molecule counts measured with error. This work is a
contribution to the solution of a core problem in systems
biology: the identification of the structure and the dynamics
of biochemical networks.

The importance of noise in cell dynamics has been
pointed out in numerous recent articles. In many cases,
when small numbers of molecules react in a stochastic
manner, macroscopic concepts such as chemical

concentration cannot be used to describe the stochastic
dynamics. One of the earliest prominent stochastic models
of cellular dynamics is the lambda phage switch [1] that
determines the outcome of a viral infection. Another
example is the observed phenomenon of individual differ-
ences among genetically identical bacteria, which is
thought to be based on varying stochastic gene expression
[2]. Molecular noise also can lead to behavioural variability
in bacteria [3]. Through a stochastic resonance-like phenom-
enon, cells can use stochastic fluctuations to enhance their
sensitivity to external signals [4]. A stochastic switch in
enzyme kinetics was described by Samoilov et al. [5].

In gene regulatory networks, noise is believed to play an
important role because only a small number of mRNA
molecules are generated in transcription [6, 7]. Also,
transcription factor binding and gene expression are
highly stochastic and likely the original sources of cellular
noise [8]. Paulsson [9] gave an exhaustive review of the
different sources of noise that can be separated into intrinsic
and extrinsic sources, as investigated theoretically by Swain
et al. [10] and experimentally by Elowitz et al. [11]. Gene
regulation networks can be subdivided into modules and
motifs [12] that perform different functions. For example,
feedback loops can dampen and control the amount of
noise [13] and thus increase reliability of signal transduc-
tion. Thattai et al. [14], as well as Kierzek et al. [15],
suggested in modelling studies that noise in gene expression
arises mainly at the translational level, whereas Kepler and
Elston [16] investigated the origin and characteristics of
noise from transcriptional processes. A recent experimental
study of rates of gene transcription by fluorescence methods
in single cells demonstrated the stochastic nature of mRNA
production, which occurs in bursts when polymerase is
bound to DNA [17].

Even though stochastic effects are present in all
aspects of cellular dynamics, they can be detrimental to
processes that are vital for the cell’s survival. For
example, the circadian clock, which many living systems
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possess, must be robust against random molecular events.
Small numbers of molecules are involved in the clock
mechanism, and Barkai and Leibler [18] showed that the
accuracy of the generated rhythm is limited by the
amount of noise.

There is evidence that cells have adjusted to the
stochasticity inherent in biochemical reactions and have
developed strategies to control it and even use it to their
advantage [19]. Noise seems to be minimised in the
expression of genes that are critically important to cell
function [20]. One mechanism of noise attenuation in
gene expression may be post-transcriptional control [21],
resulting in reliable expression of important genes.
Shibata and Fujimoto [22] discussed the limitations of
faithful signal transduction by intrinsic and extrinsic noise.

Most previous studies of parameter identification in
regulatory networks have dealt only with deterministic
models. In signal transduction networks, the estimation of
kinetic parameters can be performed by local and global
optimisation methods [23, 24] and Bayesian networks
[25]. In differential equation models of gene networks,
Perkins et al. [26] estimated parameters from expression
data. The connection between stochastic and deterministic
effects in biochemical reaction networks was discussed by
Puchalka and Kierzek [27].

For the forward problem of simulating stochastic chemi-
cal systems, Gillespie [28] introduced a now widely used
algorithm. In most theoretical studies that employ this
method, parameter values are set to biologically plausible
levels or estimated from in vitro experiments on the macro-
scopic level [16, 27, 29]. For the inverse problem of obtain-
ing parameters, kinetic rate constants are normally
estimated by fitting law-of-mass action dynamics to exper-
imentally measured concentration curves. The stochastic
rate constants can be derived from these deterministic reac-
tion rate constants [30]. However, this is not possible in
many biological systems where the components cannot be
isolated from cells. For example, genetic transcription and
regulation mechanisms rely on the whole machinery of
the cell and cannot be studied separately. Thus, these
small-scale reactions are accessible only by in situ measure-
ment techniques, for example, fluorescence methods [31].

Some recent studies have attempted to estimate stochastic
rate constants from exact molecule count data, assuming
that the counts follow a Markov chain (as per Gillespie
[28]). Becskei et al. [8] fitted a log-normal error model to
stochastic gene expression data, whereas Golightly and
Wilkinson [32] used a stochastic differential equation
approximation. Boys et al. [33] demonstrated that
Bayesian inference methods can give estimates of stochastic
reaction constants for both continuously and discretely
sampled data. These authors also explored parameter esti-
mation in data-poor scenarios when only some of the
involved species can be measured. However, we are not
aware of any literature on the problem of estimating the
reaction parameters in stochastic systems with small mol-
ecule counts which are measured with error.

In this article, we propose two different algorithms for
stochastic kinetic parameter estimation from data with
observation errors, assuming that the (unobserved) mol-
ecule counts follow a Markov chain. The resulting model
is a hidden Markov model (HMM), where the hidden
states are the true molecule counts, and transitions
between these states correspond to reaction events follow-
ing the collision of molecules.

Our first algorithm follows the classical approach of
maximum likelihood estimation of HMMs, and specifies
an analytic expression for the likelihood. As discretely

sampled data contain information only about the change
in molecule counts – not the order or type of reactions
that occurred during the sampling interval – this expression
is a complicated sum of the probabilities of each possible
sample path. Therefore evaluation and maximisation are
computationally expensive. We demonstrate that this
method can be used to estimate the parameters in simple
systems where the state space is low dimensional, and the
reaction rates are slow, relative to the sampling rate.

Our second algorithm treats the data as exact measure-
ments and approximates the number of reactions in each
sampling interval by solving a simple linear equation.
Parameter estimates are then obtained by maximising the
likelihood based on these values. As the true number of
molecules at each time point is assumed to follow a
Markov chain, this likelihood is much simpler, and hence
much faster to evaluate and maximise than the HMM like-
lihood. Simulation studies show that this method can give
good results even with measurement error.

2 Definition of the system

For a fixed time point, let Xn, n ¼ 1, . . . , N, denote the
number of molecules of species n. A general system of
(bio-)chemical reactions can be written in typical chemistry
stoichiometric notation as

lm1X1 þ lm2X2 þ � � �! rm1X1 þ rm2X2 þ . . . ð1Þ

Here, the coefficients lmn and rmn denote the numbers
of molecules of species n consumed and produced,
respectively, in reaction m, m ¼ 1, . . . , M. Let lm ¼
(lm1, . . . , lmN) and rm ¼ (rm1, . . . , rmN) so that a reaction
of type m changes the numbers of molecules by
nm ; 2lmþ rm.

In reaction systems, the number of molecules of each
species evolves over time. Let X(t) ¼ (X1(t), . . . , XN(t)),
where Xn(t), n ¼ 1, . . . , N, denotes the number of mol-
ecules of species n at time t. As argued by Gillespie [28],
the process X(t) follows a continuous-time Markov chain,
with changes in state determined by reactions among
molecules. In particular, it is a jump process with state-
dependent transition probabilities.

Chemical reactions can occur if molecules collide, and
hence the rate of reaction of type m at a time t depends on
the state of the system at this time. In particular, the prob-
ability that reaction m results from a collision is a function
of a reaction constant cm and the number of possible
collisions between molecules of the species involved. The
values c ¼ (c1, . . . , cM) are similar to deterministic
law-of-mass-action reaction constants. The propensity for
reaction m at time t is then

am ¼ cm

Y
n

½XnðtÞ�
lmn ð2Þ

where am dt is the probability that reaction m will occur in
the time interval [t, tþ dt], given that the system is in state
X(t) at time t [28].

In this work, we assume a ‘well-stirred’ medium, that is
there are no spatial effects such as local accumulation of
molecules or metabolic channelling. Then, the joint distri-
bution of the waiting time until the next reaction (t) and
the type of reaction that occurs (m) is

Pðm; tÞ ¼ am expð�a0tÞ ð3Þ

where a0 ¼
P

mam is the overall reaction propensity.
In practice, it is not possible to measure X(t) exactly and

continuously in time. However, with new experimental
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techniques such as fluorescence methods, it is possible to
measure small numbers of molecules (with some error) at
discrete time points. Denote the observed measured count
of species n at time ti by On(ti), t0 ¼ 0, t1, . . . , tR, and let
O(ti) ¼ (O1(ti), . . . , ON (ti)).

We assume that On(ti) ¼ Xn(ti)þ en(ti), and that the
measurement errors en(ti) are i.i.d. Gaussian distributed
with mean 0 and variance s. This assumption implies
that, conditional on Xn(ti), On(ti) is independent of all
other observations and all other molecule counts. In other
words, the process O(ti) follows a HMM.

Finally, in this article, we consider only the case where
the sampled time points are equally spaced at intervals of
length Dt, although this assumption could easily be
relaxed. In this case, the unobserved process X(ti) is a time-
homogeneous Markov chain.

We present two simple examples of such reaction
systems with the goal of estimating the reaction parameters
c1, . . . , cM, and s from the observed data.

2.1 Example: a simple gene expression model

As a simple example, we use the following simple system of
stochastic gene transcription, as investigated and modelled
by Golding et al. [17]. In E. coli, a green fluorescent
protein tag was introduced to create fluorescent mRNA
from a specific gene. The resulting fluorescence can be
measured in individual cells and converted into mRNA
count data. Because there is only one copy of the tagged
DNA sequence, as well as a small number of polymerase
proteins that initiate transcription in each cell, the transcrip-
tion process is highly stochastic with very different time
courses of mRNA copy numbers in different cells [17].
Using high-resolution fluorescence microscopy, the exper-
imenters were able to measure mRNA copy numbers with
good accuracy (error ,1 molecule) and at high sampling
rates (2 measurements/min).

We use the model described by Golding et al. [17] to
describe the gene transcription process. The DNA for the
tagged mRNA is switched on and off by polymerase
binding and unbinding, respectively. Only polymerase-
bound DNA is transcribed into mRNA that consequently
grows in count monotonically. The system takes the form

R1: DNAOFF ! DNAON

R2: DNAON ! DNAOFF

R3: DNAON ! DNAON þmRNA

The reaction rates associated with R1, R2 and R3 are c1, c2

and c3, respectively. During a reaction of type m, the state
X ¼ (X1, X2, X3) ¼ (DNAOFF, DNAON, mRNA) changes
by n1 ¼ (21, 1, 0) if R1 occurs, n2 ¼ (1, 21, 0) if R2

occurs and n3 ¼ (0, 0, 1) if R3 occurs.
As initial conditions in this system, we set DNAOFF ¼ 1,

DNAON ¼ 0 and mRNA ¼ 0, and as parameter values c1 ¼
0.0270 min21, c2 ¼ 0.1667 min21 and c3 ¼ 0.40 min21 [17].
Fig. 1 shows mRNA counts of different realisations of this
process at a fixed sampling rate, Dt ¼ 0.5 min. When
DNA is switched on by polymerase binding, transcription
of the gene into mRNA starts, and the mRNA count
grows. Transcription is terminated by unbinding of poly-
merase and switching off of DNA, leading to burst tran-
scription with long intervals of constant mRNA counts.

2.2 Example: a transcriptional regulatory system

As an example of a more complex biochemical stochastic
reaction system, we use a model of transcriptional

regulation that was proposed by Goutsias [34]. Here, the
mRNA is translated into a protein monomer M that can
dimerise. The dimer D, in turn, can bind to its DNA and
act as a transcription factor to autoregulate its own mRNA
production. Both mRNA and protein monomers are
degraded at constant rates.

The stochastic model of our version of the Goutsias tran-
scriptional regulation system consists of eight reactions
involving five molecule species

R1: mRNA! mRNAþM

R2: M !1
R3: DNA � D! mRNAþ DNA � D

R4: mRNA!1
R5: DNAþ D! DNA � D

R6: DNA � D! DNAþ D

R7: 2M ! D

R8: D! 2M

Here we neglect the double binding and unbinding of
dimers to DNA in the original model, which has a very
low reaction rate (0.8765 � 10211 s21 by Goutsias [34]).
Such reactions with such low rates are hardly observed in
short time series, and consequently the associated rates
cannot be estimated reliably with any algorithm. As initial
values we use M ¼ 2, D ¼ 4, DNA ¼ 2, and mRNA ¼ 0,
and dimer-bound DNA, DNA . D ¼ 0. The parameter
values are c ¼ (0.043, 0.0007, 0.0715, 0.00395, 0.02,
0.4791, 0.083, 0.5), with all individual reaction constants
in units of per second [34].

Fig. 2 shows a plot of the stochastic behaviour of M, D
and mRNA. As in Golding’s system, RNA is produced in
a stochastic manner when the dimer is bound to DNA.
The protein monomers produced by RNA translation dimer-
ise and de-dimerise at high rates, leading to fluctuating
molecule counts.

3 Parameter estimation

For estimation of reaction parameters c1, . . . , cm, and noise
strength s from time series of molecule counts observed
with error, we develop two different algorithms.
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Fig. 1 Three realisations (without measurement error) of
Golding’s stochastic gene expression model, showing the
mRNA counts as can be measured experimentally by fluorescent
tagging
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3.1 Approximate maximum likelihood (AML)
method

The likelihood of the observation given a set of parameter
values can be computed as follows (using f generically to
represent a density)

L ¼ f ðOðt1Þ; . . . ;OðtRÞÞ

¼
X

x1

� � �
X

xR

f ðOðt1Þ; . . . ;OðtRÞjX ðt1Þ

¼ x1; . . . ;X ðtRÞ ¼ xRÞPðX ðt1Þ ¼ x1; . . . ;X ðtRÞ ¼ xRÞ

¼
X

x1

� � �
X

xR

Y
i;n

f ðOnðtiÞjXnðtiÞ ¼ xinÞ

( )
PðX ðt1Þ ¼ x1Þ

�
YR

i¼2

PðX ðtiÞ ¼ xijX ðti�1Þ ¼ xi�1Þ

This summation is over a prohibitively large number of
terms. However, the special structure of the HMM allows
us to simplify this expression. In particular, letting
px 1
¼ P(X(t1) ¼ x1) and Px i21, x i

¼ P(X(ti) ¼ x ijX(ti21) ¼
x i21), we can write

L ¼
X

x1

px1

Y
n

f ðOnðt1ÞjXnðt1Þ ¼ x1nÞ

�
X

x2

Px1;x2

Y
n

f ðOnðt2ÞjXnðt2Þ ¼ x2nÞ � � �

X
xR

PxR�1;xR

Y
n

f ðOnðtRÞjXnðtRÞ ¼ xRnÞ ð4Þ

This expression is equivalent to a product of matrices, and
hence is easy to compute if N is not too large and the
state space of X(ti) is limited.

In general, X(ti) can take on any positive integer value
(i.e. its state space is infinite), so evaluation and maximisa-
tion of the likelihood is more challenging. For this reason,
we make two approximations:

1. We take f(On(ti)jXn(ti) ¼ xin) ¼ 0 for jOn(ti) 2 xinj .
s
p
s for some integer number s.

2. We assume that a fixed maximum number reactions can
occur per time interval.

Both approximations effectively reduce the dimension of the
summation over x i. In particular, the first restricts the range of
X(ti), given O(ti). This is equivalent to assuming that the
measurement error follows a truncated Gaussian, rather than
a Gaussian distribution. The second approximation relies on
the assumption that Px i21,xi

¼ 0 for most pairs (x i21, x i). In
other words, under this approximation, the matrices in (4)
are sparse so that their product is easy to compute.

Then we can compute Px i21, xi
by determining which

reactions could have occurred in the interval (ti21, ti].
Under the assumption of no more than two reactions per
time interval, for example, we apply the following results:

Case 1: No reaction takes place in the interval (ti21, ti].
Then X(ti) ¼ X(ti21) and

Pðno reaction in ðti�1; ti�Þ ¼ 1�
X
m

ðDt

0

ame�a0t dt

¼ e�a0Dt

where Dt ¼ ti 2 ti21.

0 50 100 150 200 250 300 350 400 450
0

10

20

30

40

M
on

om
er

0 50 100 150 200 250 300 350 400 450
0

20

40

60

80

D
im

er

0 50 100 150 200 250 300 350 400 450
0

5

10

15

20

t, s

m
R

N
A

Fig. 2 Sample trace of a realisation of the transcriptional regulatory system, measured without error
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Case 2: Exactly one reaction of type m occurs in the interval
(ti21, ti]. Then X(ti) ¼ X(ti21)þ nm and

Pðonly reaction m in ðti�1; ti�Þ

¼

ðDt

0

ame�a0tPðno reaction in ðt; ti�Þ dt

¼

ðDt

0

ame�a0te�a
0
0ðDt�tÞ dt

¼
am

a0 � a00
e�a

0
0Dt
� e�a0Dt

h i
ð5Þ

Here, a00 denotes the changed propensity after a reaction of
type m.

Case 3: Exactly two reactions of types m1 and m2 occur, in
that order, in the interval (ti21, ti]. Then, X(ti) ¼ X(ti21)þ
nm1
þ nm2

and

Pðreaction m1 and then m2 in ðti�1; ti�Þ

¼

ðDt

0

am1
e�a0t

ðDt

t

Pðonly reaction m2 in ðs; ti�Þ dt

¼

ðDt

0

am1
e�a0t

a0m2

a00 � a000
½e�a

00
0ðDt�tÞ

� e�a
0
0ðDt�tÞ

� dt

¼
am1

a0m2

a00 � a000

e�a000Dt
� e�a0Dt

a0 � a000
�

e�a00Dt
� e�a0Dt

a0 � a00

" #

Here, a0m2
and a00 again denote the changed propensities after

reaction m1, and a000 denotes the overall reaction propensity
after reactions m1 and m2.

In the case that a0 does not change during a reaction,
these formulas simplify considerably. For example, the for-
mulas for one and two reactions in an interval reduce to
am exp(2a0Dt)Dt and am1am2 exp(2a0Dt)Dt3/6, respectively.

We can now compute

Pxi�1;xi
¼ Pðno reaction in DtÞ1ðxi ¼ xi�1Þ

þ
X
m

Pðonly reaction m in DtÞ1ðxi ¼ xi�1 þ nmÞ

þ
X
m1

X
m2

Pðreaction m1 and then m2 in DtÞ

� 1ðxi ¼ xi�1 þ nm1
þ nm2

Þ

where 1(.) is an indicator function equal to 1 if the argument
is true and 0 otherwise.

These approximations allow us to evaluate the likelihood.
Underflow errors may arise in the case of long time series.
For this reason, we store intermediate computational results
in scientific notation. We then use a numerical maximisa-
tion routine (e.g. the quasi-Newton routine) to find the
maximum likelihood estimates (MLEs).

It should be noted that our assumption of a fixed limited
number of reactions per time interval is valid only when the
sampling rate is high relative to the reaction rates.
Typically, this condition will be satisfied only for small
systems. The assumed maximum number of reactions per
time interval can be adjusted depending on the sampling
and reaction rates of the system of interest; however, the
cost is increased complexity in the computation of Pxi21, xi

.
In the implementation of our algorithm, as the reaction

rate parameters and s are all non-negative, we transform

the parameters and maximise the log-likelihood over these
transformed values to simplify computations. We define
c�i ¼ log ci and s� ¼ log s, and re-write the log-likelihood
in terms of c�i and s�. As the range of c�i and s� is the
entire real line, maximising over these parameters is
easier than maximising over the original parameters. By
the invariance property of the MLEs, ĉi ¼ eĉ�i and ŝ ¼ eŝ

�

.
One advantage of the AML method is that, if our

simplifying assumptions are valid, the MLEs are
guaranteed to be consistent and asymptotically normal,
and the diagonal entries of the negative inverse of the
observed Fisher information matrix (the matrix of second
derivatives of the maximised log-likelihood) provide
approximate variances [35].

3.2 Singular value decomposition likelihood
(SVDL) method

In this section, we develop an algorithm that works for
large systems, when many reactions occur in each time
interval. This algorithm works for some small systems as
well. The key idea is that the observations are treated as
exact molecule counts without error, so that the number
of reactions in each time interval can be approximated by
solving a linear equation. Then, parameter estimates can
be obtained by maximising the likelihood based on these
values.

First, consider the case where the observations truly
are measured without error, that is O(ti) ¼ X(ti). Then, the
difference between X(ti) and X(tiþ1) is necessarily a linear
combination of the nms, m ¼ 1, . . . , M, with non-negative
integer coefficients. The coefficients indicate how
many times each type of reaction has occurred during the
interval.

Let n be the matrix with jth row given by nj,
j ¼ 1, . . . , M. We then solve the linear equation

ðXðtiþ1Þ � X ðtiÞÞ
T
¼ nTC i

ð6Þ

for C i [ NM, where C i is the M-dimensional column vector
of coefficients with jth entry Cj

i.
The uniqueness of C i cannot be assumed automatically.

For example, if both a reaction and its reverse can occur,
the number of reactions will not be uniquely determined
by X(ti) and X(tiþ1), as multiple forward and backward reac-
tions may have occurred. In such a system, the rates of these
reactions may be underestimated. Even if the matrix does
not have full rank, so that the solution is not uniquely deter-
mined, a singular value decomposition will give a solution
of minimum norm. Because only non-negative numbers of
reactions are possible, we may have to add an appropriate
vector from the nullspace of n in order to obtain the
minimum norm non-negative solution.

From the solution C i, Pxi, xiþ1
can be computed. Note that

the observed data do not give information on the order of
the reaction events, so all different permutations of the
reaction order must be considered. Then exact computation
of the probability of such events becomes complicated as
the number of reactions in the sampling interval increases.

One way of circumventing this problem is to assume
that am, m ¼ 1, . . . , M, is constant during each sampling
interval. (See Gillespie [36] for a similar assumption
about the forward problem.) This assumption is reasonable
for systems with many molecules. We can now calculate
the probability that certain reactions occur in a sampling
interval using this singular value decomposition approach.
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Case 1: X(ti) ¼ X(ti21). We assume that no reaction takes
place in the interval (ti21, ti], and hence

Pxi�1;xi
¼ Pðno reaction in ðti�1; ti�Þ

¼ e�a0Dt

as above.

Case 2: X(ti) ¼ X(ti21)þ nm for some m. We assume that
only one reaction of type m has occurred in (ti21, ti], and
hence

Pxi�1;xi
¼ Pðonly reaction m in ðti; tiþ1�Þ

¼

ðDt

0

ame�a0t Pðno reaction in ðt; tiþ1�Þ dt

¼

ðDt

0

ame�a0te�a0ðDt�tÞ dt

¼ ame�a0DtDt

Note the difference between this formula and (5), where we
included the changed overall reaction rate a00.

In general, the probability that reactions m1, . . . , mK

occur (in that order) in a sampling interval is

Pðreactions m1; . . . ;mK in ðti; tiþ1�Þ

¼
YK
l¼1

aml

 !
e�a0Dt Dt2K�1

ð2K � 1Þ!
ð7Þ

as can easily be proven by induction (see the
Supplementary). The solution to (6), C i, specifies how
many reactions of each type have occurred in the sampling
interval, but does not identify the order of these reactions.
Therefore if, according to C i, reactions m1

i , . . . , mKi
i have

occurred (in some unknown order) in (ti21, ti], then

Pxi�1;xi
¼

K
i!QM

l¼1 Ci
l !

YKi

l¼1

ami
l

 !
e�a0Dt Dt

2Ki
�1

ð2Ki � 1Þ!

where the first factor is the number of possible permutations
of these Ki reactions.

The log-likelihood based on the observations X(ti) can
then be computed as

logL ¼ logðPðX ðt1Þ ¼ x1; . . . ;X ðtRÞ ¼ xRÞÞ

¼ log px1

YR

i¼2

Pxi�1;xi

 !

¼ �a0DtðR� 1Þ þ
XR

i¼2

 
ð2Ki
� 1Þ logðDtÞ

þ
XKi

l¼1

logðami
l
Þ �

X2K
i
�1

l¼Kiþ1

logðlÞ �
XM
l¼1

log Ci
l !

!
ð8Þ

This SVDL (8) can then be maximised using a numerical
optimisation method.

We return now to the more realistic scenario where
the molecule counts are measured with error so that
O(ti) = X(ti). In this setting, the exact number of reactions
can no longer be computed. However, we simply ignore the
measurement error and solve (6) using the non-integer
observations, O(ti). We round the values obtained in order
to obtain an approximation to the number of each type of
reaction, which can be used to evaluate and maximise (8).

The log-likelihood (8) corresponds to a Markov chain
model rather than a HMM, and hence is much easier to
compute than the log-likelihood in the AML method (4).
In particular, (8) is a simple sum, whereas (4) is a product
of matrices. For this reason, the SVDL method is much
faster than the AML method, and hence makes estimating
parameters of complex reaction systems more feasible.

4 Results

In this section, we present simulation studies of the simple
gene transcription and the more complex transriptional
regulation systems to demonstrate the performance of the
AML and the SVDL algorithms.

The systems are simulated using the Gillespie algorithm
to generate time series of molecule counts. These are
sampled at regular time intervals of length Dt to mimic
experimental measurements. We then add Gaussian white
noise with standard deviation s to these counts to simulate
measurement error. The focus of this investigation is how
the performances of the algorithms vary with the parameters
s, Dt and R, and for each parameter choice we perform 100
simulation and estimation runs.

Table 1: Average (standard deviation) of the estimates of Golding’s stochastic gene expression model parameters
using the AML algorithm

R Dt s Parameter estimates

c1 c2 c3 s

300 1.0 1.0 0.0276(0.0158) 0.1494(0.0866) 0.3708(0.1611) 1.0012(0.0869)

300 1.0 0.1 0.02930(0.0168) 0.1875(0.1145) 0.3792(0.1789) 0.1004(0.0077)

300 1.0 3.0 0.03197(0.0205) 0.1201(0.0703) 0.3023(0.1565) 3.0189(0.2465)

300 0.5 1.0 0.04247(0.0277) 0.2415(0.1662) 0.4595(0.2213) 0.9952(0.1023)

300 0.5 0.1 0.03321(0.0232) 0.2560(0.2790) 0.4908(0.3373) 0.1014(0.0083)

300 0.5 3.0 0.03257(0.0276) 0.1951(0.1557) 0.4498(0.3276) 2.9969(0.2436)

600 0.5 1.0 0.02990(0.0160) 0.1875(0.1496) 0.3834(0.1601) 1.0002(0.0658)

600 0.5 0.1 0.0322(0.0143) 0.2262(0.1806) 0.4393(0.2117) 0.1005(0.0058)

600 0.5 3.0 0.0341(0.0189) 0.2072(0.1308) 0.4211(0.2112) 3.0463(0.1762)

The true parameter values were c1 ¼ 0.027, c2 ¼ 0.1667, c3 ¼ 0.4, and the initial values were X1(0) ¼ 1, X2(0) ¼ 0, X3(0) ¼ 0
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4.1 Simple gene expression system

For the AML algorithm, we limit the likelihood calculation
to a maximum of two reactions per sampling interval, and
assume that Xn(t) falls within 3s of On(t). These assump-
tions are justified by the experimental conditions used by
Golding et al. [17] on this system. We also assume that
the initial state of the system is known, so that
p(1,0,0) ¼ 1. The initial probabilities could also be estimated
with the AML method, although at the cost of increased
computational time. We use the true parameter values as
starting values in the quasi-Newton routine. Because in
Golding’s experimental setup only mRNA rates were
measured, the estimation is performed using only the
mRNA measurements, whereas DNAON and DNAOFF are
hidden.

Table 1 gives the averages and sample standard devi-
ations of the parameter estimates obtained using the AML
algorithm. In general, the algorithm delivers good estimates
of the original parameter values with reasonably small
standard deviations. Increased measurement error naturally
leads to less precision in the parameter estimates, but inter-
estingly the error is not much higher under more observa-
tional noise. In addition, we see that for a constant
number of sampling points, R, the parameters are estimated
better when the sampling rate, Dt, is lower (i.e. the obser-
vation period is longer). This result is to be expected, as
over a longer time period we would see more reactions,
and hence have more information about the reaction pro-
pensities. Consequently, more sampling points, reflecting
longer time series, also improve estimation accuracy. The
noise strength s is estimated quite accurately as well.

The performance of parameter estimation can be
improved if a number of traces from one or multiple cells
are lumped together and the total likelihood is maximised

(see Golding et al. [17] for a similar procedure on exper-
imental data). Table 2 gives the averages and sample devi-
ations of the parameter estimates in the case of estimation
using five traces. The standard deviations are noticeably
lower than in Table 1, reflecting decreased variation in indi-
vidual estimates. Whether such estimation from multiple
traces is possible in practice will depend on the system
under investigation, the experimental conditions and the
constancy of reaction rates among traces.

Table 3 shows parameter estimates obtained with the
SVDL algorithm. We use random starting values for the
quasi-Newton optimisation routine. In all estimation runs,
data from all molecule species are included (in contrast to
the AML method) because the SVDL method cannot incor-
porate a state space search over hidden variables. As this
method implicitly assumes exactly measured molecule
counts, we do several runs with s ¼ 0. In this case, the par-
ameters are estimated with good accuracy for longer time
series. For shorter time series and higher sampling rates,
the standard deviation increases, reflecting the lack of infor-
mation about the parameters contained in the data. The best
estimation results are obtained from long time series with
high sampling rates.

When observational error is added to the data, the SVDL
algorithm is still able to generate estimates of the reaction
rates, albeit with higher standard deviations. For s ¼ 1.0,
as in the experiments, the precision of the parameter esti-
mates is decreased, especially of c1 (note that in this
system, c1 is the smallest reaction rate, and hence R1

occurs least frequently). Again, estimation from a number
of combined data time series greatly improves estimation
accuracy and decreases the standard deviations, as shown
in Table 4. In systems with few reactions over the time
course of one data time series, as in this simple model
(see also Fig. 1 [17]), such a combination of multiple time

Table 2: Average (standard deviation) of the estimates of Golding’s stochastic gene expression model using the AML
algorithm with five independent time series in each run

R Dt s Parameter estimates

c1 c2 c3 s

300 1.0 1.0 0.0257(0.0054) 0.1409(0.0402) 0.3461(0.0630) 1.0025(0.0504)

300 1.0 0.1 0.0268(0.0061) 0.1523(0.0424) 0.3741(0.0557) 0.1012(0.0031)

300 1.0 3.0 0.0250(0.0065) 0.1140(0.0337) 0.3160(0.0674) 3.0292(0.1393)

300 0.5 1.0 0.0282(0.0110) 0.1890(0.0960) 0.3752(0.0909) 1.0013(0.0411)

300 0.5 0.1 0.0264(0.0079) 0.1642(0.0716) 0.3863(0.1036) 0.1004(0.0038)

300 0.5 3.0 0.0310(0.0116) 0.1695(0.0897) 0.3891(0.1425) 3.0378(0.1452)

The true parameter values are as in Table 1

Table 3: Average (standard deviation) of the estimates of the simple gene expression
parameters using the SVDL algorithm

R Dt s Parameter estimates

c1 c2 c3

300 0.5 0.0 0.0299(0.0166) 0.1934(0.1271) 0.3612(0.2564)

300 1.0 0.0 0.0280(0.0114) 0.1775(0.0765) 0.3712(0.1133)

600 0.5 0.0 0.0271(0.0107) 0.1826(0.0865) 0.3891(0.1036)

600 1.0 0.0 0.0263(0.0076) 0.1678(0.0433) 0.3708(0.0672)

300 1.0 0.1 0.0236(0.0105) 0.1576(0.1457) 0.4660(0.3993)

300 1.0 0.5 0.0287(0.0214) 0.1182(0.1305) 0.3541(0.4231)

300 1.0 1.0 0.0447(0.1306) 0.1164(0.1447) 0.3381(0.5421)

Parameter values are as in Table 1
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series may be necessary to obtain a good parameter
estimate.

These results demonstrate that the approximate reaction
numbers, calculated with the singular value decomposition
method, are sufficiently close to the real reaction numbers,
to provide good estimates when sufficient sampling points
are considered.

In terms of the computation time, C implementations of
both algorithms on an Intel Pentium 4 processor with
3.00 GHz took �68 min in the case of the AML method
and 20 s for the SVDL method (100 runs with s ¼ 0.1,
Dt ¼ 1.0, R ¼ 500). Increased s requires substantially
longer estimation run times.

4.2 Transcriptional regulation system

In the higher dimensional model of transcriptional regu-
lation, the AML method is not practical because the large
state space leads to prohibitively large computation times.
In such a complex system, the SVDL method is at an advan-
tage because it does not search the state space but rather
simply solves a systems of linear equation with dimensions
given by the number of species and reactions.

Table 5 shows the average and sample standard
deviations of the SVDL parameter estimates in this larger
stochastic reaction system. The parameter estimates are
reasonably close to the true values in most cases. Again,
longer time series and higher sampling rates give better esti-
mates. Especially c7 and c8 are estimated better at higher
sampling rates. This can be explained by the complementar-
ity of reactions 7 and 8. Because one reaction 7 and conse-
quent reaction 8 (and vice versa) lead to a zero net change of
molecule counts, discretely sampled data contain only infor-
mation about the net numbers of these reaction pairs. As
many such reactions take place during longer sampling
intervals, any method will have difficulty estimating the
associated reaction rates under these conditions. Added

measurement error decreases measurement accuracy and
actually often leads to failed convergence of the algorithm.

Parameter estimation in this model system took �4 min
for 300 data points and 100 repetitions of the SVDL
algorithm.

4.3 Confidence intervals for the parameters

In practice, often only one time series of molecule
counts will be available for parameter estimation. In this
case, it is useful to compute confidence intervals for the
parameters.

In the case of the AML method, we use the negative
inverse of the matrix of second derivatives of the maximised
log-likelihood to derive such confidence intervals. The
quasi-Newton routine provides this matrix as a by-product
of the optimisation algorithm. As long as the assumption
of at most two reactions per time interval is satisfied, the
diagonal entries of the matrix can be used as estimates of
the asymptotic variances of the parameter estimates, ĉ�i
and ŝ� (see Section 3.1).

In order to estimate the confidence intervals for the
parameters ci and s from the approximations of the log
parameters (see Section 3.1) we can use the Delta method.
This method is based on the fact that if a random variable
Z is normally distributed with mean mz and variance sz,
then g(Z ) is approximately normally distributed with
mean g(mz) and variance sz[g

0(mz)]
2.

In order to demonstrate the validity of the asymptotic
standard errors (ASEs) computed in this way, we compare
them with the empirical standard errors (ESEs) in 100 par-
ameter simulation and estimation runs of the simple gene
transcription system (using only one time series per run).

The ASEs in Table 6 are mostly very close to the
observed ESEs, demonstrating that the ASEs provide an
adequate idea about the precision of the estimates, and con-
fidence intervals based on these values will be valid.

Table 4: Average (standard deviation) of the estimates from five data time series in the
simple gene transcription model using the SVDL algorithm

R Dt s Parameter estimates

c1 c2 c3

300 0.5 0.0 0.0275(0.0073) 0.1680(0.0444) 0.3852(0.0556)

300 1.0 0.0 0.0275(0.0047) 0.1564(0.0229) 0.3721(0.0333)

600 1.0 0.0 0.0273(0.0035) 0.1593(0.0166) 0.3730(0.0299)

600 0.5 0.0 0.0264(0.0045) 0.1625(0.0270) 0.3909(0.0359)

300 1.0 0.1 0.0229(0.0041) 0.1573(0.0691) 0.4594(0.1923)

300 1.0 0.5 0.0242(0.0062) 0.1390(0.0722) 0.3979(0.1979)

300 1.0 1.0 0.0295(0.0102) 0.1321(0.0787) 0.3842(0.2140)

Parameter values are as in Table 1

Table 5: Average (standard deviation) of the estimates of the transcriptional regulation system parameters using the
SVDL method

R Dt s Parameter estimates

c1 c2 c3 c4 c5 c6 c7 c8

500 0.5 0.0 0.0666(0.0251) 0.0022(0.0035) 0.0808(0.0253) 0.0364(0.0362) 0.0279(0.0104) 0.2359(0.1491) 0.0473(0.0143) 0.1600(0.0722)

500 0.1 0.0 0.0992(0.0143) 0.0037(0.0078) 0.1268(0.0930) 0.0639(0.0358) 0.0659(0.0174) 0.2757(0.4110) 0.1646(0.0529) 0.6574(0.2629)

500 1.0 0.0 0.0477(0.0155) 0.0006(0.0004) 0.0645(0.0190) 0.0110(0.0195) 0.0159(0.0107) 0.2646(0.0761) 0.0149(0.0143) 0.0615(0.0332)

1000 0.5 0.0 0.0462(0.0134) 0.0006(0.0004) 0.0697(0.0159) 0.0091(0.0166) 0.0176(0.0088) 0.3323(0.0862) 0.0194(0.0123) 0.1024(0.0522)

1000 1.0 0.0 0.0429(0.0046) 0.0004(0.0002) 0.0630(0.0086) 0.0043(0.0058) 0.0080(0.0036) 0.1817(0.0327) 0.0036(0.0047) 0.0167(0.0153)

1000 0.1 0.0 0.0851(0.0202) 0.0025(0.0052) 0.1254(0.0519) 0.0440(0.0353) 0.0450(0.0165) 0.3974(0.4251) 0.1750(0.0738) 0.6953(0.2461)

1000 0.5 0.5 0.0342(0.0465) 0.0021(0.0104) 0.0786(0.0698) 0.1156(0.2334) 0.0401(0.1034) 0.1356(0.2356) 0.01342(0.0764) 0.2456(0.3435)

The true parameter values were c1 ¼ 0.043, c2 ¼ 0.0007, c3 ¼ 0.0715, c4 ¼ 0.00395, c5 ¼ 0.02, c6 ¼ 0.4791, c7 ¼ 0.083, c8 ¼ 0.5
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In the case of the SVDL algorithm, the Fisher information
matrix can be computed analytically. However, quantile
plots of the parameter estimates (not included) show
marked deviations from the normal distribution, even for
large values of R. Hence, we cannot assume that the distri-
bution of these estimates is asymptotically normal. Further
insight into the distribution of the SVDL estimates is
required in order to be able to form valid confidence
intervals.

5 Conclusion

In this article, we presented two different algorithms for the
estimation of stochastic reaction parameters from discrete
time series of molecule counts measured with error. The
main challenge associated with this problem is the complex-
ity of the likelihood when many reactions may occur in a
sampling interval. Therefore both algorithms make simpli-
fying assumptions in order to make parameter estimation
feasible.

In the AML algorithm, because of the expensive state
space search and computations involved, we assume a
finite maximum on the number of reactions that can occur
during a sampling interval. This assumption restricts the
use of this method to systems with high sampling rates,
where few reactions take place in a sampling interval. A
major advantage of this method is that it can handle incom-
plete data when one or more of the involved molecule
species cannot be measured.

The algorithm gives good estimates for the three-
dimensional gene transcription systems, and has the
advantage of providing asymptotically normal parameter
estimates. The estimated standard errors generated as a
by-product of the optimisation routine are very accurate.
Hence, we can form valid confidence intervals for the
parameters using this algorithm.

In the SVDL algorithm, we treat the observations as exact
molecule counts, and assume constant reaction propensities
over a sampling interval. These assumptions are reasonable
for systems with large numbers of molecules and small
measurement errors. Our simulation studies demonstrate
that this method can reliably estimate the kinetic parameters
of stochastic reaction systems, even from data with
measurement error. However, confidence intervals for the
parameters cannot be generated using the SVDL algorithm.
In addition, computation speed is faster by about two orders
of magnitude, compared with the AML algorithm. The
computational efficiency of the SVDL algorithm is a clear
advantage of this method.

Our simulations stress the importance of the sampling
rate on parameter identifiability, a problem that is known
in other stochastic parameter identification problems as
well [37]. Discretely sampled data do not include
information about forward and backward reactions that
occur in the same time interval, and hence the associated
reaction constants may be biased for small samples. The
exact likelihood is not available in closed form, and hence
theoretical analysis of the magnitude of this bias is
challenging.

Our methods, like the Gillespie framework, ignore spatial
effects in molecular dynamics. However, it is known that in
cells, scaffolding proteins and metabolic complexes can
localise substrates and enzymes, so that effective local
concentrations are much higher at the reaction sites [38].
Because we neglect spatial effects, our estimates will
reflect overall reaction rates in the cellular environment
averaged over the whole cell. Thus, for comparison of
reaction rates between different experimental conditions
and cell lines, our estimates should be considered as mean
rates in the cell.

Inside cells, various compartments restrict the intracellu-
lar space, making it more tortuous and impeding diffusion
[39, 40]. This can lead to nonlinear and even fractal-like dif-
fusion behaviour. When spatially resolved data with high
accuracy are available from experiments, our techniques
could be extended to estimate parameters in spatial versions
of the Gillespie algorithm [41]. Tackling the full complexity
of cellular dynamics, including inhomogeneities and trans-
port effects, is still beyond the scope of current systems
biology research, but progress in this direction is made
[8, 42].

To obtain experimental data on biochemical reactions,
the latest experimental techniques, especially imaging
methods of fluorescent tagged proteins, can monitor bio-
logical processes at microscopic levels, as required in our
context. For example, the stochastic expression dynamics
of a reporter gene with a fluorescent tag has been monitored
successfully in different settings [17, 29], and resolution of
gene expression is in the range of tens or even single mol-
ecules [17, 42, 43]. Fluorescence measurement techniques
also give data of sufficient time and concentration resolution
to enable comparison and validation of stochastic models
and experimental data [44]. Zlokarnik et al. [31] used a
FRAP technique to measure stochastic transcription and
obtain time series of molecule counts. Fluorescent protein
tags of different colours are available to monitor multiple
proteins simultaneously (see, for example, Becskei et al.
[8] and Elowitz et al. [11]). However, time-resolved

Table 6: Comparison of the ASEs and ESEs for the estimates of the parameters of the simple gene transcription
system using the AML algorithm

R Dt s ESE ASE

ĉ1 ĉ2 ĉ3 ŝ ĉ1 ĉ2 ĉ3 ŝ

300 1.0 1.0 0.0158 0.0866 0.1611 0.0869 0.0161 0.1111 0.1654 0.0848

300 1.0 0.1 0.0168 0.1145 0.1789 0.0077 0.0169 0.1336 0.1650 0.0092

300 1.0 3.0 0.0205 0.0703 0.1565 0.2465 0.0217 0.1047 0.1485 0.2553

300 0.5 1.0 0.0277 0.1662 0.2213 0.1023 0.0328 0.2490 0.2908 0.0835

300 0.5 0.1 0.0232 0.2790 0.3373 0.0083 0.0257 0.2525 0.2992 0.0084

300 0.5 3.0 0.0276 0.1557 0.3276 0.2436 0.0293 0.2454 0.3344 0.2481

600 0.5 1.0 0.0161 0.1496 0.1601 0.0658 0.0197 0.1559 0.1838 0.0651

600 0.5 0.1 0.0143 0.1806 0.2117 0.0058 0.0171 0.1424 0.1774 0.0059

600 0.5 3.0 0.0189 0.1308 0.2112 0.1762 0.0238 0.1739 0.2223 0.1784
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simultaneous measurement of a number of reacting species
have, to our knowledge, not yet been performed. Technical
difficulties, including the reliable tagging of multiple mol-
ecules, calibration and the data acquisition speed of micro-
scope cameras, need to be overcome in order to generate
multi-species times series.

With the recent development of highly accurate methods
for the measurement of mRNA, protein and metabolite con-
centrations in living cells, biochemical processes can be fol-
lowed with unprecedented precision. Modern fluorescence
methods are on the brink of resolving molecular reactions
at the individual molecule level, and will provide data that
require methods such as ours for analysis.

6 Supplementary

We can prove (7) using induction, assuming that it is correct
for K reactions. The probability that reactions m1, . . . , mKþ1

occur in the sampling interval is then
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Therefore (7) is true for all K.
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