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Cross-spectral and synchronization analysis of two independent, identical chaotic Rössler systems suggest a
coupling although there is no interaction. This spuriously detected interaction can either be explained by the
absence of mixing or by finite size effects. To decide which alternative holds the phase dynamics is studied by
a model of the fluctuations derived from the system’s equations. The basic assumption of the model is a
diffusive character for the system which corresponds to mixing. Comparison of theoretical properties of the
model with empirical properties of the Rössler system suggests that the system is mixing but the rate of mixing
appears to be rather low.

DOI: 10.1103/PhysRevE.72.026213 PACS number�s�: 05.45.Tp

I. INTRODUCTION

Beside ergodicity, mixing is the most important stochastic
feature of chaotic systems which is essential for cross-
spectral and synchronization analysis on the basis of mea-
sured data. This is because the asymptotic distribution of
these methods relies on the validity of the central limit theo-
rem and the asymptotical independence of time lagged
events �1�. Strong mixing, which also implies the decay of
the autocovariance function, turns out to satisfy these re-
quirements and is therefore the suitable definition for our
purposes. Let Mt�x� be the time evolution of a certain point x
in phase space by an ergodic dynamic system. The invariant
measure is denoted by �. Strong mixing of this dynamical
system is then satisfied if for all �-measurable sets A , B the
condition

lim
t→�

��A � Mt
−1�B�� = ��A���B� �1�

is valid �3�. The set Mt
−1�B� in Eq. �1� is thought

to be a compact notation for the inverse image of
Mt , Mt

−1�B�= �x :Mt�x��B�. Using the definition above, the
system of our interest, namely the Rössler system �2�,
dx /dt=−y−z , dy /dt=x+ay , dz /dt=b+ �x−c�z, shows for a
specific set of the parameters a=b=0.2, c=6.3 a behavior
which could be explained by a defect of mixing. An alterna-
tive explanation would be the presence of finite size effects.
This paper is entitled to discriminate these alternatives.

A possible loss of mixing is connected to the nonhyper-
bolicity of the system, since for hyperbolic or axiom A sys-
tems mixing is always satisfied. Furthermore, the mixing co-
efficient, describing the statistical dependency of time lagged
events or the correlations of sufficiently smooth observables
is decaying exponentially and the rate of this decay is related
to the positive Lyapunov exponents. The key point of these
statements is the qualitative knowledge of the spectrum of

the time evolution operator for the system density Pt, the
so-called Frobenius-Perron operator �FPO�. Note that the
system density is chosen to be absolutely continuous with
respect to some invariant measure. It can be shown that the
resolvent function of the FPO R�z�= �1z− Pt�−1 can be mero-
morphically extended onto the whole complex space �4–6�.
The poles of the resolvent function are lying in the interior of
the unit circle except for the simple pole at one, correspond-
ing to the invariant measure. Since poles of the resolvent
function are the point spectrum of the FPO and by using
Pn�t= P�t

n , the exponential decay of correlations for suffi-
ciently smooth real-valued observables can be shown. More-
over, eigenvalues close to the unit circle are generating sharp
peaks of approximately Lorentzian shape in the power spec-
trum. This consequence is in perfect accordance with the
more heuristic derivation of peak shapes of chaotic oscilla-
tors given in Ref. �7�. The corresponding eigenvalues are
called Ruelle-Pollicott resonances.

In case of nonhyperbolic systems the discussed properties
of the resolvent function need not be fulfilled. Generally, the
Lyapunov exponents are not related to the rate of mixing,
even if the process of interest satisfies condition �1�. Instead,
the spectrum of the FPO may have a cluster point on the unit
circle which leads to a loss in mixing. Nonrigorous methods
such as calculating the spectrum of the FPO in a finite di-
mensional approximation and performing the limit of infinite
dimension have been applied in Refs. �8,9�. The comparison
of the analytically derived results are in good accordance
with simulations, even though there is no rigorous justifica-
tion of this method.

For the Rössler system such a procedure is not feasible,
since the FPO Pt can only be approximated numerically and
thus the limit of infinite dimension is not possible. If the last
step is omitted, the calculated eigenvalues and eigenfunc-
tions would depend on the chosen set of basis functions.
Inconsistency would therefore be the consequence of such a
procedure. It is therefore not likely to approach the question
of mixing of the Rössler system on the basis of the FPO.

It turns out that the crucial point of mixing for the Rössler
system is the dynamics of the phase in the x-y plane. Before*Electronic address: peifer@physik.uni-freiburg.de
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analyzing the phase dynamics in detail, consequences result-
ing from the absence of mixing are reviewed and empirical
results are given for the power spectrum, and cross-spectral
analysis in Sec. II, as well as synchronization analysis in Sec.
III. A detailed analysis of the phase dynamics is then given in
Sec. IV.

II. SPECTRAL AND CROSS-SPECTRAL ANALYSIS AND
MIXING

The eigenvalue spectrum of the FPO determines the
power spectrum of dynamical systems. To demonstrate this
statement, let f , g be real valued observables satisfying

lim
n→�

P�t
n f = lim

n→�
P�t

n g = 0. �2�

The dynamical system is assumed to be ergodic, therefore
the unique invariant measure � exists and its density corre-
sponds to the nondegenerate eigenvalue 1 of the FPO. Due to
Eq. �2�, the observables f , g are orthogonal to the eigens-
pace, in which the invariant density lies. The correlation
function is then

Cf ,g�n� =� g�x�P�t
n f�x���dx� .

For some complex z satisfying �z��1, the Laplace transfor-
mation of this correlation function

C̃f ,g�z� = 	
n=0

�

Cf ,g�n�z−n

can be rewritten in terms of the resolvent function R�z� of the
FPO and yields

C̃f ,g�z� =� g�x�zR�z�f�x���dx� . �3�

Suppose that f can be decomposed into eigenfunctions f i of
the FPO, f�x�=	i=1

� aif i�x�. The eigenvalues of f i are denoted
by zi and are satisfying �zi��1 since P�t is a Markov opera-
tor. Equation �3� then yields

C̃f ,g�z� = 	
i=1

�
aiz

z − zi
� gfid� . �4�

If all eigenvalues zi are compactly contained in the
unit circle, Eq. �4� is defined for z=ei��t. Thus,

S���= C̃f ,g�ei��t� is the one-sided Fourier transform of the
correlation function or the power spectrum. The power spec-
trum is usually defined by the two-sided Fourier transforma-
tion but in the case of noninvertible dynamics such a
power spectrum would not be defined. Therefore, the general
structure of such a power spectrum is given by the smooth
function

S��� = 	
j=1

�
� je

i��t

ei��t − zj
,

where eigenvalues close to the unit circle are able to produce
resonances of Lorentzian shape. Such a specific distribution

of the eigenvalues corresponds to a dynamical system
equipped with the mixing property.

In the case of the absence of mixing, in which the eigen-
values zi are having a cluster point on the unit circle, the
transition from �z��1 to �z�=1 in Eq. �4� is not possible. But
due to the assumed ergodicity the correlation function exists
and thus the Wiener-Khintchine theorem guarantees the ex-
istence of a spectral distribution function �12�. Such a distri-
bution function is in general not represented by a smooth
density, instead delta distributions are often present.

For empirical time series of length N, the power spectrum
can be estimated by calculating the discrete Fourier trans-
form of the observed time series. The squared norm of the
Fourier transform then defines the periodogram

Per��� = �f����2, f��� =
1


N
	
t=1

N

x�t�e−i�t.

If the power spectrum is a smooth function in the fre-
quency domain and the time series mixes sufficiently, the
periodogram Per��� is �2-distributed,

Per��� � S����2
2/2, � � 0,	 ,

which is due to the central limit theorem �10,11,16�. Increas-
ing N, increases the frequency resolution but does not reduce
the variance of the periodogram. In order to obtain a consis-
tent estimation of the power spectrum, in which the variance
vanish if N→�, the periodogram must be smoothed �10,12�.
If the spectral density, e.g., contains a delta distribution the
smoothing procedure is no longer consistent. Due to the or-
thogonality of the Fourier transform, the growth of height
with respect to the amount of data for this component is
proportional to N.

The x component of the discussed Rössler system is
showing sharp peaks in the power spectrum, Fig. 1�a�. By
increasing the amount of data N, the peak seems to grow in
height but the growth rate cannot be determined because of
finite size effects. This is mainly due to the uncertainty of the
peak location and truncation effects, also known as tapering
effects.

An analysis technique for detecting linear relationship be-
tween two processes x�t� and y�t� is cross-spectral analysis.
The processes x , y are assumed to have zero mean and unit
variance, if not a linear transformation must be applied such
that the processes are satisfying these requirements. The
cross spectrum is then defined by the Fourier transformation
of the cross-correlation function,

CCF�
� = �x�t�y�t − 
� ,

CCF̂��� =
1

2	
	




CCF�
�exp�− i�
� ,

normalized by the product of square root of the univariate
power spectra Sx��� , Sy���,
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CSxy��� =
CCF̂���


Sx���Sy���
.

The brackets �  above denote the expectation value. This
function is in the general complex and can therefore be de-
composed into the phase spectrum �xy��� and the coherency
Cohxy���, such that

CSxy��� = Cohxy���ei�xy���.

Due to the normalization of the cross spectrum the coherency
is ranging from Cohxy���=0, no linear relationship between
x and y at �, to Cohxy���=1, perfect linear relationship.
Whereas the interpretation of the phase spectrum �xy��� is
more difficult, see, e.g., Ref. �13�. Since we are only inter-
ested in detecting the presence of an interaction between x
and y a deeper discussion of the phase spectrum is not
needed.

The estimation of the cross spectrum is analogous to es-
timation of the power spectrum. Furthermore, an asymptotic

level of significance under the hypothesis Cohxy���=0 can
be derived

s = 
1 − �2/�−2�, �5�

where  is the number of equivalent degrees of freedom
depending on the smoothing procedure of the spectra
�10–15� and the rejection probability �. The value of
�� �0,1� is the probability that even if Cohxy���=0 the hy-
pothesis is rejected on the basis of the observed data, which
is due to random fluctuations of the estimated coherency.
Only such a level of significance allows to decide whether
the observed coherency is different from zero, and is there-
fore extremely important for the following argumentation.

Mixing of the processes is again essential for cross-
spectral analysis and for deriving Eq. �5�. In case of two
independent causal processes x and y we obviously have
Cohxy =0. According to Refs. �10,11�, the estimation of this
quantity is possible if the processes can be approximated by
the linear sequences

x�t� = 	
i=0

�

C1�i�z1�t − i� and y�t� = 	
i=0

�

C2�i�z2�t − i� ,

where zi�t� is an independent and identically distributed se-
quence of random variables having zero mean and a finite
fourth moment. Moreover, the coefficients must satisfy

	
j=0

�

�Ci�j��j1/2 � �, i = 1,2. �6�

Necessarily, Ci�j�→0 if j→� and hence the autocorrelation
of x and y must decay, which is valid if both processes are
mixing. Besides the pure estimation of the cross spectrum,
statistical inference such as Eq. �5� is based on the asymp-
totical normality of sums of state variables. Here, mixing is
again a central requirement, see e.g., Ref. �1�.

Now, two independent, identical Rössler systems of
length 5�105 data points are simulated by using randomly
generated initial conditions. For the following simulations,
the Rössler system is integrated by a Runge-Kutta scheme of
fourth order with step size control keeping the numerical
error below �=10−12 �16�. The sampling rate of both time
series was chosen to be �t=0.01. If the conditions of the
cross-spectral analysis are valid, coherency of the x compo-
nent should be zero, since there is no �linear� relationship
between the time series. But Fig. 1�b� clearly shows a sig-
nificant coherency. This result can be interpreted in two
different ways, �1� mixing is violated as outlined above or
�2� the decay of the phase correlations is too slow such that
the cross-spectral analysis has not reached its asymptotic
accuracy.

III. SYNCHRONIZATION ANALYSIS AND MIXING

In order to detect a possible phase synchronization be-
tween two coupled, oscillatory systems a suitable definition
of phase and amplitude of a real-valued observed signal is
required. This can be realized, if the considered oscillations
are having a narrow frequency band �17,18�. Let x�t� be the

FIG. 1. �a� Power spectrum of the x component of the Rössler
system at the vicinity of the main oscillating frequency. �b� Coher-
ency of two independent, identical Rössler systems. The coherency
at frequencies of approximately 0.17 and its multiples are lying
above the 5% level of significance �dashed line�.
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real-valued signal satisfying the mentioned property. The
analytic signal is then given by

��t� = x�t� + ix̂�t� = A�t�ei��t�,

where A�t� is the amplitude and ��t� the phase. The imagi-
nary counterpart of the analytic signal can be obtained by the
Hilbert transform �19�

x̂�s� = 	−1P . V .� x�t�
s − t

dt

of the signal, in which P.V. refers to Cauchy’s principle
value. The phase ��t� is now a suitable basis for the synchro-
nization analysis.

Phase synchronization of two coupled, chaotic oscillators
occurs if the n :m phase locking condition is satisfied �20�,

�n�x�t� − m�y�t�� = ��n,m� � const,

where �x�t� , �y�t� denotes the phase of the time series x�t�,
y�t� and n , m are given integers. To suppress phase jumps,
induced by the presence of numerical or observational noise,
�n,m is modified by

�n,m = �n,m mod 2	 .

The distribution of �n,m then exhibits a sharp peak, if the
two oscillators are phase synchronizing �21�. A commonly
used quantity, measuring the sharpness of the distribution of
�n,m is the synchronization index �22�

Rn,m
2 = �cos��n,m�2 + �sin��n,m�2,

where �  denotes the expectation value with respect to the
distribution of �n,m. The synchronization index is Rn,m=1 for
a constant phase difference between the two time series and
Rn,m=0 for a uniformly distributed phase difference. Note
that the usage of the Hilbert transform for determining the
phase is the most general approach. In our case the phase can
be calculated directly from the x-y projection, but the out-
come of the synchronization analysis does not alter if either
the Hilbert transform or the direct computation is used.

The mixing property for the phases is again essential to
determine whether the processes are phase synchronizing on
the basis of measured data or not. For demonstrating this
statement, let us consider two ergodic self-oscillatory sys-
tems satisfying �cos��n,m�= �sin��n,m�=0, and thus

Rm,n
2 =0. Suppose that �i , i=1,… ,n is a suitable realization

of �n,m which is equidistantly sampled in t. By the ergodic
theorem Rn,m

2 is given by

Rn,m
2 = lim

N→�
��N−1	

i=1

N

sin��i��2

+ �N−1	
i=1

N

cos��i��2�
= lim

N→�
N−2 	

i,j=1

N

�sin��i�sin�� j� + cos��i�cos�� j�� .

�7�

Since the sample is equidistant in time and by using the
ergodicity again we have

1

N − j
	
i=1

N−j

�sin��i�sin��i+j� + cos��i�cos��i+j��

= �sin��1�sin��1+j� + cos��1�cos��1+j� + rNj = � j + rNj ,

�8�

for each 0� j�n. The remainder rNj vanishes asymptoti-
cally, limN→� rNj =0. Inserting Eq. �8� into Eq. �7� we arrive
at

Rn,m
2 = lim

N→�
�N−1 + 2	

j=1

N−1
N − j

N2 �� j + rNj�� = lim
N→�

2	
j=1

N−1
N − j

N2 � j .

�9�

A necessary condition that Rn,m in Eq. �9� vanishes is there-
fore � j→0 if j→�. Now, consider sin��n,m� and cos��n,m�
as observables of the processes, then � j is the sum of the
autocovariance function of these quantities. Again the auto-
covariance function asymptotically vanishes if the strong
mixing, Eq. �1�, is satisfied, the necessary condition is there-
fore met if both processes are mixing. It should further be
noted that the equidistant sampling is not explicitly needed
and was only introduced to avoid a rather clumsy notation.

Again, two independent, identical Rössler systems are
generated numerically, where the sampling is chosen to be
�t=0.01 for both realizations of length 131 072. The time
evolution of �1,1 and the distribution of �1,1 is shown in Fig.
2 and reveals that the phase-locking condition seems to be
satisfied. Furthermore, the narrow peak of the distribution of
�1,1 indicates that the synchronization index should be close
to unity. Calculating the synchronization index yields
R1,1=0.92. On the basis of empirical data, one would draw

FIG. 2. Time evolution of �1,1 for two independent Rössler systems, left graph. The distribution of �1,1, right figure, is showing a sharp
peak.
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the conclusion that these two time series are phase synchro-
nized which is again spurious, either due to a loss in mixing
or due to finite size effects. In addition, these results show
that this question can be approached only by analyzing the
phase evolution of the Rössler system.

IV. A MODEL OF THE PHASE FLUCTUATIONS

In the following, a model of the phase fluctuations is de-
rived. The analysis shows that the diffusion constant of the
Rössler system depends mainly on the inverse square of the
amplitude in the x-y plane. The possibility of such a phase-
amplitude dependency of chaotic oscillators is briefly dis-
cussed in Ref. �23�. Assuming that the system behaves like a
diffusion process and that the z component can be treated as
being constant for a given time step �t�1 to give an effec-
tive approximation of the phase fluctuations. The differential
equation then reduces to the form dx /dt=−y−zt , dy /dt=x
+ay and can be integrated one step ahead,

xt+�t = Ate
a�t/2 cos���t + �t� − zt�t ,

yt+�t = Ate
a�t/2�� sin���t + �t� − 
1 − �2cos���t + �t�� ,

�10�

where �2=1− �a /2�2 and At is the amplitude and �t is the
phase at time t. In order to include the diffusion, Eq. �10� is
perturbated by Gaussian white noise and At , �t , zt are ex-
changed by their mean values. Setting 
=��t+�t, the ex-
tended Eq. �10� yields

xt+�t = Ate
a�t/2 cos�
� − zt�t + 
Dx�t�t,

yt+�t = Ate
a�t/2�� sin�
� − 
1 − �2cos�
�� + 
Dy�t�t,

where �t , �t denotes uncorrelated white noise and Dx , Dy are
the assumed diffusion constants for the x and y component,
respectively. Now, the phase �t+�t=arctan�yt+�t /xt+�t� is cal-
culated up to order 
�t in all noise terms and yields

�t+�t = arctan��t� +
e−a�t/2

At cos�
��1 + �t
2�

��tzt�t + 
Dy�t�t

− �t

Dx�t�t� + O��t� ,

where �t=� tan��t�−
1−�2. The diffusion constant
of the phase is therefore determined by DAt,�t
=lim�t→0 Var��t+�t� /�t, where Var denotes the variance of a
random variable. Since lim�t→0 
=lim�t→0���t+�t�=�t,

DAt,�t
=

1

At
2 cos2��t��1 + �t

2�2 ��t
2Dx + Dy� . �11�

If a�1 then ��1 and thus Eq. �11� reduces to

DAt,�t
�

sin2��t�Dx + cos2��t�Dy

At
2 .

The variance of the system’s phase ��t� at time t can then be
approximated by

Var���t�� � Var���0�� + D�At,���t�t , �12�

where Var���0���0, �At is the mean amplitude and ���t�
the mean phase.

To check the validity of the model assumptions, the vari-
ance evolution over a sample of 1000 independent Rössler
systems is simulated. The time step is chosen to be �t=0.1.
Figure 3�a� shows an increasing �in mean� variance of the
phases, superposed by some spiking behavior.

The diffusion constants Dx , Dy in Eq. �12� are fitted to the
simulations using a linear fit algorithm �16�. The identified
parameters are Dx=0.0089±4�10−6 , Dy =0.0092±6�10−6,
thus different from zero. A comparison of the modeled vari-
ance, Eq. �11�, with the simulation is shown in Fig. 3�b�. The
comparison shows that our model captures most of the struc-
ture but the modeled variance evolution seems to be low-
pass filtered. This effect is probably due to the assumed dif-
fusion constants in the x-y plain which are not depending on
the state of the system. The constants Dx , Dy are therefore
representing mean diffusion coefficients leading to a
smoother curve for the variance evolution of the fluctuations.

FIG. 3. �a� Variance evolution over a sample of 1000 indepen-
dent Rössler systems. �b� Same as �a� within a time window of
700–750 �solid line�. The dashed line indicates the modeled vari-
ance of the phase fluctuations. The mean phase of the oscillators is
shown by the grey-scale strip on the lower part of the graph, rang-
ing from 0 �black� to 2	 �white�.
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Furthermore, the mean phase, grey-scale strip in Fig. 3, re-
veals that the burst of the z component is followed by spikes
in the variance.

Beside the phase fluctuations emerging from the system’s
equations, a contribution of numerical noise is always
present in the simulations. This noise corruption is contained
in the identified coefficients Dx and Dy. The chosen integra-
tion accuracy �=10−12 gives a rough estimate on the numeri-
cal error of each time step �t, see, e.g., Ref. �16�. Note that
� cannot be made arbitrarily small, because if � is close to
the machine precision the number of internal steps for inte-
grating the whole time step �t diverges. Since �2 /�t is sev-
eral orders of magnitude smaller than Dx and Dy, the numeri-
cal error can be neglected in our analysis.

So far, we have derived an approximation of the phase
dynamics by a diffusive process. It should now be verified if
such phase diffusion satisfy the mixing condition of Eq. �1�.
Suppose that the diffusion is constant, such that the sampled
phase evolution reads

�k+1 = �k + ��t + 
D�t�k, �13�

for some D�0 and �k is again a sequence of uncorrelated
white noise. Starting at �0 and taking the wrapped phase
�k=�k mod 2	 to gain a stationary process, the conditional
probability density ���� ��0�=limk→� ���k ��0� is thus

������0� = lim
k→�

1

2	D�tk

�	
j=−�

�

exp�−
���tk + �0 − �k − 2	j�2

2D�tk
�

=
1

�2	�3/2 � e−t2/2dt =
1

2	
. �14�

Since ���� ��0� does not depend on the initial value �0, the
asymptotic independence of Eq. �1� is shown. Moreover, the
same result holds for the phase difference of two indepen-
dent processes, and therefore R1,1=0. If D is not constant
with respect to sampling point of index k but greater than
zero, the result of Eq. �14� does not change.

Extracting the mean diffusion constant of about Dphase
=2.1�10−4 from Fig. 3, the presence of the finite size effect
for the synchronization analysis can be verified for the most
simple model given in Eq. �13�. In order to compare the
outcome with the results presented in Sec. III, the parameters
are chosen to be �t=0.01, �=1, and N=131 072.

The distribution of the synchronization index R1,1 is
shown in Fig. 4. Since almost all mass is close to unity the
finiteness of the amount of data has a predominant effect.
Additionally, the value in case of the Rössler system
R1,1=0.92 lies within the distribution but is slightly smaller
than the mean synchronization index of the simplified model.
This situation is exactly what one expects, because the bursts
in the local diffusion rate destroy autocorrelations of the pro-
cess. Due to Eq. �9� finite size effects are therefore slightly
reduced. Finally, this positive result supports the strong pres-
ence of effects due to the finite amount of data.

V. CONCLUSION

The discussion about the phase evolution for the Rössler
system has a long history. Crutchfield et al. �24� claimed that
the attractor topology is mainly responsible for the sharp
peak, namely that trajectories are revolving a single hole.
This conjecture cannot hold in general, because the peak of
the Rössler system is much broader when, e.g., the param-
eters are chosen to be a=b=0.2, c=13. The attractor topol-
ogy remains the same in this setting. An intermittent behav-
ior of the phase was discussed but this hypothesis was
rejected afterwards �25–27�. Recently, Anishchenko et al. de-
termined an effective diffusion coefficient by fitting Lorent-
zian to peaks in the power spectrum �28–30�. The presented
work therefore supports their hypothesis, that the chosen
length of the time series is sufficiently large such that the
spectral linewidth can be resolved.

We derived a model of the phase fluctuations of the
Rössler system from the system’s equations mainly under the
assumptions of diffusion. Properties of this model are com-
pared to simulated data. We have shown that the model cap-
tures the qualitative feature of the data. The diffusion con-
stants derived from the model fitted to the data are
significantly different from zero. In addition, a simplified but
definitely mixing model of the phase evolution shows almost
the same spurious synchronization index. This suggests that
the Rössler system for the chosen set of parameters is mix-
ing. However, the rate of mixing is extremely low, explain-
ing the spurious results for the cross-spectral and the syn-
chronization analysis as finite size effects.
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independent processes of type �13�. The parameters D , �t , � and
the amount of data N are chosen to allow a comparison of the
results presented in Sec. III.
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