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Abstract

Several analysis techniques have been developed for
time series to detect interactions in multidimensional
dynamic systems. When analyzing biosignals generated
by unknown dynamic systems, awareness of the different
concepts upon which these analysis techniques are
based, as well as the particular aspects the methods
focus on, is a basic requirement for drawing reliable con-
clusions. For this purpose, we compare four different
techniques for linear time series analysis. In general,
these techniques detect the presence of interactions, as
well as the directions of information flow, in a multidi-
mensional system. We review the different conceptual
properties of partial coherence, a Granger causality
index, directed transfer function, and partial directed
coherence. The performance of these tools is demon-
strated by application to linear dynamic systems.

Keywords: directed transfer function; Granger causality;
multivariate time series analysis; partial coherence; par-
tial directed coherence.

Introduction

Different analysis techniques for time series have been
introduced to process possible multidimensional bio-
medical signals. These techniques were developed pri-
marily within the theoretical framework of linear
stochastic processes and non-linear dynamics. An
important application is the detection of interactions
between electromagnetic signals representing informa-
tion flow in the brain w10x; for example, synchronization
phenomena between different brain structures have been
analyzed by means of electroencephalography (EEG)
recordings w8, 13x. Besides interactions among brain sig-
nals themselves, the interdependence between brain sig-
nals and other physiological signals is of particular
interest. For instance, in tremor research, the interaction
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between EEG and electromyography (EMG) has been
studied in patients suffering from Parkinson’s disease or
essential tremor w4, 9, 11x.

The analysis techniques applied are characterized by
different assumptions and capture distinct dynamic phe-
nomena. When applying these analysis techniques to
biomedical signals such as electrocorticogram, electro-
thalamogram, EEG or EMG recordings, the underlying
dynamic system generating these signals is essentially
unknown. For appropriate interpretation of analysis
results, researchers should be aware of the different con-
cepts these methods are based on and of the aspects
that these analysis techniques focus on.

In this paper, we compare four analysis techniques for
time series based on the theory of linear stochastic pro-
cesses, which were introduced to allow detection of
directed information flow in multidimensional dynamic
systems based on measured time series. First, a non-
parametric spectral approach, partial coherence, in com-
bination with the partial phase spectrum (PC), is
investigated. Second, three analysis tools are examined
that utilize linear vector autoregressive processes to
model the multivariate dynamic system under investiga-
tion: a Granger causality index (GCI) in the time domain,
the frequency-domain directed transfer function (DTF),
and partial directed coherence (PDC). We briefly intro-
duce the theoretical background for each analysis tech-
nique, and illustrate the different aspects in applications
to simulated model systems. Here, we have restricted the
analysis to linear model systems to illustrate the basic
properties of each analysis technique and to reveal the
intrinsic differences between them. Further aspects con-
cerning their applicability to biomedical signals are also
discussed.

Simulated dynamical system

To illustrate the performances of the four multivariate
time series analysis techniques described in this paper,
the following four-dimensional vector autoregressive
process of model order ps5 (VAR w5x) was chosen to
reveal the intrinsic properties of the analysis techniques
such that their differences become evident:

X t s1.1X t-1 -0.6X t-2 q0.5X t-3 qh tŽ . Ž . Ž . Ž . Ž .1 1 1 2 1

X t s0.6X t-1 -0.4X t-5 qh tŽ . Ž . Ž . Ž .2 2 1 2

X t s0.5X t-3 q0.4X t-4 qh tŽ . Ž . Ž . Ž .3 3 2 3

X t s1.2X t-1 -0.7X t-2 -0.5X t-2 qh t . (1)Ž . Ž . Ž . Ž . Ž .4 4 4 1 4

This model system is characterized by direct and indi-
rect interactions between the process components. The
model coefficients and time lags reflect absent, unidirec-
tional and bidirectional information flows.

We simulated Ns200,000 data points for each pro-
cess. The covariance matrix of the noise terms wash tŽ .i
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Figure 1 Diagram summarizing the interdependence structure
in the simulated VAR system.

set to the identity matrix. The interrelations indicated by
non-zero coefficients between the four processes are
summarized in the graph in Figure 1. Processes X1 and
X2 mutually influence each other, while there is a unidi-
rectional influence from process X1 on process X4, as well
as from process X2 on process X3.

Non-parametric spectral method to detect
directions of information flow

Partial coherence in combination with the partial phase
spectrum is a non-parametric spectral approach used to
detect direct interrelations in multivariate dynamic sys-
tems. To differentiate direct and indirect interactions
between processes, the bivariate cross-spectrum
between process Xi and process Xj is modified. All linear
information contained in the remaining Z processes is
subtracted, leading to the notion of the partial cross-
spectrum:

-1S v sS v -S v S v S v . (2)Ž . Ž . Ž . Ž . Ž .±X X Z X X X Z ZZ ZXi j i j i j

The normalized absolute value of the partial cross-
spectrum is partial coherence

Z ZS vŽ .±X X Zi j

Coh v s gw0,1x (3)Ž .±X X Zi j

y S v S vŽ . Ž .± ±X X Z X X Zi i j j

and its argument is the partial phase spectrum w2x:

F v sargµS v ∂. (4)Ž . Ž .± ±X X Z X X Zi j i j

To validate the statistical significance of partial coher-
ence values, critical values for a significance level a are
utilized w12x.

Partial coherence is a symmetric measure of the linear
influence between two processes conditioned on all oth-
er processes under consideration. The direction of inter-
relations can be inferred if and only if there is a strict
linear phase relation. The slope quantifies the time delay
between the processes. As the asymptotic variance of
the phase is approximately inversely proportional to the
squared coherence value at the corresponding frequen-
cy, a reliable assessment of the phase spectrum is only
possible if coherence values are highly significant over a
broad range of frequencies. For narrow band signals, a
linear phase relationship must be assumed rather than
detected, leading to possible false conclusions.

Partial coherences and partial phase spectra estimated
for the four-dimensional VAR-(5) system are shown in
Figure 2A. Spectra of the four single processes are drawn

on the diagonal, partial phase spectra above the diago-
nal, partial coherence spectra and below the diagonal.
The horizontal gray lines indicate critical values for a 1%
significance level for the absence of partial coherence.
Significant partial coherence values are observed
between processes X1 and X2, between X1 and X4, and
between X2 and X3.

Since processes X1 and X2 mutually influence each oth-
er, the direction of the influences cannot be estimated on
the basis of the phase spectra. This is due to the
absence of a linear phase relation between the process-
es. The phase relations between processes X1 and X4 and
between X2 and X3 could be approximated by a linear
function in a certain frequency range.

The resulting graph based on partial coherence and
partial phase spectral analysis is shown in Figure 2B. The
interdependences are correctly revealed, since direct and
indirect influences are distinguishable by this analysis
technique. However, tracing of the directions of the infor-
mation flow in this dynamic system is limited. This prop-
erty is indicated in the graph, as no direction is shown
between processes X1 and X2; the dashed arrows specify
that the approximation by linear relationships may
become difficult, for instance, when narrow-band signals
are to be analyzed.

Parametric methods to detect directions of
information flow

The parametric analysis techniques discussed here are
based on modeling the system under investigation by lin-
ear n-dimensional vector autoregressive processes:

B E B E B EX t X t-r ´ tŽ . Ž . Ž .1 1 1

p

n s a n q n . (5)r8C F C F C F
sr 1

D G D G D GX t X t-r ´ tŽ . Ž . Ž .n n n

A reliable estimation of the elements (k,ls1, «, n;âkl,r

rs1, «, p) of the coefficient matrices and a reliable esti-

mation of the covariance matrix of the Gaussian dis-Ŝ

tributed noise are essential for9
´ t s ´ t ,«,´ tŽ . Ž Ž . Ž ..1 n

application of the three parametric approaches.
Estimated covariance matrices, estimated VAR-matrix

coefficients themselves or their frequency domain
representations

p
v-i rˆ ˆA v sd - a e (6)Ž .kl kl kl,r8

sr 1

are utilized by the GCI, the DTF, and the PDC to detect
the direction of the information flow in the dynamic
system.

Granger causality index

Granger introduced a causality term based on the con-
sensus that a cause must precede its effect w3x. To intro-
duce a GCI index in the time domain that allows
detection of a directed influence from process Xj to pro-
cess Xi in an n-dimensional system, n- and (n-1)-dimen-



M. Winterhalder et al.: Directed information flow in biosignals 283

Article in press - uncorrected proof

Figure 2 (A) Partial coherence and corresponding phase spectra. Auto-spectra are shown on the diagonal, with partial coherence
spectra below the diagonal and partial phase spectra above the diagonal. Differentiation between direct and indirect influences is
possible. However, the bidirectional interaction between X1 and X2 is not traceable by evaluating the phase spectra. (B) Graph
summarizing the results.

sional VAR models are considered. An n-dimensional
VAR model is fitted to the system investigated, leading

to residual variance for Xi. In a secondŜ t svar ´ tŽ . Ž Ž ..i,n i,n

step, an (n-1)-dimensional VAR model is fitted to the sub-
system , which leads to the residualµX , ks1,«,n±k/j∂k

variance . A GCI quantifying a linearŜ (t)svar ´ (t)Ž .i,n-1 i,n-1

influence from process Xj to process Xi is defined by w5x:

B E
Ŝ tŽ .i,n-1C Fg t sln . (7)Ž .§i j ˆD GS tŽ .i,n

For the detection of time-resolved transitions in the
interdependence structure, a time-variant VAR parameter
estimation, the recursive least square algorithm (RLS), is
utilized w7x. In summary, the GCI allows time-resolved
detection of directed interactions between two processes
Xj and Xi in the time domain.

Time-resolved values of the GCI applied to the model
system are given in Figure 3A. Using the GCI, the correct
interrelation structure and the corresponding directions
are detected. For example, for the influence from process
X1 to X4, the corresponding values of the GCI are non-

zero. In contrast, the values of the GCI fluctuate around
zero for the opposite direction. The graph based on GCI
analysis is shown in Figure 3B and is identical to the
simulated interaction structure (cf. Figure 1).

Directed transfer function

The DTF is an analysis technique for the frequency
domain based on Fourier transformation of the coeffi-
cient matrices wcf. Eq. (6)x. The transfer function H v sŽ .ij

leads to a definition of the DTF w6x:-1A vŽ .ij

2Z ZH vŽ .ij

d v s . (8)Ž .§i j 2Z ZH vŽ .il8l

Normalized to the unit interval, an interaction from
process Xj onto process Xi is identified for non-zero val-
ues of the DTF. In the following investigation, parameter
matrices were estimated using multivariate Yule-Walker
equations.

Applying DTF analysis to the model system under
investigation wcf. Eq. (1)x leads to the results illustrated in
Figure 4A. The auto-DTFs are shown on the diagonal and
the DTF spectra on the off-diagonal. Using DTF analysis,
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Figure 3 (A) Granger causality index for the VAR model and (B) the resulting directed graph.
The simulated interrelation structure is reproduced correctly by non-zero values of the Granger causality index. a.u., arbitrary unit.

all simulated directed interactions are detected correctly.
However, differentiation between direct and indirect inter-
actions is not possible, thereby leading to a greater num-
ber of interactions than are actually present. For instance,
the influence from process X1 to process X3 is indirect,
since it is mediated by process X2. Similarly, the influence
from process X2 to process X4 is mediated by process
X1. The corresponding DTF spectra are non-zero and
DTF analysis cannot distinguish between direct and indi-
rect interactions. This is indicated by the dashed arrows
in the graph in Figure 4B.

Partial directed coherence

PDC has been introduced in the frequency domain as an
analysis tool to detect Granger-causal interactions in
multidimensional systems. Based on Fourier transfor-
mation of the coefficient matrices wcf. Eq. (6)x, PDC is
defined by w1x:

Z ZA vŽ .ij

p v s . (9)Ž .§i j
2Z ZA vŽ .y kj8k

Normalized to the unit interval, a direct influence from
process Xj to process Xi is detected by a non-zero PDC
spectrum. In the following investigation, parameter matri-

ces were estimated utilizing multivariate Yule-Walker
equations.

The results of PDC analysis for system (1) are pre-
sented in Figure 5A. Auto-spectra of the four processes
are shown on the diagonal. The PDC spectra are shown
above and below the diagonal. Only the PDCs from pro-
cess X1 onto process X2, from process X1 onto process
X4, from process X2 onto process X1, and from process
X2 onto process X3 are non-zero. The results are sum-
marized in the graph in Figure 5B. Using PDC analysis,
the correct interaction structure is detected (cf. Figure 1).
PDC accounts for the entire multivariate system and
allows differentiation between direct and indirect
influences.

Detecting information flow in
non-stationary systems

When analyzing biomedical signals, transitions in the
interaction structure may contain the most important
information. Therefore, time-resolved analysis tools are
required. The GCI has been introduced in the time
domain as a time-resolved analysis technique, applying
the recursive least-square algorithm. Alternatively, time-
varying state space modeling offers an estimate for time-
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Figure 4 (A) Directed transfer function for the VAR model considered. The auto-directed transfer functions are shown on thed§i i

diagonal. The directions of the simulated interactions are revealed correctly by directed transfer function analysis. Nevertheless, two
indirect interactions are inferred from process X1 to X3 and process X2 to X4. This is indicated by the dashed arrows in the graph in
(B).

resolved parameters in VAR models. In combination with
the concept of PDC, detection of directed information
flow dependent on frequency and time is possible w14x.

To illustrate the performance of this procedure, a two-
dimensional VAR-(2) process

X t s0.5X t-1 -0.7X t-2 qc t X t-1 qh tŽ . Ž . Ž . Ž . Ž . Ž .1 1 1 12 2 1

X t s0.8X t-1 -0.5X t-2 qc t X t-1 qh tŽ . Ž . Ž . Ž . Ž . Ž .2 2 2 21 1 2

h;N 0,1 , is1,2 (10)Ž .i

is examined. A transition in the interaction was modeled
by setting c12s0.6 and c21s0 for the first half of the sim-
ulation period and c12s0 and c21s0.6 for the second half
of the simulation period.

Figure 6 shows results for a time-resolved application
of PDC to the simulated two-dimensional system. High
PDC values in the frequency range between 0.1 and
0.2 Hz are observed for the first half of the simulation
period (Figure 6A), correctly indicating the influence from
process X2 to process X1. The transition in the direction
of information flow in the middle of the simulation period
is also correctly detected, as high PDC values were
observed in the PDC spectrum representing the influence
from process X1 to process X2.

Discussion

We have presented a comparison of four analysis tech-
niques for time series that allow detection of information
flow in multivariate dynamic systems. As the sole repre-
sentative of the class of non-parametric spectral analysis
techniques, we examined partial coherence in combina-
tion with the partial phase spectrum. Three parametric
approaches, GCI, DTF and PDC, were studied, which are
based on modeling the system under investigation by lin-
ear vector autoregressive processes. When analyzing
biosignals to increase understanding of diseases or
physiological implications, knowledge of both the pos-
sibilities and limitations of the analysis techniques
applied is essential.

All four multivariate analysis techniques are capable of
detecting the direction of information flow in the system
investigated. When applying GCI, DTF, or PDC, it is gen-
erally possible to determine whether two signals interact
mutually, whether there is an influence in only one direc-
tion, or whether no interaction exists. All four analysis
techniques are based on measured signals. If the signals
measured do not well represent the underlying dynamic
processes, the analysis is restricted to statements about
measured signals. In particular, no conclusions about
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Figure 5 (A) Partial directed coherence for the VAR model considered. Auto-spectra are shown on the diagonal and partial directed
coherence spectra on the off-diagonal. All simulated directed influences are detected correctly by partial directed coherence analysis.
Furthermore, in contrast to the directed transfer function, differentiation between a directed and indirect information flow is possible.
(B) Graph summarizing the results of PDC analysis, which is identical to the simulated interdependence structure (cf. Figure 1).

unobserved processes are possible. However, multivari-
ate analysis tools are still superior to bivariate tech-
niques, which are also hampered by their inability to
differentiate direct and indirect interactions, even when
observing all important signals.

The interpretation of partial coherences in combination
with partial phase spectra is limited by the asymptotic
variance and a possible non-linear phase relation. Fur-
thermore, only unidirectional interactions can be reliably
assessed by partial phase spectra.

In multidimensional systems, differentiation between
direct and indirect information flows is often desirable.
Using DTF, it is not possible to determine whether or not
two signals interact directly. The remaining three analysis
techniques investigated are capable of distinguishing
direct and indirect interactions.

In summary, a favorable technique used for analysis of
empirical signals should always be based on the problem
in hand. There is no general superior technique that
allows solution of all problems.

We investigated an example of a linear multivariate
system, but in applications to biomedical dynamic sys-
tems, non-linearities and non-stationarities may play an

important role. The results for a more detailed compari-
son are reported elsewhere w14x.

Applying time-resolved techniques to estimate the VAR
coefficients, non-stationary data can be processed and
detection of interactions dependent on time and fre-
quency is feasible. This has been demonstrated in an
application of PDC in combination with a time-resolved
parameter estimation technique. The transition in the
direction of the information flow in the two-dimensional
dynamic system investigated could be detected correctly
by applying the proposed procedure.

For non-linear systems, a higher model order allows
better description of the second-order properties. This
approximation has been verified for at least some non-
linear model systems w14x. By increasing the model order,
the variability in DTF and PDC spectra is also increased.
Therefore, tests are required to validate non-zero values
in the corresponding spectra. Recently, an analytical sig-
nificance level was introduced for PDC w9x. The appli-
cation of PDC in combination with this significance level
ensures reliable detection of directed information flow.

The time-series analysis techniques discussed here
are powerful tools for detecting information flow in multi-
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Figure 6 Application of time-resolved partial directed coherence.
The transition in the interaction structure between processes X1 and X2 is detected correctly. a.u., arbitrary unit.

dimensional dynamical systems. With expanded knowl-
edge of their particular capabilities and limitations, wider
application of these analysis tools in biomedical research
is possible.
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w12x Timmer J, Lauk M, Häußler S, et al. Cross-spectral analysis
of tremor time series. Int J Bifurc Chaos 2000; 10:
2595–2610.

w13x Varela F, Lachaux JP, Rodriguez E, Martinerie J. The brain
web: Phase synchronization and large-scale integration. Nat
Rev Neurosci 2001; 2: 229–239.

w14x Winterhalder M, Schelter B, Hesse W, et al. Comparison of
time series analysis techniques to detect direct and time-
varying interrelations in multivariate, neural systems. Signal
Process 2005; 85: 2137–2160.


