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Introduction

The development of new experimental techniques

allowing for quantitative measurements and the pro-

ceeding level of knowledge in cell biology allows the

application of mathematical modeling approaches for

testing and validation of hypotheses and for the

prediction of new phenomena. This approach is the

promising idea of systems biology.

Along with the rising relevance of mathematical

modeling, the importance of experimental design

issues increases. The term ‘experimental design’ or

‘design of experiments’ (DoE) refers to the process

of planning the experiments in a way that allows for

an efficient statistical inference. A proper experimen-

tal design enables a maximum informative analysis

of the experimental data, whereas an improper

design cannot be compensated by sophisticated anal-

ysis methods.

Learning by experimentation is an iterative process

[1]. Prior knowledge about a system based on literature

and/or preliminary tests is used for planning. Improve-

ment of the knowledge based on first results is

followed by the design and execution of new experi-

ments, which are used to refine such knowledge

(Fig. 1A). During the process of planning, this sequen-

tial character has to be kept in mind. It is more effi-

cient to adapt designs to new insights than to plan a

single, large and comprehensive experiment. Moreover,

it is recommended to spend only a limited amount of

the available resources (e.g. 25% [2]) in the first experi-

mental iteration to ensure that enough resources are

available for confirmation runs.

Experimental design considerations require that the

hypotheses under investigation and the scope of the

study are stated clearly. Moreover, the methods

intended to be applied in the analysis have to be speci-

fied [3]. The dependency on the analysis is one reason
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Experimental design has a long tradition in statistics, engineering and life

sciences, dating back to the beginning of the last century when optimal

designs for industrial and agricultural trials were considered. In cell biol-

ogy, the use of mathematical modeling approaches raises new demands on

experimental planning. A maximum informative investigation of the

dynamic behavior of cellular systems is achieved by an optimal combina-

tion of stimulations and observations over time. In this minireview, the

existing approaches concerning this optimization for parameter estimation

and model discrimination are summarized. Furthermore, the relevant clas-

sical aspects of experimental design, such as randomization, replication and

confounding, are reviewed.

Abbreviation

AIC, Akaike Information Criterion.
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for the wide range of experimental design methodolo-

gies in statistics.

In this minireview, we provide theoreticians with a

starting point into the experimental design issues that

are relevant for systems biological approaches. For the

experimentalists, the minireview should give a deeper

insight into the requirements of the experimental data

that should be used for mathematical modeling. The

aspects of experimental planning discussed here are

shown in Fig. 1B. One of the main aspects when

studying the dynamics of biological systems is the

appropriate choice of the sampling times, the pattern

of stimulation and the observables. Moreover, an over-

view about the design aspects that determine the scope

of the study is provided. Furthermore, the benefit of

pooling, randomization and replication is discussed.

Experimental design issues for the improvement of

specific experimental techniques are not discussed.

Microarray specific issues are discussed elsewhere

[4–9]. Experimental design topics in proteomics are dis-

cussed by Eriksson and Feny [10]. Improvement of

quantitative ‘real-time polymerase chain reaction’ is

given elsewhere [11–13]. Design approaches for qualita-

tive models, i.e. Boolean network models, semi-quanti-

tative models or Bayesian networks, are also given

elsewhere [14–18].

A review from a more theoretical point of view is

given by Atkinson et al. [19]. A review with focus on

optimality criteria and classical designs is also given by

Atkinson et al. [20]. An early review containing a

detailed bibliography until 1969 is provided by Herz-

berg and Cox [21]. The literature on Bayesian experi-

mental design has been reviewed previously [22]. The

contribution of R. A. Fisher, one of the pioneers in

the field of design of experiments, has also been

reviewed previously [23]. A review of the methods of

experimental design with respect to applications in

microbiology can be found elsewhere [24].
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Fig. 1. (A) Overview of an usual model building process. Both loops, with and without model discrimination, require experimental planning

(highlighted in gray). (B) The most important steps in experimental planning for systems biological applications.
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Apart from bringing quantitative modeling to biol-

ogy, systems biology bridges the cultural gap between

experimental an theoretical scientists. An efficient

experimental planning requires that, on the one hand,

theoreticians are able to appraise experimental feasi-

bility and efforts and that, on the other hand, experi-

menters know which kind of experimental information

is required or helpful to establish a mathematical

model.

Table 1 constitutes our attempt to condense general

theoretical aspects in planning experiments for the

establishment of a dynamic mathematical model into

some rules of thumb that can be applied without

advanced mathematics. However, because the needs on

experimental data depend on the questions under

investigation, the statements cannot claim validity in

all circumstances. Nevertheless, the list may serve as a

helpful checklist for a wide range of issues.

General aspects

Sampling

Any biological experiment is conducted to obtain

knowledge about a population of interest, e.g., about

cells from a certain tissue. ‘Sampling’ refers to the pro-

cess of the selection of experimental units, e.g. the cell

type, to study the question under consideration. The

aim of an appropriate sampling is to avoid systematic

errors and to minimize the variability in the measure-

ments due to inhomogeneities of the experimental

units. Adequate sampling is a prerequisite for drawing

valid conclusions. Moreover, the finally selected sub-

population of studied experimental units and the bio-

chemical environment defines the scope of the results.

If, as an example, only data from a certain phenotype

or of a specific cell culture are examined then the

generalizability of any results for other populations is

initially unknown.

In cell biology, there is usually a huge number of

potential features or ‘covariates’ of the experimental

units with an impact on the observations. In principle,

each genotype and each environmentally induced vary-

ing feature of the cells constitutes a potential source of

variation. Further undesired variation can be caused

by inhomogeneities of the cells due to cell density, cell

viability or the mixture of measured cell types. More-

over, systematic errors can be caused by changes in the

physical experimental conditions such as the pH value

or the temperature.

The initial issue is to appraise which covariates

could be relevant and should therefore be controlled.

These interfering covariates can be included in the

model to adjust for their influences. However, this

yields often an undesired enlargement of the model

[see example (3) in Fig. 2].

An alternative to extending the model is control-

ling the interfering influences by an appropriate

Table 1. Some aspects in the design of experiments for the pur-

pose of mathematical modeling in systems biology.

In comparison to classical biochemical studies, establishment of

mechanistic mathematical models requires a relative large amount

of data

Measurements obtained by experimental repetitions have to be

comparable on a quantitative not only on a qualitative level

A measure of confidence is required for each data point

The number of measured conditions should clearly exceed the

number of all unknown model parameters

Validation of dynamic models requires measurements of the time

dependency after external perturbations

Perturbations of a single player (e.g. by knockout, over-expression

and similar techniques) provide valuable information for the

establishment of a mechanistic model

Single cell measurements can be crucial. This requirement depends

on the impact of the occurring cell-to-cell variations to the

considered question, and on the scope and generality of the

desired conclusions

The biochemical mechanisms between the observables should be

reasonably known

The predictive power of mathematical models increases with the

level of available knowledge. It could therefore be preferable to

concentrate experimental efforts on well understood subsystems

If the modeled proteins could not be observed directly,

measurements of other proteins that interact with the players of

interest, can be informative. The amount of information from such

additional observables depends on the required enlargement of

the model

The velocity of the underlying dynamics indicates meaningful

sampling intervals Dt. The measurements should seem relatively

smooth. If the considered hypothesis are characterized by a

different dynamics, this difference determines proper

sampling times

Steady-state concentrations provide useful information

The number of molecules per cell or the total concentration is a

very useful information. The order of magnitude of the number of

molecules (i.e. tens or thousands) per cellular compartment has

to be known

Thresholds for a qualitative change of the system behavior, i.e. the

switching conditions, are insightful information

Calibration measurements with known protein concentrations are

advantageous because the number of scaling parameters is

reduced

The specificity of the experimental technique is crucial for

quantitative interpretation of the measurements

For the applied measurement techniques, the relationship between

the output (e.g. intensities) and the underlying truth (e.g.

concentrations) has to be known. Usually, a linear dependency

is preferable

Known sources of noise should be controlled

C. Kreutz and J. Timmer Experimental design in systems biology

FEBS Journal 276 (2009) 923–942 ª 2009 The Authors Journal compilation ª 2009 FEBS 925



sampling [25]. This is achieved by choosing a fixed

‘level’ of the influencing covariates or ‘factors’. How-

ever, this restricts the scope of the study to the

selected level.

Another possibility is to ensure that each experimen-

tal condition of interest is affected by the same amount

on the interfering covariates. This can be accomplished

by grouping or ‘stratify’ the individuals according to

the levels of a factor. The obtained groups are called

‘blocks’ or ‘strata’. Such a ‘blocking strategy’ is fre-

quently applied, when the runs cannot be performed at

once or under the same conditions. In a ‘complete

block design’ [26], any treatment is allocated to each

block. The experiments and analyses are executed for

each block independently [Fig. 2, (2a)]. Merging the

obtained results for the blocks yields more precise

estimates because the variability due to the interfering

factors is eliminated. ‘Paired tests’ [27] are special cases

of such complete block designs.

In ‘full factorial designs’, all possible combinations

of the factor levels are examined. Because the

number of combinations rapidly increases with the

number of regarded covariates, this strategy results

in a large experimental effort. One possibility to

reduce the number of necessary measurements is a

subtle combination of the factorial influences. ‘Latin

square sampling’ represents such a strategy for two

blocking covariates. A prerequisite is that the

number of the considered factor levels are equal to

the number of regarded experimental conditions.

Furthermore, latin square sampling assumes that

there is no interaction between the two blocking

covariates, i.e. the influence of the factors to the

measurements are independent from each other; e.g.

there are no cooperative effects.

A latin square design for elimination of two interfer-

ing factors with three levels is illustrated in Fig. 3 (2a).

Here, three different conditions, e.g. times after a stim-

ulation t1,t2,t3, are measured for three individuals A,

B, C at three different states c1, c2 and c3 within the

circadian rhythm. The obtained results are unbiased

with respect to biological variability due to different

individuals and due to the circadian effects.

Frequently, the covariates with a relevant impact

on the measurements are unknown or cannot be

controlled experimentally. These covariates are called

‘confounding variables’ or simply ‘confounders’ [28].

In the presence of confounders, it is likely that

Fig. 2. An example of how the impact of

two sources of variation can be accounted

for in time course measurements.

Experimental design in systems biology C. Kreutz and J. Timmer
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ambiguous or even wrong conclusions are drawn. This

occurs if some confounders are over-represented within

a certain experimental condition of interest. In an

extreme case, for all samples within a group of repli-

cates, one level of a confounding variable would be

realized. Over-representation of confounders is very

likely for small number of repetitions. In Fig. 4, the

probabilities are displayed for the occurrence of a con-

founding variable for which the same level is realized

for any repetition in one out of two groups. It is

shown that there is a high risk of over-representation

if the number of repetitions is too small.

An adequate amount of replication is a main strat-

egy to avoid unintended confounding. This ensures

that significant correlations between the measurements

and the chosen experimental conditions are due to a

causal relationship. However, especially in studies

based on high-throughput screening methods, three or

even less repetitions are very common. Consequently,

without the use of prior knowledge, the obtained

results are only appropriate as a preliminary test for

the detection of interesting candidates.

In systems biology, measurements of the dynamic

behavior after a stimulation is very common. Here,

confounding with systematic trends in time can occur,

e.g. caused by the cell cycle or by circadian processes.

It has always be ensured that there is no systematic

time drift. The issue of designing experiments that are

robust against time trends is discussed elsewhere

[29,30].

Another basic strategy to avoid systematic errors

is ‘randomization’. Randomization means both, a

random allocation of the experimental material and

a random order in which the individual runs of the

experiment are performed. Randomization minimizes

that the risk of unintended confounding because any

systematic relationship of the treatments to the indi-

viduals is avoided. Any nonrandom assignment

between experimental conditions and experimental

units can introduce systematic errors, leading to

distorted, i.e. ‘biased’, results [31]. If, as an example,

the controls are always measured after the probes, a

bias can be introduced if the cells are not perfectly

in homeostasis. For immunoblotting, it has been

shown that a chronological gel loading causes

systematic errors [32,33]. A randomized, nonchrono-

logical gel loading is recommended to obtain uncor-

related measurement errors.

‘Pooling’ of samples constitutes a possibility to

obtain measurements that are less affected by bio-

logical variability between experimental units without

an increase in the number of experiments [34]. Pool-

ing is only reasonable when the interest is not on

single individuals or cells but on common patterns

across a population. If the interest is in the single

experimental unit, e.g. if a mathematical model for a

intracellular biochemical network such as a signaling

pathway has to be developed, pooled measurements

obtained from a cell population are only meaningful,

if the dynamics is sufficiently homogeneous across

the population. Otherwise, e.g. if the cells do not

respond to a stimulation simultaneously, only the

average response can be observed. Then the scope of

the mathematical model is limited to the population

average of the response and does not cover the

single cell behavior.

Pooling can cause new, unwanted biological effects,

e.g. stress responses or pro-apoptotic signals. There-

fore, it has to be ensured that these induced effects do

not have a limiting impact on the explanatory power

of the results. However, if pooling is meaningful, it

can clearly decrease the biological variability and the
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risk of unwanted confounding, especially for a small

number of repetitions.

Replication

One purpose of ‘replication’ is the minimization of the

risk of unintended confounding. Furthermore, repeated

measurements allow for the estimation of the variabil-

ity of the data. This enables the computation of error

bars as a measure of confidence for each data point.

An additional advantage of replication is the

improvement in the precision and power of the analy-

ses. There is no generally valid rule for the amount of

improvement if the sample size is enlarged. However,

the estimation of any parameters is typically carried

out by averaging over the replicate measurements.

Because of the ‘central limit theorem’ of statistics, a

sum over identically distributed random variables is

normally distributed if standard conditions are ful-

filled. Therefore the ‘confidence interval’ or ‘standard

error’ of an estimate obtained after averaging over n

repetitions decreases proportional to 1=
ffiffiffi
n
p

. Figure 5

shows, as an example, that the standard error rli
of

the sample mean l in an experimental condition i is

equal to r=
ffiffiffi
n
p

where r denotes the standard deviation

of a single data point. In the example, the two sample

means constitute two population parameters that are

estimated from experimental data. Additional informa-

tion obtained from repeated measurements increases

the precision in the parameter estimates.

The 1=
ffiffiffi
n
p

dependency of standard errors of esti-

mated parameters could be regarded as an optimistic

rule of thumb if experiments are planned efficiently

[35]. By contrast, for statistical tests, the power of a

design, i.e. the sensitivity to detect any effects, depends

on the separation of distributions observed under the

null and under the alternative hypothesis. There is a

relationship between (a) the power of a statistical test;

(b) the true underlying effect size, i.e. the distance of

the two distributions; (c) the desired confidence, i.e.

the significance level as the threshold for a rejection

of the null hypothesis; (d) the amount of noise; and

(e) the number of replications. Therefore, if (a)–(d) are

given, the required sample size (e) can be calculated.

Such a ‘sample size calculation’ [4,36,37] can be per-

formed analytically or via simulations. Reviews about

sample size calculations with focus on clinical studies

are provided elsewhere [38,39].

If some experimental conditions play a special role

in the analysis, e.g. as a common reference, these data

points have a prominent impact on the results. In this

case, it could be advantageous to measure the special

condition more frequently to obtain a more precise

estimate. Otherwise, if no experimental condition plays

a special role and the noise level is equal, ‘balanced’

designs, i.e. designs with the same number of replicates

in each group, have optimal power.

The manner in which the replicates are obtained is

crucial for the scope of the results. Technical replica-

tion limits the scope of any results to the investigated

biological unit because the obtained confidence inter-

vals does not contain the biological variability. By

contrast, biological replicates observed in different

experimental runs lead to confidence intervals that

reflect the inter-individual and inter-experimental vari-

ability. This leads to more general results and extends

the scope of the study. If the interesting biological

effects are small, the inter-individual variability can be

eliminated by a blocking strategy. Appropriate replica-

tion and its pitfalls are discussed elsewhere [35,40,41].

The design problem

The discussion in the preceding section concerns quali-

tative aspects of experimental planning that are related

to the scope and validity of the results. For planning

at a quantitative level, i.e. for the proposal of

optimally informative observables, perturbations or

measurement times, the design problem has to be

stated mathematically.
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The mathematical models

In this minireview, it is assumed that the biological

process is modeled by a system of ‘ordinary differential

equations’

_xðtÞ ¼ f ðxðtÞ; uðtÞ; pxÞ ð1Þ

where px is a vector containing the dynamic parame-

ters of the model and u represents the externally con-

trolled inputs to the system as stimulation by ligands.

Typically, the state variables x correspond to concen-

trations. Initial concentrations x(0) have usually also

to be considered as system parameters. The level of

detail, i.e. the number of equations and parameters,

depends on the hypotheses under investigation. The

system dynamics, i.e. the function f, is often derived

from the underlying biochemical mechanisms. These

models are called ‘mechanistic models’.

The discussed principles and mathematical formal-

ism of experimental design also hold for ‘partial differ-

ential equations, delay differential equations and

differential algebraic equations’. Indeed, all the dis-

cussed principles hold for any deterministic relation-

ship between the state variables and also for steady

states. By contrast, models containing stochastic rela-

tions, e.g. as described via ‘stochastic differential equa-

tions’, would require a more general mathematical

formalism at some points.

The definition of the dynamics x(t) in Eqn (1) is the

biologically relevant part of a mathematical model.

Statistical inference requires an additional component

yðtiÞ ¼ gðxðtiÞ; pyÞ þ eðtiÞ; eðtiÞ � Nð0; r2Þ ð2Þ

linking the dynamical variables x(ti) to the measure-

ments y(ti). Here, independently and identically distrib-

uted additive Gaussian noise is assumed, although the

following discussion is not restricted to this type of

observational noise. The vector py contains all para-

meters of the observational functions g, e.g. scaling

parameters for relative data, and parameters for fur-

ther ‘effects’ corresponding to experimental parame-

ters, which account for interfering covariates. For

simplicity, we introduce p 2 P as the parameter

vector containing all np model parameters px and py.

An experimental design D specifies the choice of the

external perturbations u, the choice of the observables

g and the number and time points ti of measurements.

The way of stimulation as well as the times of

measurement can usually be controlled by the experi-

menter. Therefore, they are called ‘independent vari-

ables’. By contrast, the measured variables y are called

‘dependent variables’ because the realizations depend

on the design and on the system behavior. Note, that

in the models, Eqns (1,2) only the dependent variables

y are affected by noise. It is assumed that the inde-

pendent variables, e.g. the sampling times, can be

controlled exactly.

External perturbations

In systems biology, an important independent variable

is the treatment. Such a stimulation, e.g. by hormones

or drugs, can be time varying and is in this case

modeled as continuous ‘input function’ u(t). Up- or

down-regulation of genes, i.e. by ‘constitutive over-

expression’ or by ‘knockouts’, can also be regarded as

external perturbations of the studied system.

A design can be optimized with respect to the cho-

sen perturbations u � U. This includes the choice of

the applied treatments or treatment combinations as

well as stimulation strength and the temporal pattern,

e.g. permanent or pulsatile stimulation. U denotes the

set of all experimentally applicable perturbations. For

numerical optimization, the input functions has to be

parameterized. A common approach is the ‘control

vector parameterization’ [42,43] or using stepwise

constant input functions.

Previously [1,44,45], a stepwise constant input func-

tion was optimized for a given number of switching

times. More complex input functions have also been

optimized [46–48]. A benchmark problem [49] has also

been provided for model identification of a biochem-

ical network in so called ‘fed batch experiments’. Here,

the externally controlled input function is the feed rate

and feed concentration in the bioreactor. Inputs have

been designed [45,50] for discrimination of models for

growth of Escherichia coli and Candida utilis. An

experimental design for the same growth models for

the purpose of both, parameter estimation and model

selection has also been proposed [51].

Measurement times

The choice of the sampling times, i.e. the times of mea-

surement t � T, is crucial if the dynamics of a system

is studied by mechanistic models. On the one hand,

the sampling interval Dti should be small enough to

capture the fastest processes. On the other hand, the

duration tmax)tmin of observation should be appropri-

ate to capture the long-term behavior of the studied

system. Because of limitations in experimental

resources, this trade-off has to be solved reasonable by

experimental planning. This requires, however, some

knowledge about the time scale of the studied dynamic

processes.

C. Kreutz and J. Timmer Experimental design in systems biology
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It has been shown previously [52] how the sampling

times could be chosen optimally to maximize the preci-

sion in parameter estimation. A model of enzymatic

activation is used as an illustration. An example from

process engineering with two state variables was also

previously used [1] for optimization of the sampling

times for a given number of measurements.

Observables

The output of an experiment y is represented in the

model by observational functions g and the noise e. The
experimenter has the freedom to choose which measure-

ment technique will be applied and which system players,

e.g. proteins, will be measured. Thereby, it is possible to

select the most informative observables g � G from the

set of all available observational functions G, which are

determined by experimental feasibility.

In practice, such experimental design considerations

are very helpful, if, for example, new antibodies have

to be generated or experimental techniques have to be

established in a laboratory. Another reason for the

importance of the choice of the observables is that this

step determines the expected amount of observational

noise.

A sensitivity analysis was previously applied [53] to

a model of the nuclear factor kappa B (NFjB) signal

transduction pathway to determine proteins that are

sensitive to changes in important model parameters.

The measurement of these proteins provides the maxi-

mal amount of information for parameter estimation.

Experimental constraints

In cell biology, there are usually much more experi-

mental restrictions than in more technically orientated

disciplines such as engineering or physics. Often, only

a small fraction of the dynamic variables can be mea-

sured. The feasible external perturbations are usually

very limited, e.g. it is often impossible to define the

stimulation in the frequency domain, which is a natu-

ral approach in engineering.

Experimental constraints are accounted by the defi-

nition of the ‘design region’ D, i.e. the set of all practi-

cally applicable designs. During the optimization, D

is considered as the domain, i.e. only designs D 2 D

are allowed. If there are only separate experi-

mental constraints for the domains U,G and T, then

D corresponds to the set of all combinations

D ¼ U�G� T ð3Þ

of possible perturbations, observations and measure-

ment times. An example for commonly occurring

constraints is a lower boundary for the sampling inter-

val Dt or that only a limited number of measurements

can be obtained from one experimental unit.

After the definition of a ‘utility’ (or ‘loss’) ‘function’

V(D), the design can be optimized over the design

region

D� ¼ argmax
D2D

VðDÞ ð4Þ

to identify the optimal design D� as the solution of the

design problem. The utility function, also called ‘design

criterion’ V, reflects the purpose of the experiments. If,

for example, parameters are estimated, the utility func-

tion could be a measure for the expected accuracy of

the estimated parameters. If the discrimination

between competing models for the description of a

phenomenon is regarded, the design criterion measures

the difference in the model predictions. The most com-

monly used utility functions are introduced below.

Prior knowledge

In general, besides the dependency on the design, the

utility function depends on the true underlying para-

meters p and on the realization of the observational

noise V(D) fi V(D,p,e). Therefore, in the general case,

the determination of an optimal design requires some

prior knowledge about the parameters [54]. The accu-

racy of the predicted optimal designs is limited by the

precision of the provided prior knowledge. Such

knowledge, e.g. the order of magnitude or physiolo-

gical meaningful ranges, could be obtained from

preliminary experiments. The expected utility function

�VðDÞ ¼
Z

P

Z 1
�1

qðeÞqðpÞVðD; p; eÞde dp ð5Þ

is obtained by averaging over the parameter space P

and over all possible realizations of the observational

noise. By using a prior distribution q(p), the parameter

space is weighted according to its relevance. q(e)
denotes the distribution of the observational noise.

In the case of an unknown model structure, i.e. for

the purpose of model discrimination, an additional

weighting with the prior probabilities p(M) of differ-

ent reasonable models M is required. Then Eqn (5)

becomes

�VðDÞ ¼
X
M

pðMÞ
Z

P

Z 1
�1

qðeÞqðMÞðpÞV ðMÞðD; p; eÞde dp

ð6Þ

where q(M)(p) denotes the parameter prior for model

M.
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After the analysis of new experimental data, the

parameter prior as well as the model prior are updated

to account for new insights. Bayes’ formula yields to

posterior probabilities

p0ðMÞ ¼ pðMÞ
R

qðyjpðMÞÞqðMÞðpÞdpP
m pðMmÞ

R
qðyjpðMmÞÞqðMmÞðpÞdp

ð7Þ

for the considered models and

qðMÞ
0
ðpÞ ¼ qðMÞðpÞqðMÞðyjpÞR

qðMÞðp0ÞqðMÞðyjp0Þdp0
ð8Þ

for the model parameters. In turn, these refinements

yield more precise experimental planning.

The iterative gain of knowledge about the studied

system is displayed in Fig. 6. At the beginning, an

initial prior knowledge is used for experimental

planning. After execution and analysis of an experi-

ment, posterior probabilities Eqns (7,8) are calculated,

which serve as new prior knowledge for the design of

the subsequent experiment.

Determination of optimal designs

After planning with respect to confounding and scope

of the study, the model structure, the design region

and the prior knowledge are defined mathematically,

as described in the previous section. Then, the indepen-

dent experimental variables can be chosen optimally.

For this purpose, different utility functions are intro-

duced in this section. Furthermore, techniques are

introduced for the calculation of optimal designs.

The utility function or design criterion is used for

numerical optimization, which yields optimal sampling

time points, observational functions and external per-

turbations. The choice of the design criterion reflects

the issues to be studied. Therefore, an important preli-

minary need for experimental design considerations is

the exact formulation of the question under investiga-

tion [55]. Figure 7 shows a simple example where slight

variations in the hypothesis lead to other optimal

designs [56]. In systems biology, the hypotheses are

usually answered by discrimination between different

mathematical models [57] and/or the estimation of

model parameters [58–60].

Usually, the differential equations Eqn (1) cannot

be solved analytically. In this case, an optimal design

can only be determined by numerical techniques. By

means of ‘Monte Carlo’ simulations, synthetic data are

generated including their stochasticity [61,62]. By ana-

lyzing the simulated data in exactly the same way as

intended for the analysis of the measurements, it is

possible to evaluate and compare the possible out-

comes (the utility functions obtained for different

designs). Repeated simulations are then used to calcu-

late the expected utility function. This expectation can

be used for numerical optimization.

The disadvantage of Monte Carlo approaches is the

high numerical effort. This drawback can be mini-

mized by introducing reasonable approximations. The

benefit of Monte Carlo simulations is their great flexi-

bility. In principle, every source of uncertainty can

be included by drawing from a corresponding prior

distribution. Furthermore, nonlinear dependencies of

the observations on the parameters or on the states

does not constitute a limitation of the Monte Carlo

methods.

In the next two sections, Monte Carlo procedures

for optimization with respect to parameter estimation

and model discrimination are described.

Experimental design for parameter estimation

An important step in the establishment of a mathemat-

ical model is the determination of the model

Experimental
planning

Analysis,
update of the priors

Experiments

Parameter and 
model priors

Fig. 6. Iterative cycle of the gain of knowledge about a system. For

initial planning, a model and parameter prior has to be defined. This

knowledge is updated and refined after any experimental result is

obtained.

Fig. 7. A simple example showing how a slight variation in the

question under investigation can change the optimal design. Addi-

tional details, e.g. of the underlying assumptions, are provided else-

where [56].
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parameters. Besides initial protein concentrations and

kinetic rate constants, parameters of the observational

functions have to be estimated.

In the ‘maximum likelihood’ approach [43,63] the

likelihood function, i.e. the probability q(y|p) of the

measurements y given a parameter set p, is maximized

to obtain optimal model parameters p̂. This probability

is determined by the distribution of the observational

noise. In the case of independently normally distrib-

uted noise Eqn (2), the log-likelihood function corre-

sponds to the well known standardized residual sum of

squares
P

iðyi � giÞ2=r2
i .

‘Fisher information’ is defined as the expectation of

the second derivative of the log-likelihood with respect

to the change in the parameters [52,64,65]. If the

observational noise is normally distributed, the ‘Fisher

information matrix’

FmnðDÞ ¼
X

i

X
j

1

r2
ij

@2gjðti; p̂Þ
@pm@pn

ð9Þ

contains second order derivatives of the model’s obser-

vational functions g around estimated parameters p̂

[66]. r2
ij denotes the variance of the observational noise

of observable gj at time ti. The summation extends the

chosen design D. The inverse of F is the covariance

matrix of the estimated parameters. The standard

errors of the estimated parameters are the diagonal

elements of the matrix F )1.

For optimization, a scalar utility function is

required. There are several design criteria derived from

the Fisher information matrix [67]. An alphabetical

nomenclature for the different criteria was introduced

by Kiefer [56].

Often, the determinant

VðDÞ ¼ detðFðDÞÞ ¼
Y

i

kiðDÞ ð10Þ

is maximized. ki denote the eigenvalues of F. The

obtained optimal design is called ‘D-optimal’ [68].

Maximization of Eqn (10) corresponds to minimization

of the ‘generalized variance’ of the estimated para-

meters, i.e. minimization of the volume of the confi-

dence ellipsoid [69].

An ‘A-optimal’ design is obtained by maximizing the

sum of eigenvalues

VðDÞ ¼
X

i

kiðDÞ ð11Þ

of the Fisher information matrix, i.e. minimizing the

average variance of the estimated parameters.

Similarly, the ‘E-optimal’ design is obtained by max-

imization of the smallest eigenvalue

VðDÞ ¼ kminðDÞ ð12Þ

This is equivalent to minimization of the largest con-

fidence interval of the estimated parameters.

A graphical illustration of the different design

criteria is provided elsewhere [44]. Further design

criteria have also been described [70]. Some

equivalences to the above introduced criteria Eqns

(10–12) have been demonstrated [71]. A parameteri-

zation has been introduced [72] that allows for a

continuous change between the above introduced

three criteria.

In systems biology, the number of unknown para-

meters is often large compared to the available amount

of measurements. This raises the problem of ‘non-iden-

tifiability’ [73–76]. ‘Structural’ non-identifiability refers

to a redundant parameterization of the model. ‘Practi-

cal’ non-identifiability is due to limited amount of

experimental information.

The above mentioned criteria are only meaningful

if all model parameters are identifiable. Otherwise,

the Fisher information matrix is singular. In this situ-

ation, a regularization techniques could be applied

[70], i.e. a small number is added to all matrix entries

of F.

In the case of a diagonal Fisher information matrix,

the parameters of the model are called ‘orthogonal’.

Then, the precision of all parameters can be optimized

independently.

In the more general case, not all parameters, but

only s linear combinations Ap of the parameters

could be of interest. Here, A denotes an s · np
matrix. Often, only the kinetic parameters p are of

interest in contrast to the parameters k of the obser-

vational function. The covariance matrix of such lin-

ear combinations is AF )1(D)AT.The inverse can be

interpreted as a new Fisher information matrix, which

can be used to define new utility functions to opti-

mize the design for the estimation of the linear com-

binations. The corresponding D-optimal design is

called ‘DA-optimal’ [77].

A similar criterion is ‘DS-optimality’ [78,79]. Here,

the Fisher information matrix is arranged and then

partitioned

into four blocks. Block B11 contains second derivatives

with respect to the interesting parameters and block

B22 contains the corresponding derivatives with respect

to the unimportant or ‘nuisance parameters’. By maxi-

mization of
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VðDÞ ¼ det B11 � B12B�1
22 BT

12

� �
ð14Þ

the variance of the nuisance parameters is only consid-

ered if they are correlated to the parameter estimates

of interest.

If a model is linear in the parameters, the Fisher

information matrix becomes independent on the true

underlying parameters. In this case, a global optimal

design can be achieved. Otherwise, the proposed

design depends on the prior knowledge of the para-

meters. D-optimal designs usually have the number

different experimental conditions equal to the number

of model parameters. Such designs are often very sen-

sitive to parameter assumptions. Robustness of the

designs with respect to the presumed underlying para-

meters is discussed elsewhere [80–84] and in the next

section.

In a Monte Carlo approach, robust designs for

parameter estimation are obtained by computing the

expected utility function �VðDÞ from the parameter

prior distribution according to Eqn (5). Figure 8 pro-

vides an overview of the Monte Carlo approach.

Experimental design has been applied in systems

biology in different contexts. Polynomial input func-

tions [66] have been optimized for parameter estima-

tion of the MAP-kinase signaling pathway. Optimal

experiments for the estimation of unknown para-

meters in EGF receptor signaling have also been pro-

posed in [85]. The estimation of model parameters of

thiamine degradation is improved by appropriate

designs [69]. Here, it is shown that optimization of

the temperature profile as input to the system requires

half of the experimental effort. Optimal input func-

tions for a fed batch experiment for parameter esti-

mation for a metabolic model have been determined

[86]. An additional iterative approach to model identi-

fication of biological networks has been developed

[87]. The authors applied their approach for para-

meter estimation in a mechanistic model of caspase

activation in apoptosis.

Experimental design for model discrimination

The structure of a mathematical model for describing

the studied system is initially unknown. ‘Model discri-

mination’ or ‘model selection’ is the statistical proce-

dure to decide, on the basis of experimental data,

which model is the most appropriate [88–90].

The accordance of the data and the model is exam-

ined by evaluation of the maximum likelihood function

qðyjp̂ðMÞÞ for a model M obtained after parameter

estimation. A well-established criterion for model dis-

crimination is the ‘Akaike Information Criterion

(AIC)’ [91,92]

AICðMÞðDÞ ¼ �2 log qðyjp̂ðMÞÞ þ 2n
ðMÞ
p ð15Þ

A model with a small AIC, i.e. with a low number of

parameters n
ðMÞ
p and a large likelihood, is preferable.

If two models are compared, the signum of the diff-

erence

DAICðMm;MnÞ ¼ log
qðyjp̂ðMnÞÞ
qðyjp̂ðMmÞÞ þ n

ðMmÞ
p � n

ðMnÞ
p

� �
ð16Þ

indicates the superior model. Here, model Mm would

be preferred for negative DAICðMm;MnÞ.

Besides some further variants of the AIC, there are

other related criteria such as the ‘Bayes Information

Criterion’ [93], or the ‘Minimum Description Length’

[94], which can also be applied for the purpose of

model discrimination. They are mathematically derived

under slight different assumptions. Here, only the

application of the AIC is discussed. Nevertheless, the

AIC can be replaced if another model assessment

criterion is desired.

The advantage of these model discrimination

criteria is the general applicability. However, these

criteria do not allow any conclusions concerning sta-

tistical significance. This is enabled by statistical tests,

i.e. by a ‘likelihood ratio test’, [95,96]. Here, p-values

are computed under the additional assumption that

the considered models are ‘nested’, i.e. the parameter

space of one model is a submanifold of the para-

meter space of the other model. Often, the submani-

fold can be obtained by setting some parameters to

zero. The nested model can be considered as a

special case of the other, more general model. If

Mm denotes the submodel, it holds qðyjp̂ðMmÞÞ
� qðyjp̂ðMnÞÞ for the two likelihood functions.

Furthermore, if, Mm is appropriate, the advantage

of Mn is only due to overfitting. In this case, it can

be shown that under standard assumptions [97] the

likelihood ratio
Fig. 8. Schematic overview of a Monte Carlo approach to optimize

a design for parameter estimation.
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LRðMm;MnÞðDÞ ¼ 2 log
qðyjp̂ðMnÞÞ
qðyjp̂ðMmÞÞ

� �
ð17Þ

is v2df-distributed. The degree of freedom (df) is given

by the difference in the number of parameters. If the

likelihood ratio obtained from the experimental data is

larger, as one would expect according to the v2 distri-

bution, the small model is rejected.

If the observational noise is independently, normally

distributed, the likelihood ratio Eqn (17) becomes

DRSSðMm;MnÞðDÞ ¼
X
d2D

yðdÞ � gðMmÞðd; p̂ðMmÞÞ
rðdÞ

� �2

�
X
d2D

yðdÞ � gðMnÞðd; p̂ðMnÞÞ
rðdÞ

� �2

ð18Þ

which is equal to the difference of the two standar-

dized residual sum of squares. Here, d 2 D denotes the

design points, i.e. the set of chosen experimental condi-

tions. For models that are linear in the parameters, the

expectation of Eqn (18) is

V ðMm;MnÞðDÞ ¼
X
d2D

gðMmÞðd; p̂ðMmÞÞ � gðMnÞðd; p̂ðMnÞÞ
rðdÞ

� �2

ð19Þ

and therefore asymptotically (for large sample size)

independent of the noise realization [98]. Therefore,

numerical optimization does not require averaging

over the observational noise.

In the analysis of experimental data, the first step is

always a parameter estimation procedure to obtain the

maximum likelihood function. Subsequently, computa-

tion of a model discrimination criterion for pairs of

rival models is performed.

A Monte Carlo approach that imitates exactly these

steps is schematically displayed in Fig. 9. Here, the

expectation of a model discrimination criterion V(D) is
calculated by drawing numerous realizations from the

model and from the parameter priors as well as from the

distribution of the observational noise. Each realization

of simulated data is analyzed exactly in the same way as

it is intended for the experimental data, yielding a reali-

zation of the model discrimination criterion. The expec-

tation is then used to optimize the design.

This Monte Carlo approach is very general because

there are no restrictive assumptions and every kind of

prior knowledge can be included. On the other hand,

such an approach is very expensive in terms of compu-

tational time.

There, are some approaches for the optimization of

experimental designs for model discrimination that

constitutes approximations of the general Monte Carlo

approach (Fig. 9). Most algorithms are based on

Eqn (19). In Hunter and Reiner [98]

V ðMm;MnÞðDÞ¼
X
d2D

gðMmÞðd;hpðMmÞiÞ� gðMnÞðd; p̂ðMnÞÞ
rðdÞ

� �2

ð20Þ

is optimized. Here, the expected response

gðMmÞðd;hpðMmÞiÞ of the ‘true’ model Mm at design

points d is computed for the expected parameters

ÆpðMmÞæ according to the parameter prior. The para-

meters p̂ðMnÞ of the other models are obtained by para-

meter estimation. A similar approach was used

previously [99] to find the optimal design for two rival

regression models. The obtained design is called

‘T-optimal’. The case of more than two competing

models is discussed elsewhere [100].

A criticism of both approaches is that uncertainty in

the expected response due to parameter uncertainty is

not considered. An example was provided previously

[101] this uncertainty depends strongly on the design

points. In an improved approach [102,103], the covar-

iance matrices of the parameter prior distributions are

propagated to the model response after linearization of

the model. This leads to optimization of

V ðMm;MnÞðDÞ ¼
X
d2D

gðMmÞðd; hpiÞ � gðMnÞðd; p̂Þ
� �2

nMr2ðdÞ þ
P

m0 r
2
m0 ðdÞ

ð21Þ

where r2
m0 are the covariance matrices of the responses

due to parameter uncertainty.

In Hsiang and Reilly [104], an approach is intro-

duced in which also higher order moments are propa-

gated. Here, a representative group of parameters sets

f~pðMÞ1 ; ~p
ðMÞ
2 ; . . .g is drawn from the prior distribution of

the parameters for each model. For these groups

of parameters, the models are evaluated. This yields an

expected response
Fig. 9. Schematic overview of a general Monte Carlo approach to

optimize a design for model discrimination.
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ĝðMÞðdÞ ¼
X

i

gðMÞðd; ~pðMÞi ÞqðMÞð~pðMÞi Þ ð22Þ

for modelM and

V ðMm;MnÞðDÞ ¼
X
d2D

ĝðMmÞðdÞ � ĝðMnÞðdÞ
rðdÞ

� �2

ð23Þ

as a utility function for the comparison of two models.

Here, the linearization of the model is avoided by com-

puting the expectation after evaluation of the model

response g.

In Eqns (20–23), model Mm is assumed as the true

underlying model. The averaging over all pairwise

comparison of the models accounting for model uncer-

tainty yields:

VðDÞ ¼
X

m;n 6¼m

pðMmÞpðMnÞV ðMm;MnÞðDÞ ð24Þ

An alternativeis optimization of the worst case, i.e.

maximization of the difference between the two most

similar models

VðDÞ ¼ min
m;n 6¼m

V ðMm;MnÞðDÞ ð25Þ

The introduced approaches are reasonable in the case

of normally distributed noise. In a more general set-

ting, the expected likelihood ratio

V
ðMm;MnÞ
LR ðDÞ ¼

X
m;n6¼m

pðMmÞpðMnÞLRðMm;MnÞðDÞ ð26Þ

or, for non-nested models, the expected difference

V
ðMm;MnÞ
AIC ðDÞ ¼

X
m;n 6¼m

pðMmÞpðMnÞDAICðMm;MnÞðDÞ

ð27Þ

in the Akaike Information can be used, instead.

A Bayesian methodology for optimal experimental

design was introduced previously [101,105]. In this

‘exact entropy approach’, the entropy

S ¼ �
X

m

pðMmÞ lnpðMmÞ ð28Þ

is used to quantify the amount of information, i.e. the

certainty about the true underlying model. A lineariza-

tion of the model response is used to propagate the

covariance matrices of the prior distributions. By this

way, the expected change

VðDÞ ¼ S0ðDÞ � S ð29Þ

in the entropy is calculated which has to be optimized

in the experimental planning. Equations for the

expected entropy S¢(D) after a new experiment are pro-

vided elsewhere [101].

A comparison of both the Bayesian approach and

the more frequentist approach are given elsewhere

[106]. Only slight differences in the proposed designs

were found. Another comparison of the published

approaches is provided elsewhere [107].

Despite the importance of model selection, there are

still few applications of the discussed experimental

design procedures in the field of systems biology. Feng

and Rabitz [108] introduced a concept called ‘optimal

identification’ to estimate model parameters and discri-

minate between different models. Their algorithm is

illustrated by a simulation study for a tRNA proof-

reading mechanism. The criteria in Eqn (21) were used

previously [50] to calculate the optimal input for model

selection between different dynamical models for a

yeast fermentation in a bioreactor. Computer simula-

tions [107] have also been used to check the applicabil-

ity of model discrimination methods to modeling of

polymerization reactions in organic chemistry. Here,

some of the discussed design optimization approaches

also were applied and compared. An overview about

model selection and design aspects in engineering

applications provided elsewhere [109].

An appropriate design for model selection is not neces-

sarily advantageous for parameter estimation. An exam-

ple of where the optimal design for discrimination

between two regression models cannot be used to esti-

mate the parameters of the true model has been described

[70]. If both, parameter estimation and model discrimina-

tion is required, different design criteria, i.e. D-optimality

and T-optimality, have to be combined [70].

Illustration by examples

In this section, the optimization of an experimental

design is illustrated by some examples. Here, the sam-

pling times are optimized. Analogical strategies could be

applied for the optimization of the chosen observables,

perturbations or the total number of measurements.

Figure 10 shows as an example a protein P and an

enzyme E, which are produced with a common rate p1.

The enzyme is degraded with rate p2 and promotes the

degradation of the protein with parameter p3. The time

dependency of the protein concentration xP(t) and

enzyme concentraton xE(t) is then given in modelM1 by

M1 : _xEðtÞ ¼ p1 � p2xEðtÞ
_xPðtÞ ¼ p1 � p3xEðtÞxPðtÞ

with xP(0) ¼ xE(0) ¼ 0. Initially, p1 ¼ 2, p2 ¼ 1 and

p3 ¼ 1 are assumed as the true underlying parameters.
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Furthermore, it is assumed that the protein concentra-

tion

yðtÞ ¼ xPðtÞ þ e; e � Nð0; 0:05Þ ð30Þ

is measured in absolute concentrations with a signal to

noise ratio of approximately 5%.

First, the calculation of the optimal sampling times

is exemplified for the estimation of the three rates p1,

p2 and p3, with an initial measurement at time t1 fol-

lowed by nine subsequent equidistant measurements in

time. In this case, two design parameters, the point in

time t1 of the first measurement and the sampling

interval Dt, have to be optimized. For this purpose,

the D-optimality criterion according to Eqn (10) is

applied.

The design region, i.e. the set of feasible and experi-

mentally reasonable values of t1 and Dt, can be

restricted as an example to t1 > 0 and Dt > 0.25.

Another prerequisite could be that the measurements

have to be executed within the first 10 min, leading to

a further constraint t1 + 9Dt £ 10 if the time unit is

minutes.

Because the model M1 is nonlinear in the para-

meters, the performance of a design, i.e. the expected

accuracy of the parameter estimates, depends on the

true underlying parameters and on the realization of

the noise.

To examine the impact of the noise realizations, a

hundred data sets y(t) ¼ xP(t) + e(t),t ¼ t1,t1 +

Dt,. . .,t1+ 9Dt for the same parameter set p1,p2,p3 have

been simulated for different t1 and Dt. For each

realization, the parameters have been (re)estimated

and the covariance matrices of the parameter esti-

mates have been calculated to determine

V ¼ detðFÞ ¼ detðCovðp̂i; p̂jÞ�1Þ according to Eqn

(10). Figure 11 shows the expected performance, as

well as the 25%, 50% (median) and 75% quantiles of

V(t1,Dt).
Usually, the impact of different noise realization is

neglected [44,51,69] and the performance is optimized

for a single realization, namely the expected measu-

rements y(t) ¼ xP(t),t ¼ t1, t1Dt,. . .,t1+9Dt. Figure 12

shows V(t1,Dt) for this approximation. The most infor-

mative design is obtained for t�1 ¼ 0:52 and Dt� ¼
0.56, which is in accordance with Fig. 11, where the

average and quantiles of the performance are displayed

when many noise realizations are considered.

P

E
p 1 

p 1 

p 2 

p 3 

Fig. 10. In our example, a protein P and an enzyme E are produced

with a common rate p1. The enzyme is degraded with rate p2 and

promotes the degradation of the protein with rate p3.
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Fig. 11. For nonlinear models, the optimal

design depends on the observational noise.

Here, only a minor dependency of the opti-

mal design parameters t1 and Dt is observed

between the mean, the 25% and 75%

quantiles and the median performance.
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Figure 13 shows the dependency of xP(t) and the

optimal sampling times for the initial parameter set

(black curve). The protein concentration and the corre-

sponding optimal sampling times are also displayed

after changing p1 (red), p2 (green) and p3 (blue) by a

factor of two.

Next, design optimization for model selection is

exemplified. For this purpose, we raise the question of

whether the protein is degraded independently of the

enzyme, i.e. model

M2 : _xEðtÞ ¼ p1 � p2xEðtÞ
_xPðtÞ ¼ p1 � p3xPðtÞ

is compared with M1. In this case, the time depen-

dency of the protein concentration yields

xPðtÞ ¼ p1t � expð�p3tÞ ð31Þ

for the case xP(0) ¼ 0. Again, the approximation y(t) ¼
xP(t),t ¼ t1,t1 + Dt,. . .,t1 + 9Dt is made. Because the

number of parameters for both models M1 and M2 is

equal, the utility functions based on the likelihood ratio

(Eqn 26) and on the difference in the Akaike Informa-

tion (Eqn 27) are equivalent.

Figure 14A shows the performance V ðM1;M2Þ(t1,Dt) if
modelM1 is assumed to be the true model. Figure 14B

shows the performance if M2 is the correct model. If

both models have equal prior probabilities p(M1) ¼
p(M2), V(M1,M2) and V(M2,M1) can be averaged to

obtain an expected performance V(t1,Dt) according to

Eqn (24) Fig. 14C. In this case, however, the average is

dominated by V(M1,M2) because modelM1 is hardly dis-

criminated if modelM2 is the truth. Therefore, depend-

ing on the purpose of the study, it could be more

appropriate to optimize the worst case scenario, i.e.

Eqn (25), which is plotted in panel (D) of Fig. 14.

Conclusions and outlook

In systems biology, experimental planning is becoming

more and more crucial, because the establishment of

mathematical models for complex biochemical net-

works requires huge experimental efforts. There are

some studies concerning experimental design issues in

the field of systems biology. However, most of them

are restricted to certain applications, e.g. to microbial

growth, or address only a single aspect of experimental

planning.

In this minireview, an overview of experimental

design aspects for systems biological applications is

provided. General principles in experimental planning,

i.e. replication and randomized sampling as well as the

problem of confounding, are discussed. It is empha-

sized that clear definitions of the investigated hypoth-

eses and the scope of the study are crucial. Also, an

overview of numerical optimization of designs for the

purpose of parameter estimation and for model discri-

mination is provided. Design optimization for para-

meter estimation and for model discrimination is

illustrated by some examples.

In comparison to classical questions concerning

design of experiments, the applications in systems biol-

ogy are characterized by little prior knowledge. There-

fore, experimental design considerations have to be

robust against preceding assumptions. By all means,

the sensitivity of a proposed experimental design with

respect to the assumptions has to be considered.
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However, there is a general trade-off between the

robustness of the designs and their efficiency for test-

ing the hypotheses under consideration.

A related problem is that the models are often large

and the number of measurements is very limited.

Therefore, experiments have to be planned based on

imprecise knowledge. Moreover, relative noise levels of

10% or more are standard for biochemical data.

Model identification based on such noisy data is a

challenging task. This situation can be improved by

efficient experimental designs. However, the methods

for experimental planning have to deal with the pro-

blem of non-identifiable parameters.

The models in systems biology are usually nonlinear

in their parameters. Therefore, linearized models are

only rough approximations and often are inadequate

to show qualitatively the same behavior as the exact

model. In addition, the nonlinearity hampers numeri-

cal optimization for finding globally optimal parameter

estimates and their confidence intervals.

Monte Carlo approaches for experimental planning

do not require any restrictive assumptions. However,

an automatic and reliable optimization procedure is

needed. Because the choice of an appropriate optimi-

zation technique is problem dependent, it is very diffi-

cult to implement an automatic global parameter

estimation procedure without enough prior knowledge

of the underlying model and the relevant part of the

parameter space. Furthermore, the utility function

that has to be optimized can only be estimated

approximately by many realizations of the underlying

model, the associated parameters and the observa-

tional noise. Therefore, approximation of the utility

function is not smooth and standard optimization

techniques, e.g. based on ‘gradient descent’, may not

be applicable.

For these reasons, mathematical modeling in systems

biology is a very challenging task that most likely

requires the development of new methodological

approaches. Proper experimental planning can decrease

gaps between model based predictions, biologically

motivated hypotheses and experimental validation,

thus enabling the entire power of mathematical model-

ing to be exploited.
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