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KEYWORDS Summary Several procedures have been proposed to be capable of predicting the occur-
Seizure prediction;
Seizure anticipation;
Statistical
assessment;
Random prediction;

rence of epileptic seizures. Up to now, all proposed algorithms are far from being sufficient
for a clinical application. This is, however, often not obvious when results of seizure prediction
performance are reported. Here, we discuss impacts of long prediction horizons with respect
to clinical needs and the strain on patients by analyzing long-term continuous intracranial elec-
troencephalography data.
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1. Introduction

The essential symptom of epilepsy is the apparently unfore-
seeable occurrence of abnormally synchronized discharges

in the cerebral cortex which clinically manifest themselves
as seizures. The ability to predict upcoming seizures would
augment the therapeutic options considerably. A seizure
warning device would already increase the quality of life
of those epilepsy patients who cannot be treated success-
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served.

ully by either medications or epilepsy surgery. Additionally,
arious intervention systems could be applied to suppress
eizures in advance of their clinical manifestation, e.g., by
elivering short-acting antiepileptic drugs or by applying
lectric stimulation.

Analyses of invasive and scalp electroencephalogra-
hy (EEG) recordings using linear and nonlinear time
eries analysis techniques have provided growing evidence
hat changes in the EEG dynamics may be detectable
rior to seizure onset (cf. Litt and Echauz, 2002, for a

eview). Such changes have been observed minutes up
o several hours in advance of seizure onset (Schindler
t al., 2002; Iasemidis et al., 2003; Chaovalitwongse et
l., 2005; Le van Quyen et al., 2005; Mormann et al.,
005).
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Fluctuations in the duration of prediction horizons
etween a few minutes and several hours as reported so
ar are of limited use and may affect clinical applicabil-
ty of a prediction device considerably. A high variance in
he prediction horizon might lead to substantial everyday
estrictions, since, for instance, a simple warning leaves the
atient awaiting in vain an upcoming seizure for hours. A
riggered intervention would have to be effective against
he upcoming seizure almost immediately and the effect
f the intervention would have to last for several hours.
oth are rather restrictive constraints not only for warning
evices but also for automatic intervention systems. There-
ore, it would be advantageous to predict upcoming seizures
ith a precise temporal resolution, at best a long time inter-
al in advance of the seizure.

To assess the temporal resolution of prediction algo-
ithms, the actual prediction horizon has to be divided into
n intervention period, i.e., a period between the detection
f seizure precursors and the earliest possible occurrence
f a subsequent seizure, and an occurrence period, i.e., a
eriod during which the seizure is predicted to occur. Dif-
erent lengths of both time intervals should be evaluated
ith respect to sensitivity and specificity. The only limita-

ion is that the intervention would have to become effective
ithin the length of the intervention time and would have

o last for the duration of the seizure occurrence period. If
he intervention needs less time to become effective, the
pplication of the intervention could be shifted in time.

Moreover, a prediction algorithm does usually raise not
nly correct but also false alarms. If the fraction of false
larms is comparable to the number of true alarms, long
rediction horizons are particularly unfavorable (Mormann
t al., 2006). For instance, for three false alarms per day and
rediction horizons up to 4 h, the patient will be awaiting
eizures that will never occur half of the day. This problem
ecomes even worse if only a fraction of the seizures were
redicted correctly. This strengthens the necessity of short
eizure occurrence periods, which does restrict the length
f the intervention times by no means.

In this short communication, we present the assessment

f a prediction method based on synchronization theory. We
nvestigate the trade-off between intervention times and
ccurrence periods on the basis of long-term continuous
ntracranial EEG data sets of four patients extending over
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Table 1 EEG data characteristics

Patient Age Sex Focus
localization

Preictal

Number of
seizures
available

Minimum n
seizures an

pat01 28 m NC 28 7
pat02 50 m HC 34 8
pat03 31 f NC 15 4
pat04 18 m NC 28 5

Total 105 24
Mean 26 6

Different numbers of seizures as well as different interictal reference
intervention time and occurrence period. Focus localization: neocorte
B. Schelter et al.

everal days. Having in mind a therapy based on a predic-
ion algorithm, we estimate the fraction of false alarms as
ell as the ‘‘false warning time’’, i.e., the ratio of time the
atient is awaiting a seizure that will never occur, addition-
lly. To control the performance of the prediction method,
e apply a statistical test in order to check whether the
chieved performance is indeed better than that of a ran-
om predictor (Schelter et al., 2006).

. Materials and methods

n this study, we evaluated the mean phase coherence
Mormann et al., 2003) on long-term continuous intracra-
ial EEG data. The analyzed data base consists of recordings
f four patients suffering from medically intractable focal
pilepsy. The EEG data were acquired using a Neurofile NT
igital video EEG system with 128 channels, 256 Hz or 512 Hz
ampling rate, and a 16 bit analogue-to-digital converter. To
liminate possible line noise and low frequency components,
he EEG data sets were preprocessed by a 50 Hz notch filter,
high pass filter at 0.5 Hz, and an anti-aliasing filter. A sub-

et of electrode contacts was selected prior to the analysis
y visual inspection by an experienced electroencephalogra-
her. Three focal electrode contacts, i.e., three recording
ites initially involved in ictal activity based on the avail-
ble electrode coverage of the brain, and three extra-focal
lectrode contacts, i.e., recording sites not involved at all
r — in most cases — latest during spread of ictal activity,
ere selected for analysis. Altogether 105 seizures and 699 h

nterictal data were assessable. Details about the patients
nd the EEG data sets analyzed in this study are given in
able 1.

The mean phase coherence was applied to the data using
moving window with duration of 32 s. A causal median

moother of 4 min duration was applied afterwards. The
rediction performance was assessed using the seizure pre-
iction characteristic S(FPRmax, IT, SOP) which is defined as
he functional relationship between sensitivity S and the
max

T — in Winterhalder et al. (2003) originally referred to as
eizure prediction horizon SPH — and the seizure occurrence
eriod SOP (Winterhalder et al., 2003). Furthermore, we
stimated the false warning time, i.e., the ratio of time the

Interictal

umber of
alyzed

Maximum number of
seizures analyzed

Minimum
interictal
time (h)

Maximum
interictal
time (h)

25 150 185
23 185 220
14 141 165
24 94 129

86 570 699
22 143 175

periods are assessed depending on the length of the evaluated
x (NC), hippocampus (HC).
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patient is awaiting seizures that will never occur, as well as
the fraction of false alarms with respect to the total number
of alarms. To test the statistical significance of the predic-
tion efficacy, we compared sensitivity values obtained by
the algorithm to critical sensitivity values for the random
predictor calculated on the basis of an analytic approach.
The test statistics is derived from a random predictor gen-
erating alarms following a Poisson process in time without
using any information from the EEG (Schelter et al., 2006).
Two critical sensitivity values are utilized. Since the interde-
pendence between the features of the investigated channel
combinations is unknown, the first one assumes complete

dependence of the channel combinations, thus, the feature
is assumed to be one-dimensional. The corresponding criti-
cal sensitivity is referred to as lower critical sensitivity. The
second critical value is corrected for the multiple tests that
have to be performed when choosing the best out of the
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Fig. 1 Sensitivity of the prediction method is shown in the first r
third row, the fractions of the false predictions with respect to the
warning time in the fifth row for four patients (columns). The seizur
and the intervention time IT between 2 min and 4 h and 2 min. The m
per day. The performance of the random predictor is subdivided in
assuming complete dependence between the 15 channel combinati
obtained assuming complete independence of the 15 channel combi
215

5 channel combinations between the focal and extra-focal
lectrode contacts assuming complete independence, i.e.,
he upper critical sensitivity. Concerning the tests for mul-
iple values of SOP and IT that have been evaluated, the
umber of significant results is compared with the expected
umber of significant results. This in-sample optimization
rovides evidence whether the prediction method is supe-
ior to a random predictor. A 5% significance level has been
hosen for all tests.

. Results
he results are depicted in Fig. 1. For all four patients, the
ensitivity of the prediction method is shown in the first row,
he lower critical sensitivity of the random predictor in the
econd row, the upper critical sensitivity of the random pre-

ow, the sensitivity of the random predictor in the second and
total number of predictions in the fourth row, and the false

e occurrence period SOP is varied between 15 min and 120 min
aximum false prediction rate was set to two false predictions
a lower sensitivity, i.e., the sensitivity that can be achieved

ons, and an upper sensitivity, i.e., the sensitivity that can be
nations.
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ictor in the third row, the fractions of the false predictions
ith respect to the total number of predictions in the fourth

ow, and the false warning time in the fifth row. The seizure
ccurrence period SOP is varied between 15 min and 120 min
nd the intervention time IT between 2 min and 4 h and 2 min
n order to comprise the broad range of prediction horizons
uggested in the literature. The maximum false prediction
ate was restricted to two false predictions per day in order
o ensure that only part of the day is covered by interven-
ion times and occurrence periods. A statistically significant
rediction performance is obtained for several parameter
alues of IT and SOP, for all four patients compared to the
ower and upper sensitivity of the random predictor. For
atient 1 the fraction of significant sensitivities is 42% for the
ower sensitivity and 13% for the upper sensitivity, i.e., the
umber of parameter combinations for which a significant
ensitivity was obtained divided by the 72 possible parame-
er combinations. The significance level of the test based on
he random predictor was 5%, thus, we expect a fraction of
% due to pure chance. Fractions higher than 5% are assumed
o reveal results of a prediction technique that can be con-
idered to be superior to a random prediction, especially,
f this holds compared to the upper sensitivity of the ran-
om predictor. The fractions for the remaining patients are:
atient two 46% (6%), patient three 35% (7%), and patient
our 40% (4%) for the comparison with the lower (upper)
ensitivity of the random predictor.

However, the combination of IT and SOP corresponding
o the best performance nevertheless varies considerably
etween patients. The fraction of false alarms can achieve
alues close to 100% which corresponds to the fact that
lmost all alarms are false ones. Averaging all results for
ll patients more than 50% of all alarms are false ones.
he analysis of the false warning time shows that patients
ould be up to 15% of the day awaiting seizures that will
ever occur. In general, there are considerable differences
n all quantities depending on SOP and IT. For instance, for
atient 1, choosing an intervention time of 2 min but an
ccurrence period of 120 min, a sensitivity of almost 80%
an be achieved at the cost of a fraction of the false warning
ime of 15% and a fraction of false alarms of 50%. Decreas-
ng the occurrence period by one half leads to a decrease in
ensitivity of 30%, but the fraction of the false warning time
s also decreased by one half, even though the fraction of
alse alarms is slightly increased. It might be expected in the
rst place that decreasing the occurrence period by a fac-
or of two leads to halving the fraction of the false warning
ime. But increasing the intervention time by 30 min leads
o a similar fraction of false warning time for this patient,
ven though there is no direct influence of the intervention
ime onto the false warning time.

. Conclusions

y means of an extensive continuous long-term EEG data
ase we demonstrated that in addition to the sensitivity

nd specificity of a prediction method and its comparison
ith a random predictor also additional parameters, i.e.,

he fraction of false predictions and the ratio of the false
arning time, are of particular interest to quantify the strain
n patients. Evaluating all four proposed quantities allows a
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etailed characterization of the seizure prediction method
ith respect to its implications for the day-to-day life of
atients. To this aim, it is essential to estimate all parame-
ers for a certain spectrum of intervention times and occur-
ence periods, especially if clinical needs are not restrictive.
or instance, if an intervention became effective exactly
n 5 min and lasted for a few seconds, the two time inter-
als would be completely fixed. Since this is not expected in
pplications, ranges of the time intervals should be evalu-
ted. The ranges of time intervals reflect different possible
ettings for prediction-based interventions. Single numbers
ight yield intolerable conclusions about the prediction per-

ormance.
The achieved sensitivity values depending on IT and SOP

re higher than the performance of a random predictor for
everal combinations of IT and SOP. The achieved number
f significant sensitivities for three out of four patients sub-
tantiates that the mean phase coherence can be considered
o be superior to a random prediction. For patient number 4,
uperiority to a random predictor cannot finally be verified,
specially if taking into account that an in-sample test had
o be performed. In such cases, future out-of-sample eval-
ations have to clarify superiority compared to a random
rediction.

Sensitivity values of up to 70% that are achieved have to
e put in perspective, when the two additional characteris-
ic quantities are inspected. Fractions of false alarms higher
han 50% on average will hamper a broad acceptance among
atients. In this study, we have chosen a maximum false pre-
iction rate of two false predictions per day, which is lower
han that chosen in several published articles, which are in
he order of three to four false predictions per day (cf. Litt
t al., 2001; Navarro et al., 2002; Winterhalder et al., 2003;
schenbrenner-Scheibe et al., 2003; Maiwald et al., 2004;
haovalitwongse et al., 2005; Iasemidis et al., 2005). The
raction of false alarms increases when the maximum false
rediction rate is increased. Strategies to avoid false alarms
re, thus, highly desirable. Fist approaches to this aim are
iscussed in Schelter et al. (in press).

When allowing at most two false predictions per day,
he maximum fraction of the false warning time is
2 × 2 h)/24 h = 16.7% for a seizure occurrence period of
h assuming a seizure free day. This maximum has been
bserved only for few parameter combinations for all four
atients. The fraction of 16.7% a day during which a patient
s falsely awaiting a seizure is much better than 100% uncer-
ainty. However, while this result seems to be very promising
n the first place, we want to stress that the patient would
e falsely awaiting seizures for almost 4 h every single day.
nder the assumption that the patient undergoes only a few
eizures every month, where a certain fraction of seizures
s not predicted correctly since sensitivity is considerably
ower than 100%, the false warning time of 4 h a day has to
e put in perspective. Thus, if the sensitivity is considerably
ower than 100% a device build upon the corresponding pre-
iction algorithm might not be accepted. In contrast, if the
atient underwent seizures frequently and sensitivity of the

rediction method was high, a false warning time of 4 h a
ay could be acceptable.

Nevertheless, the actual performance cannot be revealed
y discussion of the upper limits of certain parameters.
herefore, we evaluated these parameters on an extensive
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EEG data base and thereby showed that results are usually
better than expected in the theoretical worst-case scenario.
Fractions of false warning times considerably lower than
10% have indeed been observed which provides a promising
result for epilepsy patients.

Additionally, values in the order of 16% or lower are
quite uncommon. For instance, Mormann et al. (2006) esti-
mated the fraction of the false warning time to be 63% for
an exemplary study by Iasemidis et al. (2005). The supe-
rior results in our study are mainly based on the fact that
we divided the prediction horizon into an intervention time
and an occurrence period. The advantage is that the former
interval does not contribute to the false warning time. Col-
lapsing both time intervals into one single prediction horizon
would result in a fraction of maximum false warning time
of (2 × (4 h + 2 h))/24 h = 50% for a seizure occurrence period
of 2 h and an intervention time of 4 h assuming a seizure
free day. A further increase of the maximum false predic-
tion rate does imply that the patient will be confronted with
intervention times and seizure occurrence periods during an
unacceptable part of the day since during monitoring the
days are usually not seizure free. In other words, the par-
ticular influence of IT and SOP on sensitivity, the random
predictor, the fraction of false alarms, and the false warn-
ing time can be disentangled by considering the two time
intervals separately; instead of comprising both, IT and SOP,
into one single ‘‘prediction horizon’’.

We mention though that especially with respect to the
false warning time, the coarse view of one prediction
horizon leads to an artificial decrease in performance.
With respect to sensitivity the performance is artificially
increased by utilizing just one prediction horizon. Thus, dis-
tinguishing IT and SOP is essential when assessing seizure
prediction efficacy. A minimization of the fraction of the
false warning time by differentiating IT and SOP enhances
the acceptance of seizure prediction devices. The assess-
ment methodology utilized here in combination with a sta-
tistical test procedure and the proposed extensions, i.e., the
fraction of false alarms with respect to the total number
of alarms and the false warning time, enables a patient-
individual, statistically verifiable, and clinically motivated
selection of optimal prediction parameters.
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