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1 Linear Stability Analysis

In the main text, we present the results of a linear stability analysis that we perform in order to determine

whether our model is able to form patterns from uniform conditions given a particular parameter set.

Here, additional details are given to enable the readers to follow the main steps of the analysis.

Our trichome patterning model forms patterns if the inhibitor TRY acts non-cell autonomously, i.e., if

the passive transport of the inhibitor TRY is included. This pattern forming ability is a special case of the

general concept of a Turing instability. A Turing instability arises if a model without cellular interactions

has a uniform stable steady state, i.e., all cells have identical species concentrations, which becomes

unstable in the presence of cellular interactions1,2 . Usually the initial instability will be bounded by

non-linear feedback regulations such that the deviations from the uniform steady state will eventually

weaken and a new non-uniform steady state, i.e., a spatial pattern, is formed. The analysis of a Turing

instability proceeds in two steps. First, the stability of the uniform steady state is verified by means of a

linear stability analysis. This means it is investigated whether small uniform deviations form the uniform

steady state will decay with time. This is identical to the investigation of a single cell model as the

spatical coupling term eqn. (6) vanishes in this case. Second, the coupling between cells is included and

the stability of the uniform steady state in the presence of variations between different cells is analysed.

This is again performed by means of a linear stability analysis. To facilitate the analysis the inter-cellular

variations are represented in a discrete Fourier space.

In the following three sections we first present our trichome patterning model, then analyse a single

cell version of the model and give conditions for the stability of a particular steady state. Finally, we

analyse the multi-cellular system and determine conditions which must be violated in order to form

spatial patterns.

1.1 Trichome patterning model

We start with our dimensionless model for trichome pattering as presented in the Materials and Methods

section of the main text. It consists of the following system of coupled differential equations:

∂τ [gl1] j = k1 + k2[ac] j − [gl1] j (1+ [gl3] j + k3[try] j ) (1)

∂τ [gl3] j = k4 + k5[ac] j − [gl3] j (k6 + [gl1] j + k7[try] j ) + k6k8〈[gl3] j 〉 (2)

∂τ [try] j = k9 + k10[ac]
2
j − [try] j (k11 + k3[gl1] j + k7[gl3] j + k12[ac] j ) + k11k13〈[try] j 〉 (3)

∂τ [ac] j = [gl1] j [gl3] j − [ac] j (k14 + k12[try] j ), (4)

where the coupling term is defined as

〈[c]x,y〉 = [c]x−1,y + [c]x+1,y + [c]x,y−1 + [c]x,y+1 + [c]x+1,y−1 + [c]x−1,y+1 − 6[c]x,y . (5)

For ease of notation, we introduce a column vector v with all four substances as its elements, i.e., v =

([gl1], [gl3], [tr y], [ac])T , and rewrite the system of eqns. (1-4) as one equation:

∂τv j = f
(

v j
)

+ D · 〈v j 〉 (6)

with f(v) = ( f1(v), f2(v), f3(v), f4(v))
T , and D = diag (0, k6k8, k11k13, 0)

T . In our case, the reaction

functions are

f1 (v) =k1 + k2[ac] j − [gl1] j (1+ [gl3] j + k3[try] j )

f2 (v) =k4 + k5[ac] j − [gl3] j (k6 + [gl1] j + k7[try] j )

f3 (v) =k9 + k10[ac]
2
j − [try] j (k11 + k3[gl1] j + k7[gl3] j + k12[ac] j )

f4 (v) =[gl1] j [gl3] j − [ac] j (k14 + k12[try] j ).
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1.2 Steady state analysis of the single cell model

In order to find a uniform steady state v0 of the system of eqns. (1-4) without transport (i.e., D = 0),

we solve the system f (v0) = 0. We aim to determine the stability of this steady state by looking at the

evolution of small perturbations from the steady state, i.e., v̄ = v−v0. To see if these perturbations grow

or decay with time, we substitute them into the differential eqn. (6) and apply a Taylor series expansion

of f around the steady state v0, i.e.,

f (v0 + v̄) = f (v0) + J0 · v̄+ O
(

|v̄|2
)

.

Since we look at small perturbations we neglect the higher order terms O
(

|v̄|2
)

and arrive at a linear

ordinary differential equation for the perturbations v̄:

∂τ v̄ = J0 · v̄. (7)

Here, the Jacobian matrix J0 is the matrix of partial derivatives Ji,k = ∂ fi/∂vk , evaluated at the steady

state v0. In our case it has the form

J0 =









−1−[gl3]−k3[tr y] −[gl1] −k3[gl1] k2

−[gl3] −k6−[gl1]−k7[tr y] −k7[gl3] k5

−k3[tr y] −k7[tr y] −k11−k3[gl1]−k7[gl3]−k12[ac] 2k10[ac]−k12[tr y]

[gl3] [gl1] −k12[ac] −k14−k12[tr y]









.

The general solution of eqn. (7) is

v̄(τ ) =

4
∑

n=1

une
λnτwn, (8)

where the constants un are set by the initial conditions, wn are the normalized eigenvectors and λn are

the eigenvalues of the Jacobian matrix J0 evaluated at the steady state v0. The steady state is stable if

the perturbations v̄ decay with time, which is equivalent to the statement that all eigenvalues λn have

negative real parts. The eigenvalues λn are the solutions of the equation

det (J0 − λI) = 0,

where I is the identity matrix, i.e. I = diag (1, 1, 1, 1). Evaluating the determinant results in a character-

istic equation of the form

λ4 + a1λ
3 + a2λ

2 + a3λ + a4 = 0. (9)

As we are only interested in the quality (i.e., real vs. complex, positive vs. negative) of the eigenvalues,

we do not have to explicitly calculate them. Instead, we use the Routh-Hurwitz criteria, which are

necessary and sufficient conditions that all eigenvalues have negative real parts3. For the coefficients of

the characteristic eqn. (9), these criteria are

a1 > 0, a3 > 0, a4 > 0, a1a2a3 > a23 + a21a4. (10)

As we could not obtain an analyical expression for the steady state of our system of eqns. (1-4), we cannot

give a full parameteric representation of these coefficients. For the model analysis we determine the

steady states by numerical integration, starting with zero initial conditions for all protein concentrations.

This approach assumes that the system is in a homogeneous steady state before cellular coupling becomes

important. Given the numerically determined steady state, the coefficients are,

a1 = 1+ [gl1]+ [gl3]+ k11 + [ac]k12 + k14 + [gl1]k3 + k6 + [gl3]k7 + (k12 + k3 + k7)[tr y]

a2 = k11 + [ac]k12 + 2[ac]2k10k12 + k14 + [ac]k12k14 + [gl1]2k3+ k6 + [ac]k12k6

+k14k6 + k11(k14 + k6) + [gl3]2k7 + (k3(k11 + k14 + k6) + (1+ k11 + k14)k7

+k12(1+ k11 + k6 + [ac](k3 + k7)))[tr y]+ (k3k7 + k12(k3 + k7))[tr y]
2

+[gl1](1+ k11 + [ac]k12 + k14 + k3 + [gl3]k3 + k14k3 − k5 + k3k6

+[gl3]k7 + k12[tr y] + k3(1+ k12 + k7)[tr y])

+[gl3](k11 + [ac]k12 + k14 − k2 + k6 + (1+ k14 + k6)k7 + (k12 + (1+ k12 + k3)k7)[tr y])
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a3 = k11k14 + [gl3]k11k14 − [gl3]k11k2 + k11k6 + [gl3]k11k6 + k14k6

+[gl3]k14k6 + k11k14k6 − [gl3]k2k6 + [gl3]k14k7 + [gl3]2k14k7 − [gl3]2k2k7

+[gl3]k6k7 + [gl3]2k6k7 + [gl3]k14k6k7

+((k12 + [gl3]k12 + k14k3)k6

+(k14 + [gl3](k14 − k2 + k14k3 + k3k6 + k12(1+ [gl3]+ k6)))k7

+k11(k12(1+ [gl3]+ k6) + k3(k14 + k6) + (1+ [gl3]+ k14)k7))[tr y]

+(k12k3(k11 + k6) + ((k11 + k14)k3 + k12(1+ [gl3]+ k11 + [gl3]k3))k7)[tr y]
2

+k12k3k7[tr y]
3 + [gl1]2k3(1+ k14 − k5 + k12[tr y])

+2[ac]2k10k12(1+ [gl3]+ k6 + (k3 + k7)[tr y])

+[gl1](2[ac]2k10k12 + k14 + k14k3 + [gl3]k14k3 − [gl3]k2k3 − k5 + k3k6

+[gl3]k3k6 + k14k3k6 + [gl3]k7 + [gl3]k14k7 − [gl3]k5k7 + k12[tr y]

+k3(k12 + k14 − k5 + k12k6 + k7 + 4[gl3]k7 + k14k7)[tr y]+ k12k3(1+ k7)[tr y]
2

+k11(1+ k14 − k5 + (k12 + k3)[tr y]) + [ac](2[gl3]k10(k3 + k7)

+k12(1+ k14 − k5 + k3[tr y])))

+[ac]k12(k6 + [gl3](k6 − k2 + k7[tr y]) + k14(1+ [gl3]+ k6 + (k3 + k7)[tr y])

+[tr y](k7 − k5k7 + k3(k6 − k2 + k7[tr y])))

a4 = [gl1]2k3(k14 − k5 + k12[tr y])

+[gl1](k14k3k6 + [gl3]k14k3k6 − [gl3]k2k3k6 + [gl3]k14k7 − [gl3]k5k7

+k3(k12k6 + (k14 + 4[gl3]k14 − 2[gl3](k2 + k5))k7)[tr y]+ (1+ 2[gl3])k12k3k7[tr y]
2

+k11(k14 − k5 + k12[tr y])(1 + k3[tr y]))

+((1+ [gl3])k12[tr y]− [gl3]k2 + k12k3[tr y]
2 + k14(1+ [gl3]+ k3[tr y]))

×([gl3]k6k7 + k11(k6 + k7[tr y]))

+2[ac]2k10k12([gl1]+ [gl1]k3[tr y] + (1+ [gl3]+ k3[tr y])(k6 + k7[tr y]))

+[ac](k12(k14(1+ [gl3]+ k3[tr y])(k6 + k7[tr y]) − [gl3](k2k6 + k5k7[tr y])

−[tr y](k2k3k6 + k5k7 + k3(k2 + k5)k7[tr y]))

+[gl1](k12(k14 − k5 + (k14 − k2)k3[tr y]) + 2[gl3]k10(k7 + k3(k6 + 2k7[tr y])))).

1.3 Steady state analysis of the multi-cellular model

In the next step, we consider the model including cellular coupling, i.e., including transport of TRY. The

stability of the uniform steady state with respect to variations in the concentration between different cells,

i.e., v̄ j = v j − v0 is again investigated by means of a linear stability analysis. Applying a linearization

of eqns. (1-4) we arrive at a system of 4 · xmax · ymax coupled linear ODEs, i.e.,

∂τ v̄ j = J0 · v̄ j + D · 〈v̄ j 〉, (11)

In order to decouple the system of eqn. (11), we apply a discrete Fourier transformation. In other words,

we look for periodic solutions of the form

v̄ j = v̄x,y =

xmax
∑

s=1

ymax
∑

r=1

νννs,r e
2π isx
xmax e

2π iry
ymax . (12)

Note that the time-dependent coefficients νννs,r play the role of amplitudes of a two-dimensional periodic

pattern. In analogy to eqn. (12), where the spatial variations are expressed in terms of amplitudes,

we can also express the amplitudes in terms of the spatial variations. This is illustrated in the following
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calculations. Multiplying eqn. (12) by e−2π ipx/xmax e−2π iqy/ymax and summing each side over 1 ≤ x ≤ xmax
and 1 ≤ y ≤ ymax yields

xmax
∑

x=1

ymax
∑

y=1

v̄x,y e−2π ipx/xmax e−2π iqy/ymax =

xmax
∑

x=1

ymax
∑

y=1

xmax
∑

s=1

ymax
∑

r=1

νννs,r e
2π isx
xmax e

2π iry
ymax e

−
2π ipx
xmax e

−
2π iqy
ymax

=

xmax
∑

s=1

ymax
∑

r=1

νννs,r

( xmax
∑

x=1

e
2π i(s−p)x
xmax

)( ymax
∑

y=1

e
2π i(r−q)y
ymax

)

. (13)

The two factors in brackets are simplified considerably by the formulas

xmax
∑

x=1

e
2π i(s−p)x
xmax = xmaxδs,p (14)

ymax
∑

y=1

e
2π i(r−q)y
ymax = ymaxδr,q (15)

with the Kronecker delta δs,p defined by

δs,p =

{

1 for s = p

0 for s &= p.

Substituting eqns. (14-15) into eqn. (13), we get

xmax
∑

x=1

ymax
∑

y=1

v̄x,y e−2π ipx/xmax e−2π iqy/ymax =

xmax
∑

s=1

ymax
∑

r=1

νννs,r xmaxδs,p ymaxδr,q = ννν p,qxmax ymax . (16)

Dividing by xmax ymax gives the amplitude equations mentioned above. Before we make use of this

result, we first need to express the spatial coupling in terms of the amplitudes νννs,r . We apply the Fourier

transformation eqn. (12) to 〈[v]x,y〉 (defined in analogy to eqn. (5)) and obtain

〈[v]x,y〉 =

xmax
∑

s=1

ymax
∑

r=1

νννs,r e
2π isx
xmax e

2π iry
ymax

(

e
−2π is
xmax + e

2π is
xmax + e

−2π ir
ymax + e

2π ir
ymax + e

2π is
xmax e

−2π ir
ymax + e

−2π is
xmax e

2π ir
ymax − 6

)

= −

xmax
∑

s=1

ymax
∑

r=1

νννs,r e
2π isx
xmax e

2π iry
ymax · dp,q (17)

where

dp,q = 4

[

sin2
(

πp

xmax

)

+ sin2
(

πq

ymax

)

+ sin2
(

πp

xmax
−

πq

ymax

)]

.

The last expression is derived using the fact that

sin (φ) =
1

2i

(

eiφ − e−iφ
)

⇒ sin2 (φ) = −
1

4

(

e2iφ + e−2iφ − 2
)

.

Applying the same procedure as above leads to

xmax
∑

x=1

ymax
∑

y=1

〈[v]x,y〉e
−2π ipx/xmax e−2π iqy/ymax = −ννν p,qxmax ymaxdp,q, (18)

Finally, we transform the linearization of the coupled system. Here, we first multiply eqn. (7) by

e−2π ipx/xmax e−2π iqy/ymax , sum over 1 ≤ x ≤ xmax and 1 ≤ y ≤ ymax , and rearrange. This yields

∂τ

xmax
∑

x=1

ymax
∑

y=1

v̄ j e
−2π isx
xmax e

−2π iry
ymax = J0 ·

xmax
∑

x=1

ymax
∑

y=1

v̄ j e
−2π isx
xmax e

−2π iry
ymax + D ·

xmax
∑

x=1

ymax
∑

y=1

〈v̄ j 〉 e
−2π isx
xmax e

−2π iry
ymax .
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Then substituting eqn. (16) and eqn. (18) leads to the transformed linearisation of the coupled system

∂τννν p,q = Ap,q · ννν p,q, Ap,q = J0 − D · dp,q, (19)

with the coupling matrix

D · dp,q =









0 0 0 0

0 k6k8dp,q 0 0

0 0 k11k13dp,q 0

0 0 0 0









.

Note that the transformation leads to a decoupling of the original system of 4 · xmax · ymax equations

into xmax · ymax sets of four equations. Each set describes the temporal evolution of the amplitude of a

periodic pattern with a pair of spatial frequencies πp/xmax and πq/ymax .

Based on a similar argument as above, the celluar variations represented by the Fourier amplitudes grow

if for any given 1 ≤ p ≤ xmax and 1 ≤ q ≤ ymax the matrix Ap,q has an eigenvalue with positive real

part. This is equivalent to the finding that the Routh-Hurwitz criteria are not fulfilled. Again, we first

need the characteristic equation for the matrix Ap,q , which is

det
(

Ap,q − λI
)

= 0.

Evaluation of this equation leads to

λ4 + b1(p, q)λ
3 + b2(p, q)λ

2 + b3(p, q)λ + b4(p, q) = 0.

Transport-driven instability arises if at least one of the following criteria is violated:

b1(p, q) > 0, b3(p, q) > 0, b4(p, q) > 0,

b1(p, q)b2(p, q)b3(p, q) > b23(p, q) + b21(p, q)b4(p, q).
(20)

The value of these coefficients are

b1(p, q) = a1 + Dp,q

b2(p, q) = a2 + Dp,q(1+ [gl1]+ [gl3]+ k14 + k6 + (k12 + k3 + k7)[tr y])

b3(p, q) = a3 + Dp,q([gl1]+ k14 + [gl1]k14 + [gl3]k14 − [gl3]k2 − [gl1]k5 + k6

+[gl3]k6 + k14k6 + (k12(1+ [gl1]+ [gl3]+ k6) + k3([gl1]+ k14 + k6)

+(1+ [gl3]+ k14)k7)[tr y]+ (k3k7 + k12(k3 + k7))[tr y]
2)

b4(p, q) = a4 + Dp,q([gl1](k14 − k5 + k12[tr y])(1+ k3[tr y])

+(k6 + k7[tr y])((1 + [gl3])k12[tr y]− [gl3]k2 + k12k3[tr y]
2

+k14(1+ [gl3]+ k3[tr y]))),

where Dp,q = 4k11k13(sin
2(qπ/ymax) + sin2(pπ/xmax) + sin2((q/ymax − p/xmax)π)). For our search

for models with Turing instability, it is noteworthy that the coefficients bn(p, q) are linear functions of

Dp,q , i.e., they are of the form bn(p, q) = an + Dp,qcn . As the an (by eqn. (10)) and Dp,q are positive,

the first three conditions in eqn. (20) can only be violated if the factor cn is negative. Moreover, it is

necessary and sufficient if one of them is violated at the maximum of Dp,q . In that case, the model shows

pattern formation for at least one set (p, q). By numerical simulations, we found parameter samples that
show transport-driven instability, i.e, fulfill all conditions in eqn. (10) and violate at least one condition

of eqn. (20). In our examination, the condition b4(p, q) > 0 was violated in every case.

Figures 2 H-I of the main text show the result of this numerical analysis. Regions in parameter space

which show transport-driven instability are indicated in white while stable regions are given in grey.
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3 Supplementary Figures
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Supplementary Figure 1: Indexing scheme of the hexagonal grid.
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Supplementary Figure 2: Comparison of the parameter values of the two competitive scenarios. (A)

Boxplot of the parameter values of the hits in the single competitive scenario on a logarithmic scale.

The term hits refers to those randomly drawn parameter samples that fulfill all five criteria given in the

main text. The box represents the values between the 25% and 75% quantiles (i.e., quartiles) with the

median denoted by the central line. The whiskers delimit the range of values that lie within the 1.5

fold interquartile range, and the circles symbolize outliers. The shaded area corresponds to the range of

parameter that was fixed prior to the simulations based on biological knowledge. These ranges are given

in Table I in the main text. (B) Boxplot of the parameter values of the hits in the double competitive

scenario on a logarithmic scale. See (A) for a description of the plot. Note that this boxplot contains an

additional parameter, namely k3, the relative complex formation rate of TRY and GL1. In comparison

with the single competitive scenario, the median of k7, the analogous rate for TRY and GL3, is much

smaller in the double competitive scenario.
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Supplementary Figure 3: Properties of the double competitive inhibition. (A) Parameter correlations

of the hits in the double competitive inhibition scenario. A strong negative correlation is found between

k3, the rate of complex formation of TRY and GL1, and k7 the rate of TRY and GL3 interaction. (B)

Scatter plot of the k3 and k7 values of the hits. Note the logarithmic scale. The values accumulate in the

top left and bottom right quadrant reflecting their negative correlation. These two plots illustrate that in

the double competitive scenario the inhibition is primarily exerted through binding with either GL3 or

GL1 reducing it to a single competitive inhibition scenario.
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Supplementary Figure 4: Comparison of the parameter sensitivities of the two competitive scenarios.

(A) Relative parameter sensitivities of the single competitive scenario. Each model parameter is changed

separately over four orders of magnitude relative to its median value given in Table I of the main text.

Light pink indicates whether the perturbed parameter set gives rise to a Turing instability. Dark pink

indicates whether all five criteria of the over-expression experiments as defined in the main text are

met. (B) Relative parameter sensitivities of the double competitive scenario. See (B) for a description

of the plot. Note that the single competitive scenario (A) tolerates larger parameter perturbations than

the double competitive scenario (B) while still fulfilling all criteria. In particular, the median parameter

values of the double competitive scenario do not meet the over-expression criteria.

11


