
Rank-based p-values for

sparse high-dimensional risk prediction models

fitted by componentwise boosting

Harald Binder, Christine Porzelius & Martin Schumacher

Universität Freiburg i. Br.

FDM-Preprint Nr. 101 December 2009

Zentrum für Datenanalyse und Modellbildung

Universität Freiburg

Eckerstraße 1

D–79104 Freiburg im Breisgau

und

Institut für Medizinische Biometrie und Medizinische Informatik
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Abstract

There are many techniques for fitting sparse risk prediction models to high-

dimensional data, e.g., allowing to predict a clinical endpoint by automatically

determining a small set of informative covariates from gene expression measure-

ments. Techniques for regularized estimation, such as componentwise boosting,

provide sparse estimates for linear predictors. Many estimated parameters will be

equal to zero, resulting in good prediction performance and a short list of informa-

tive genes. However, typically no p-values for single genes will be available, which

is a downside compared to univariate test-based approaches. We address this by

presenting an approach for obtaining p-values for componentwise likelihood-based

boosting. The latter technique performs a large number of model fitting steps, where

in each step one covariate is selected based on a score statistic. For quantifying un-

certainty, we propose to consider the ranking based on the score statistic for all

covariates in each step. Comparing the median rank of a covariate across boosting

steps to a null distribution, obtained from data with permuted response, provides a

p-value that takes the multivariable structure into account. In a simulation study,

these rank-based p-values for multivariable models are seen to provide competitive

performance concerning identification of informative covariates. In contrast to uni-

variate p-values, the actual Type I error rates are close to the nominal level in most

settings. In an application to time-to-event data with gene expression measurements

from patients with diffuse large-B-cell lymphoma, the proposed p-values are seen to

provide valuable complementary information to the fitted model. This combines the

advantages of multivariable risk prediction techniques and univariate approaches for

quantifying uncertainty.

Keywords: High-dimensional data; Risk prediction; Gene lists; Sparseness; Boosting;

Uncertainty.
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1 Introduction

Modern molecular measurement techniques, such as gene expression microarrays, often

result in a large number of variables for a relatively small number of patients. Based

on the specific objective, there are different strategies for dealing with such data. When

comparison between groups is wanted, e.g., “cases” vs. “controls” or gene expression

from different types of tissues, typically test-based techniques are employed. There, one

test statistic is calculated for each molecular entity, e.g., for each gene, resulting in a

list of p-values for quantifying uncertainty, e.g., with respect to the group difference for

each single gene. When selecting a subset of genes to be called differentially expressed,

the false discovery rate with respect to that list can be controlled (see Benjamini and

Hochberg, 1995, for example).

However, when high-dimensional molecular measurements are to be linked to a future

clinical endpoint, e.g., “dead vs. alive” or “time to relapse”, techniques for fitting of

risk prediction models may be more appropriate. Often, fitting of a regression model

with simultaneous variable selection is wanted, resulting in sparse models, i.e., models

that contain only a small number of automatically selected molecular covariates. For

example, with gene expression data this promises a relatively short list of genes that is

informative with respect to future clinical events.

There are many techniques that provide such sparse fits. For example, the lasso (Tib-

shirani, 1996) or componentwise boosting (Bühlmann and Yu, 2003) allow for sparse

estimation of the parameter vector of standard regression models in a high-dimensional

setting. These have been adapted to various kinds of endpoints (see Park and Hastie,

2007, for an efficient algorithm for the lasso with binary response and time-to-event

data, and Tutz and Binder, 2007; Binder and Schumacher, 2008b, for componentwise

boosting, for example).
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As these techniques have been designed to provide risk prediction models, the resulting

models are naturally evaluated with respect to prediction performance (see Schumacher

et al., 2007, for example). However, if a model is found to provide good prediction per-

formance, this only provides general information about the employed small number of

molecular quantities. Prediction performance does not provide specific information con-

cerning the contribution of a single gene to the model. In particular, the uncertainty with

respect to this contribution remains unclear. In a low-dimensional setting, confidence

intervals and p-values would provide such information. However, in a high-dimensional

setting, variable selection often will defeat attempts to obtain reliable confidence inter-

vals (see Leeb and Pötscher, 2006, for example). Also, there are hardly any techniques

that provide sparse risk prediction models and p-values. On the other side, Bayesian

techniques, which excel at quantifying uncertainty (see Noma et al., 2009, for example),

mostly do not provide one single sparse risk prediction model (see Kaderali et al., 2006,

for one such approach).

In the following, we present an approach for obtaining p-values for one specific class of

sparse model fitting techniques, namely componentwise likelihood-based boosting (Tutz

and Binder, 2007; Binder and Schumacher, 2008b). These techniques employ a stagewise

approach for building up the estimated parameter vector of a sparse high-dimensional

regression model. As will be shown, p-values can be obtained by employing informa-

tion from this stagewise process by assigning ranks to each covariate in each step and

comparing aggregated ranks to a permutation-based null distribution.

The primary aim of the proposed approach for obtaining p-values is to quantify uncer-

tainty of regression model components fitted to high-dimensional data. Therefore, the

focus will not be on exact distributional properties of the corresponding test statistic,

but on practical performance in typical high-dimensional settings. Correspondingly, also

other names, instead of “p-values”, could be chosen, for indicating their nature as in-
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dices of uncertainty, without a strong focus on theoretical foundations. However, as

the proposed procedure for obtaining these indices of uncertainty closely mimics other

statistical testing approaches, they will be called p-values in the following.

Several other approaches have been proposed for evaluating stability of sparse risk pre-

diction models or of gene lists and rankings. For example, bootstrap inclusion frequen-

cies are obtained by performing variable selection in bootstrap data sets, generated by

sampling from the original data, and recording the proportion of bootstrap data sets

where, e.g., a gene has been selected (see Qiu et al., 2006, for example). Similarly,

Baker and Kramer (2006) consider selection frequencies for informative genes in com-

bination with prediction performance for gene sets of various sizes. Baek et al. (2009)

show that improved performance can be obtained by using frequently selected genes as

a starting point for model building. Boulesteix and Slawski (2009) provide an overview

of techniques for quantifying the stability of ranked gene lists. However, none of these

approaches provides p-values for model components, which are are easily obtained for

single genes from test-based techniques. Meinshausen et al. (2009) propose a technique

using multiple random splits, where variable selection is performed in one data set and p-

values are obtained from the remaining data. However, aggregation of p-values from the

various splits is difficult, and p-values are provided only for selected genes. In contrast,

the approach proposed in the following attempts to provide p-values for all covariates,

when fitting models by componentwise boosting.

An overview of componentwise likelihood-based boosting will be given in Section 2.1.

The proposed approach for extracting p-values then is described in Section 2.2. The

performance of the p-values with respect to identification of informative covariates and

their actual Type I error levels are evaluated in a simulation study in Section 3, specif-

ically comparing the proposal to p-values from univariate approaches. An application

example with gene expression data and a time-to-event endpoint for patients with diffuse
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large-B-cell lymphoma is given in Section 4. Section 5 provides some concluding remarks

and a discussion about the generality of the proposed technique for obtaining p-values

for sparse high-dimensional risk prediction models.

2 Rank-based p-values for componentwise boosting

2.1 Componentwise likelihood-based boosting

When fitting generalized linear models (McCullagh and Nelder, 1989) by componentwise

likelihood boosting (Tutz and Binder, 2007), there are observations (xi, yi), i = 1, . . . , n,

with potentially high-dimensional covariate vectors xi = (xi1, . . . , xip)
′. The response yi

is taken to be from an exponential family, e.g., it may be continuous or binary, where the

latter is typical for clinical endpoints that are to be linked to high-dimensional molecular

data. The structural part of the model then is given by

E(yi|xi) = g(ηi) = g(β0 + x′
iβ),

where g is a known response function. The parameter vector β = (β1, . . . , βp) (and the

intercept term β0, which will be neglected in the following) is typically estimated by

maximizing the log-likelihood l(β) (for more details see McCullagh and Nelder, 1989).

However, this is no longer possible when the number of covariates p is larger than the

number of observations n.

Besides binary clinical endpoints, often some time-to-event endpoint, e.g., “time to re-

lapse” will be of interest. The data then is given by (ti, δi, xi), i = 1, . . . , n, where ti is

the last observation time, δi is an event indicator, taking value 1 if an event occurred

at that time and 0 otherwise, and xi again is a potentially high-dimensional covariate
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vector. The Cox proportional hazards model

h(t|xi) = h0(t) exp(ηi) = h0(t) exp(x′
iβ)

then considers the hazard h(t|xi) at time t, given the covariate values, i.e., the instan-

taneous risk of having an event, employing an unspecified baseline hazard h0(t). In a

low-dimensional setting, the parameter vector β is estimated by maximizing the partial

log-likelihood l(β) (for more details see Andersen et al., 1993, for example).

Componentwise likelihood-based boosting is a technique that allows for estimation of

both types of models in a high-dimensional setting (see Tutz and Binder, 2007, for

generalized linear models, and Binder and Schumacher, 2008b, for the Cox proportional

hazards model). Starting with an estimated parameter vector β̂(0) = (0, . . . , 0)′, where

all covariates have no effect, i.e., none is included in the model, a series of boosting steps

k = 1, . . . ,M, is performed.

In each boosting step, a candidate model with linear predictor

η
(k)
i = η̂

(k−1)
i + γ

(k)
j xij j = 1, . . . , p,

is considered for each covariate. The information from the previous boosting steps enters

via the fixed offset η̂
(k−1)
i = x′

iβ̂
(k−1) (where for generalized linear models intercept

terms β
(k)
0 or β̂

(k−1)
0 have to be included in the candidate models as well as for offset

calculation).

The parameters γ
(k)
j are estimated by maximizing the penalized likelihood

lpen(γ
(k)
j ) = l(γ

(k)
j ) +

λ

2
γ

(k)
j ,

where λ > 0 is a penalty parameter that determines how far the estimates γ̂
(k)
j are
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shrunken towards zero.

The covariate with index j∗ that improves the fit the most then is chosen for the com-

ponentwise update

β̂
(k)
j =











β̂
(k−1)
j + γ̂

(k)
j if j = j∗

β̂
(k−1)
j otherwise

and η̂
(k)
i = x′

iβ̂
(k). Specifically, the element j∗ of the estimated parameter vector is

determined by looking for the covariate that maximizes the penalized log-likelihood

lpen(γ
(k)
j ) in Tutz and Binder (2007). In Binder and Schumacher (2008b) it is selected

via the penalized score statistic

U
(k)
j (I

(k)
j + λ)−1U

(k)
j , (1)

where U
(k)
j = U(0) is the score function U(γ) = ∂l(γ)/∂γ, and I

(k)
j = I(0) is the

Fisher information I(γ) = ∂2l(γ)/∂2γ, both evaluated at zero, however, incorporating

the offset. In principle, this could also be employed for determining updates when

performing componentwise likelihood-based boosting for generalized linear models and

should result in similar estimates compared to selection based on the penalized log-

likelihood.

The number of boosting steps M has to be carefully controlled to avoid overfitting. It

can, e.g., be chosen by cross-validation. In the resulting models, many of the covariates

will not have received any update, i.e., they will not be included. Including only a small

number of covariates, e.g., provides a short list of genes deemed informative. The penalty

parameter λ is of minor importance, as long as it is chosen large enough, such that the

update in each boosting step is small.
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2.2 Rank-based p-values

Componentwise boosting is closely related to the lasso. Specifically, in a continuous

response setting the estimates from componentwise boosting with small step sizes will

be very similar to the estimates from the lasso (Efron et al., 2004). Therefore, compo-

nentwise boosting shares also the properties of the lasso concerning groups of correlated

covariates with an effect on the response. There, often only one covariate from such a

group will receive a non-zero estimate, and the others will not be included in the model

(see Zou and Hastie, 2005, for example). This could be expected to result in large vari-

ability with respect to the list of covariates with non-zero estimates. Bootstrap inclusion

frequencies could provide some information on this. However, our starting point in the

present research was to look for more detailed information. Specifically, we considered

ways, how such groups of correlated covariates, where only one enters into the final

model, could be recognized from the course of the boosting steps. In the end this re-

sulted in the following proposal for obtaining p-values. The resulting development is not

only valid for groups of correlated covariates, but will allow for quantifying uncertainty

for any covariate.

For obtaining a p-value for each covariate, a statistic and a null distribution is needed,

which will be introduced in the following.

2.2.1 Extracting a statistic for each covariate

In each boosting step, the penalized score statistic (1) is calculated for every covariate.

The covariate with the largest value of the score statistic is selected for an update, i.e., if

it is not yet in the model it will be included. Covariates that are only almost selected in a

boosting step can also be recognized from a large value of the score statistic. Therefore,

aggregating the value of the score statistic for a covariate over the course of the boosting
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steps should provide an indication of importance of that covariate, from the perspective

of componentwise boosting.

Unfortunately, the value of the score statistic is difficult to compare between boosting

steps, as the values decrease, and more generally depend on many factors such as the

overall amount of information in the data. For obtaining values that are comparable be-

tween boosting steps, we propose to calculate the rank of the score statistics. Specifically,

in each boosting step, the values of the score statistic are ranked. The covariate with

the largest rank is the only one that will be updated in this boosting steps. However,

other covariates with large ranks can be considered as being close to update/inclusion.

The ranks are the same regardless of whether employing the penalized score statistic (1)

or the traditional unpenalized score statistic (with λ = 0).

For judging whether a covariate is often close to inclusion/update, the rank calculated in

a boosting step for this covariate has to be aggregated across boosting steps. We suggest

to employ the per-covariate median of the rank values across boosting steps. Naturally,

other aggregating quantities could be considered. For example, we performed initial

experiments using the maximum rank across boosting steps. However, this resulted in

a rather problematic distribution. In contrast, as will be seen, the median rank as a

statistic for each single covariate allows for reliable inference.

2.2.2 Null distribution

For judging the evidence for effects on the response at the level of the covariates, com-

pared to overall prediction performance, the covariates could, e.g., be ordered according

to the median ranks. Compared to ordering based on statistics for univariate tests, this

takes the multivariable regression model into account, i.e., the effect of a covariate is

judged adjusted for the potential effects of the other covariates. Naturally, this adjust-

ment is only performed to the extent that can be provided by the sparse models with a
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linear predictor that are fitted by componentwise boosting.

The median rank of a covariate can be considered as a test statistic for the null hypoth-

esis that this covariate has no effect on the response. Similar to other test statistics, the

actual null hypothesis may be larger, as componentwise boosting can detect only some

kinds of effects. For example, linearity of the effect and some amount of sparseness are

assumed. Furthermore, the number of boosting steps is determined by cross-validation,

i.e., the distribution of the median rank values is tied to prediction performance. There-

fore, any resulting p-values will be closely connected to the fitted model. However, this

is no downside, but is wanted for providing uncertainty information specifically for the

fitted model.

For obtaining p-values corresponding to the median rank values as a test statistic, a

null distribution is needed. Specifically, the distribution of the median rank needs to

be known, given that there is no effect. As componentwise boosting is a rather simple

procedure, such a null distribution could certainly be derived analytically for specific

settings, e.g., for orthogonal covariates. However, with gene expression data, complex

correlation structure between covariates is to be expected, making analytical results

difficult to obtain. Therefore, we suggest to employ a permutation-based approach for

obtaining a null distribution.

New data sets without covariate effect are generated based on the original data by

permuting the response. This leaves the covariate structure intact and corresponds to

the general null hypothesis of no connection between the covariates and the response. In

each of these data sets, componentwise boosting is performed, using the same number of

boosting steps as in the original data (e.g., determined by cross-validation there). Then

the median rank for each covariate is determined in each data set.

If cross-validation would be performed in the data sets with permuted response, the

selected number of boosting steps mostly would be close to zero, i.e., only few rank
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values would be available for each covariate. These would be close to the ranking of

a univariate statistic. In contrast, by using the same number of boosting steps as in

the original data, values are obtained that reflect the multivariable structure and the

assumed level of information of the original model. As an added benefit, computational

demand is rather low, e.g., compared to bootstrap inclusion frequencies or the approach

of Meinshausen et al. (2009), where all model building steps, including cross-validation,

have to be performed in each data set.

The median rank values of all covariates and all data sets with permuted response

are then taken together to form an empirical representation of the null distribution.

In initial experiments, we alternatively considered forming a separate null distribution

for each covariate, for taking the specific correlation structure for this covariate into

account. However, this did not provide better results. We also considered different

numbers of repetitions with permuted response, and 100 repetitions provided satisfactory

results.

The p-value for a covariate then is obtained by taking median rank value for this covariate

from the original data and determining the proportion of median rank values from the

empirical null distribution that is equal to or smaller than this value.

3 Simulation study

For evaluating the properties of the proposed rank-based p-values for componentwise

likelihood-based boosting, we performed a simulation study. Criteria for evaluation are

identification of covariates with true non-zero regression parameters and the actual Type

I error rate with respect to calling covariates informative, compared to the nominal level

given by the p-value for a covariate.

We will consider models for time-to-event data. All approaches will be based on the
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Cox proportional hazards model, where the baseline hazard is not estimated. However,

omission of covariates from a model might influence performance for the other covariates

via the baseline hazard (Gerds and Schumacher, 2001). Therefore, this presents a poten-

tially very difficult setting. If rank-based p-values are seen to perform well there, good

performance could also be expected with generalized linear models, e.g., for a binary

response.

Rank-based p-values will be obtained by fitting Cox proportional hazards models by

componentwise likelihood-based boosting (Binder and Schumacher, 2008b), where the

number of boosting steps is chosen by 10-fold cross-validation. For comparison, p-values

from univariate Cox models will be considered for each covariate. Unregularized estima-

tion is performed by standard maximum partial likelihood technique, and p-values are

obtained from standard Wald tests.

We also consider some multivariable quantities, based on bootstrap data sets. For each

data set in the simulation study, 100 bootstrap data sets are generated by drawing 0.632n

observations without replacement, for avoiding a complexity selection bias (Binder and

Schumacher, 2008a). Model-building using likelihood-based boosting is performed in

each of these bootstrap data sets, including selection of the number of boosting steps by

10-fold cross-validation. Bootstrap inclusion frequencies (BIFs) are obtained by record-

ing the proportion of bootstrap data sets where a covariate was included in the fitted

models. This has been suggested for judging the importance of covariates (see Sauer-

brei and Schumacher, 1992; Qiu et al., 2006, for example). Furthermore, the estimated

regression parameters for each covariate are averaged over all bootstrap samples, effec-

tively performing frequentist model averaging (Hjort and Claeskens, 2003). This model

averaging estimates could be expected to provide more details compared to bootstrap

inclusion frequencies.

We consider a fixed number of n = 200 observations. Survival times are generated from
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a Cox exponential model (see Bender et al., 2005, for example) with baseline hazard 0.1.

Censoring times are determined from an exponential distribution with mean 10.

There are p = 1000 covariates drawn from a standard normal distribution, where two

types of correlation structure are considered. In the first setting, all covariates are

uncorrelated. In the second setting, correlation for pairs of covariates with indices j and

k is 0.8|j−k| for the first 200 covariates, 0.5|j−k| for the second block of 200 covariates,

and equal to zero for the rest. There are 50 covariates with non-zero effects, which are

all located in the first block of 200 covariates at indices {1, 4, 7, . . . , 145, 148}, i.e., the

maximum correlation between informative covariates is 0.83 = 0.512.

The true regression parameters are determined based on the overall effect size ceff ∈

{0.25, 0.5, 1, 2}. The regression parameters for the jth informative covariate then is given

by ceff · c
j
decr. Values of cdecr ∈ {0.7, 0.9, 0.95, 0.99} provide for a wide range of covariate

effect profiles. For example, cdecr = 0.7 will result in a small number of covariates with

large parameter values, while the rest has rather small values. In contrast, cdecr = 0.99

means that most covariates have a regression parameter of similar size. A total of 20

repetitions is performed for each scenario.

Table 1 shows the performance of the various quantities concerning identification of co-

variates with non-zero regression parameters. For each quantity, a set of cutoffs was

applied for calling a covariate informative. Plotting the proportion of correctly identi-

fied covariates at each cutoff against the proportion of covariates erroneously deemed

influential results in a ROC curve. The values in Table 1 show the mean area under

this curve. The various scenarios are characterized by the standard deviation of the true

linear predictors, larger values meaning more information in the covariates with respect

to survival times.

For uncorrelated covariates, bootstrap inclusion frequencies consistently result in the

worst performance. Better performance compared to univariate p-values is seen only for
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Table 1: Mean area under the ROC curve (AUC) for identification of covariates with
true non-zero effect, for simulation scenarios with various effect sizes (ceff ) and patterns
of effect distribution (cdecr) for uncorrelated and correlated covariates, characterized by
the (mean) standard deviation of the linear predictor (lp). Identification is based on
univariate p-values (univ), bootstrap inclusion frequencies (BIF), bootstrap averages of
parameter estimates (ave), or rank-based p-values (rank). The largest value in each
scenario is highlighted by boldface.

uncorrelated correlated
ceff cdecr lp univ BIF ave rank lp univ BIF ave rank

0.25 0.7 0.4 0.517 0.516 0.515 0.520 0.4 0.545 0.515 0.515 0.542
0.9 0.6 0.558 0.543 0.542 0.561 0.6 0.642 0.579 0.581 0.646

0.95 0.8 0.585 0.576 0.575 0.589 0.8 0.728 0.661 0.667 0.741

0.99 1.4 0.708 0.640 0.639 0.709 1.4 0.891 0.833 0.837 0.900

0.5 0.7 0.7 0.541 0.540 0.541 0.542 0.7 0.567 0.537 0.536 0.568

0.9 1.2 0.603 0.596 0.597 0.605 1.2 0.665 0.622 0.624 0.686

0.95 1.6 0.666 0.655 0.655 0.677 1.6 0.761 0.746 0.750 0.812

0.99 2.9 0.770 0.758 0.755 0.781 2.9 0.912 0.884 0.885 0.931

1 0.7 1.4 0.559 0.556 0.558 0.565 1.4 0.572 0.538 0.539 0.586

0.9 2.3 0.631 0.645 0.643 0.652 2.3 0.667 0.660 0.661 0.718

0.95 3.3 0.695 0.714 0.709 0.721 3.3 0.787 0.793 0.793 0.850

0.99 5.7 0.796 0.789 0.787 0.814 5.7 0.913 0.898 0.899 0.937

2 0.7 2.8 0.562 0.572 0.571 0.577 2.8 0.574 0.555 0.557 0.603

0.9 4.7 0.638 0.666 0.665 0.676 4.7 0.669 0.693 0.693 0.734

0.95 6.5 0.709 0.731 0.729 0.743 6.5 0.792 0.809 0.809 0.861

0.99 11.4 0.801 0.795 0.795 0.823 11.4 0.914 0.899 0.899 0.937

15



a small number of scenarios with correlated covariates and strong effect. However, it

would have been expected that fitting of a multivariable model provides an advantage

whenever there is correlation between informative covariates. This is seen not to be the

case when employing bootstrap inclusion frequencies here. Model averaging estimators

also do not seem to perform better.

When employing the proposed rank-based p-values, univariate p-values are outperformed

in almost all settings. There is a considerable difference in the scenarios with correlated

covariates, i.e., the rank-based p-values leverage the advantage of fitting a multivariable

model. The difference is smaller for uncorrelated covariates, where multivariable model-

ing seems to be less important for identification of informative covariates. Nevertheless,

multivariable modeling does not seem to turn into a disadvantage when employing rank-

based p-values.

For considering the proposed rank-based p-values useful, not only identification of infor-

mative covariates, but also the corresponding Type I error rates have to be investigated.

Ideally, when rejecting the null hypothesis of no effect for covariates with p-values smaller

than some value α, the proportion of covariates wrongly deemed influential should be

approximately equal to α. Conservative behavior, i.e., the proportion being smaller

than α, could still be considered acceptable. However, anti-conservative behavior, i.e.,

the proportion being larger than α, is problematic.

Table 2 shows the mean actual Type I error rates for various nominal levels α, when

employing univariate or rank-based multivariable p-values. A nominal level of α = 0.001

could be problematic, as there are only 950 covariates without effect in each repetition

for calculating the Type I error rate.

In scenarios without correlation, the univariate p-values keep all levels well, which might

have been expected. There are some scenarios, where the rank-based p-values are anti-

conservative at a level of α = 0.001. For all other levels slightly conservative behavior
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Table 2: Mean of the actual Type I error rates (standard deviation in parentheses)
compared to the nominal level for univariate p-values and rank-based p-values from
componentwise boosting, for scenarios with various effect sizes (ceff ) and patterns of
effect distribution (cdecr) for uncorrelated and correlated covariates.

nominal level
univariate p-values rank-based p-values

ceff cdecr 0.001 0.01 0.1 0.001 0.01 0.1

uncorrelated covariates
0.25 0.7 0.001 (0.001) 0.011 (0.004) 0.101 (0.010) 0.001 (0.001) 0.009 (0.001) 0.098 (0.002)

0.9 0.001 (0.001) 0.009 (0.003) 0.101 (0.007) 0.001 (0.001) 0.008 (0.001) 0.096 (0.002)
0.95 0.001 (0.001) 0.010 (0.003) 0.099 (0.010) 0.001 (0.001) 0.008 (0.001) 0.094 (0.003)
0.99 0.001 (0.001) 0.010 (0.003) 0.098 (0.009) 0.001 (0.001) 0.006 (0.001) 0.087 (0.003)

0.5 0.7 0.001 (0.001) 0.011 (0.003) 0.102 (0.010) 0.001 (0.001) 0.007 (0.001) 0.096 (0.002)
0.9 0.001 (0.001) 0.010 (0.003) 0.100 (0.013) 0.001 (0.001) 0.006 (0.002) 0.092 (0.002)
0.95 0.001 (0.001) 0.010 (0.003) 0.100 (0.008) 0.001 (0.001) 0.005 (0.002) 0.087 (0.002)
0.99 0.001 (0.001) 0.011 (0.003) 0.101 (0.007) 0.001 (0.001) 0.005 (0.001) 0.081 (0.002)

1 0.7 0.001 (0.001) 0.011 (0.004) 0.101 (0.012) 0.003 (0.001) 0.007 (0.001) 0.094 (0.003)
0.9 0.001 (0.001) 0.011 (0.003) 0.102 (0.009) 0.003 (0.001) 0.006 (0.001) 0.088 (0.002)
0.95 0.001 (0.001) 0.010 (0.003) 0.101 (0.006) 0.001 (0.001) 0.005 (0.001) 0.083 (0.003)
0.99 0.001 (0.001) 0.010 (0.003) 0.098 (0.005) 0.001 (0.001) 0.005 (0.001) 0.078 (0.003)

2 0.7 0.001 (0.001) 0.010 (0.004) 0.103 (0.013) 0.005 (0.001) 0.009 (0.001) 0.091 (0.003)
0.9 0.001 (0.001) 0.010 (0.003) 0.103 (0.009) 0.002 (0.001) 0.005 (0.001) 0.085 (0.003)
0.95 0.001 (0.001) 0.010 (0.003) 0.101 (0.010) 0.002 (0.001) 0.005 (0.001) 0.081 (0.002)
0.99 0.001 (0.001) 0.011 (0.003) 0.100 (0.007) 0.001 (0.001) 0.005 (0.002) 0.078 (0.003)

correlated covariates
0.25 0.7 0.005 (0.002) 0.016 (0.004) 0.109 (0.011) 0.001 (0.001) 0.007 (0.001) 0.096 (0.003)

0.9 0.012 (0.004) 0.028 (0.004) 0.124 (0.010) 0.001 (0.001) 0.005 (0.002) 0.090 (0.003)
0.95 0.018 (0.005) 0.040 (0.006) 0.144 (0.012) 0.001 (0.001) 0.005 (0.002) 0.082 (0.003)
0.99 0.025 (0.008) 0.058 (0.009) 0.174 (0.012) 0.000 (0.001) 0.004 (0.002) 0.074 (0.003)

0.5 0.7 0.009 (0.003) 0.021 (0.003) 0.115 (0.011) 0.001 (0.001) 0.006 (0.001) 0.094 (0.002)
0.9 0.020 (0.004) 0.037 (0.006) 0.131 (0.011) 0.001 (0.001) 0.005 (0.002) 0.084 (0.003)
0.95 0.027 (0.005) 0.048 (0.006) 0.149 (0.012) 0.001 (0.001) 0.004 (0.001) 0.077 (0.002)
0.99 0.035 (0.008) 0.071 (0.009) 0.180 (0.014) 0.001 (0.001) 0.004 (0.002) 0.069 (0.003)

1 0.7 0.011 (0.003) 0.022 (0.004) 0.119 (0.012) 0.002 (0.001) 0.005 (0.001) 0.091 (0.003)
0.9 0.023 (0.004) 0.038 (0.006) 0.132 (0.010) 0.002 (0.001) 0.005 (0.002) 0.082 (0.003)
0.95 0.032 (0.005) 0.053 (0.007) 0.151 (0.008) 0.001 (0.001) 0.004 (0.002) 0.074 (0.003)
0.99 0.039 (0.008) 0.071 (0.008) 0.182 (0.014) 0.000 (0.001) 0.004 (0.002) 0.068 (0.002)

2 0.7 0.012 (0.002) 0.023 (0.005) 0.116 (0.011) 0.003 (0.001) 0.007 (0.001) 0.089 (0.002)
0.9 0.024 (0.003) 0.038 (0.006) 0.129 (0.013) 0.002 (0.001) 0.005 (0.002) 0.080 (0.003)
0.95 0.033 (0.005) 0.054 (0.007) 0.154 (0.011) 0.001 (0.001) 0.004 (0.002) 0.073 (0.004)
0.99 0.039 (0.008) 0.072 (0.009) 0.183 (0.012) 0.000 (0.001) 0.004 (0.002) 0.069 (0.002)
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is seen. There is a small difference between univariate p-values and rank-based p-values

with respect to variability of the Type I error rates. The rank-based approach seems to

result in somewhat less variability.

For settings with correlated covariates, the univariate p-values are seen to result in anti-

conservative behavior, with large deviations from the nominal level when there is more

information in the covariates. This might have been expected, as the univariate approach

can not take the overall correlation structure into account. In contrast, the rank-based

p-values are based on a multivariable approach. A seen from Table 2, this seems to

pay off. The actual Type I error rates are similar to the uncorrelated scenarios, i.e.,

the approach is not affected much by correlation structure. There is still some anti-

conservative behavior for α = 0.001. The tendency towards conservative behavior seems

to be increased for α = 0.01 and α = 0.1. Variability of the Type I error is increased

for univariate p-values, corresponding to the increased overall level. For the rank-based

p-values, not systematic increase or decrease can be seen, compared to scenarios without

correlation.

4 Application example

Rosenwald et al. (2002) analyzed the data of 240 patients with diffuse large-B-cell lym-

phoma, for linking gene expression to time to death. There were 138 deaths observed,

with a five year overall survival of 48%. Gene expression at baseline is given via p = 7399

microarray measurements. An established clinical predictor, the International Prognos-

tic Index (IPI — a combination of five clinical features), is available for n = 222 pa-

tients, which will be considered for analysis in the following. Extensive reanalysis of this

data has already been performed, employing sparse estimates of Cox proportional haz-

ards models (see Segal, 2006, for example). Componentwise likelihood-based boosting
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Figure 1: Rank of microarray covariates selected for the final model in the course of
the boosting steps (grey curves) for the original data (left panel) and one data set with
permute response (right panel). The covariates selected in the first boosting step in the
respective data sets are highlighted by solid black curves. Also, the values for microarray
covariate X15804 (not selected in the original data) are given (dashed black cure).

of the Cox model for this data has been considered in Binder and Schumacher (2008b),

where good prediction performance was demonstrated (more details can be found there).

Specifically, the boosting approach can easily incorporate the IPI in a mandatory, unreg-

ularized way, allowing for reasonable comparison to a purely clinical model, containing

only the IPI. Such a combined model, including the clinical covariate IPI as well as

the microarray covariates, will be considered in the following, but only quantification of

uncertainty for the microarray covariates will be considered.

The number of boosting steps is selected by 10-fold cross-validation, resulting in M = 101

steps with 21 non-zero parameter estimates, i.e., genes deemed informative. Rank-based

p-values were calculated as described in Section 2.2, using 100 data sets with permuted

response. Using the same number of boosting steps M = 101 as in the original data, a

median of 26 covariates was included.
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Figure 1 shows the rank of the 21 covariates selected in the original data in the course

of the boosting steps (left panel) and the rank of the 25 selected covariates in one of

the data sets with permuted response (right panel). For illustration, the respective co-

variates selected in the first boosting step in the two data sets are indicated by a solid

black curves. As can be seen, the rank of these covariates drops only slightly after hav-

ing been selected in a boosting step (corresponding to a rank of 7399). Several times,

the rank increases again, until the covariates are selected one more time. This pattern

seems to be frequent for the selected covariates, as indicated by the triangular area with

high curve density. Consequently, the overall level of the rank curves, represented by

the median, appropriately reflects the importance of a covariate, as there is, e.g., no

drastic drop off. The dashed black line shows the values for the microarray covariate

with GenBank accession number X15804, which has been deemed informative by Rosen-

wald et al. (2002), but is not included in the model fitted by componentwise boosting.

This covariate receives a large rank in early boosting steps, i.e., it is close to selection.

The values then decrease, potentially because covariates have been included that contain

similar information. However, the decrease is not strong, and eventually the rank in-

creases again, coming close to selection. Correspondingly, the median of the values will

reflect that this covariate is close to selection over the whole course of boosting steps,

i.e., that it might be important. Similar patterns for rank curves are seen for data sets

with permuted response, i.e., under the null hypothesis (right panel of Figure 1). For

example, there also is no sudden drop off for selected covariates. Therefore, the median

also seems to be an appropriate summary under the null hypothesis, providing the basis

for calculating p-values.

For comparison, p-values were calculated from separate univariate Cox proportional mod-

els for each microarray covariate, where the IPI was included in each model in addition.

With respect to multivariable models, two quantities are considered for comparison.

Since the microarray covariates have been centered and standardized before applying
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Table 3: Criteria for judging microarray features (GenBank accession no. marked by
“*” if also reported by Rosenwald et al., 2002), sorted by the values of the rank-based
p-values for the multivariable model fitted by boosting: rank of the univariate p-values
(univ.rank), estimated regression parameters for componentwise boosting (param), and
bootstrap inclusion frequencies (BIF).
Rank GenBank univ.rank param BIF Rank GenBank univ.rank param BIF

1 BC012161 2 0.194 0.77 22 M20430* 32 - 0.03
2 X77743 1 -0.198 0.89 23 - 21 - 0.09
3 U15552 3 0.119 0.57 24 NM 000176 23 - 0.03
4 AB018289 11 -0.045 0.30 25 AK021632 504 -0.018 0.10
5 AF127481 37 0.112 0.48 26 X00452* 19 - 0.06
6 D42043 12 -0.086 0.49 27 L47345 38 - 0.16
7 AF075587 10 -0.031 0.15 28 U12979 9 - 0.15
8 M26004 65 -0.044 0.13 29 M16276 95 - 0.03
9 K01171* 7 -0.098 0.16 30 X87241 170 -0.008 0.11
10 X70649 8 0.019 0.24 31 M26004 164 - 0.02
11 - 18 -0.020 0.15 32 X00452* 29 - 0.03
12 BF129543 4 -0.043 0.34 33 M20430* 28 - 0.03
13 U46767 15 0.019 0.18 34 L13616 25 - 0.03
14 - 20 0.028 0.23 35 M32110 5 - 0.09
15 NM 000176 16 - 0.16 36 - 83 - 0.11
16 X15804* 6 - 0.19 37 U47414 63 - 0.03
17 - 54 0.019 0.11 38 M26004 135 - 0.02
18 - 79 - 0.13 39 M26004 152 - 0.04
19 AF189009 48 -0.019 0.18 40 AF189009 45 - 0.09
20 AF041261 36 0.018 0.17 41 X00452* 31 - 0.02
21 M16276 87 -0.009 0.14 42 M23452 92 0.009 0.10

componentwise boosting, the absolute value of estimated regression parameters might

indicate importance. Furthermore, we determined bootstrap inclusion frequencies. Fol-

lowing Binder and Schumacher (2008a), 100 bootstrap data sets were generated by draw-

ing 0.632n observations without replacement for each data set, for avoiding a complexity

selection bias. All model building steps for componentwise boosting, including selection

of the number of boosting steps, were performed in each bootstrap sample, resulting

in 100 estimated parameter vectors. The bootstrap inclusion frequency is calculated as

the proportion of bootstrap data sets where a covariate receives a non-zero parameter

estimate.

The criteria for judging importance of genes with respect to survival are given in Table
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3 for a selected number of genes. These were selected such that all genes are given

that have a rank-based p-value smaller or equal to the gene with the largest rank-based

p-values that received a non-zero parameter estimate from boosting in the original data.

The genes are ranked by the value of the rank-based p-values.

Where available, the GenBank accession number is given. It is marked by a “*” if it

is in the list of 17 representative predictive genes given in Table 2 of Rosenwald et al.

(2002). In the latter analysis, univariate p-values were calculated without adjusting for

the IPI. Therefore, some differences to the present analysis are to be expected. Seven

of the genes identified by Rosenwald et al. (2002) are recovered among the top ranked

42 genes according to the rank-based p-values. For comparison, eight genes could be

recovered if choosing the 42 best genes according to the univariate p-values, adjusted for

the IPI.

For the univariate p-values, the ranks are given in Table 3, allowing for judging agreement

of ranking according to univariate and the proposed multivariable model p-values. Both

approaches are seen to agree with respect to the three top-ranked genes. However, there

is a considerable number of genes that is deemed more informative by the multivariable

p-values and vice versa.

There is a closer agreement between the genes deemed important by the proposed rank-

based p-values and the bootstrap inclusion frequencies. Nevertheless, several of the genes

deemed important by Rosenwald et al. (2002) receive relatively low bootstrap inclusion

frequencies and are only highlighted by the rank-based p-values.

Overall, all three quantities, univariate p-values, bootstrap inclusion frequencies, and

rank-based p-values, point out several genes that are reported by Rosenwald et al. (2002),

but were not included in the model fitted by componentwise boosting to the original

data. However, there is a tendency of smaller rank-based p-values corresponding to

larger values of the estimated regression parameters. Therefore, the former might be
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Figure 2: Univariate p-values (adjusted for the effect of the IPI) and rank-based p-values
from a multivariable model fitted by componentwise boosting.

considered a good supplement to the latter.

Figure 2 provides a more detailed comparison of the univariate p-values and the rank-

based p-values for the multivariable model fitted by componentwise boosting. Both

are given for each of the p = 7399 microarray covariates. The rank-based p-values are

systematically larger compared to the univariate p-values. In particular, the difference is

large for small p-values, which are critical for picking out a small number of informative

genes. Such a difference between the two types of p-values has already been seen in

the simulation study, where the univariate p-values showed anti-conservative behavior.

Therefore, the rank-based p-values could be considered more reliable in this application

example.
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5 Discussion

There are several techniques for the fitting of risk prediction models to high-dimensional

molecular data. Approaches such as the lasso or componentwise likelihood-based boost-

ing allow for fitting of linear models, where the contribution of each covariate is rep-

resented by one regression parameter. While parameter estimates equal to zero or not

equal to zero indicate which covariates might be important, this does not provide in-

formation on uncertainty. Bootstrap inclusion frequencies provide some information on

the latter, but do not allow for the standard probability interpretation that is readily

available from univariate test-based approaches.

To remedy this, we proposed an approach for obtaining p-values for models fitted by

componentwise likelihood-based boosting. This does not rely only on the fitted models,

but extracts information from the fitting process. Ranking the values of the score statistic

in each boosting step for every covariate indicates not only which covariates are included

into the model or updated, but highlights candidates near to inclusion. Aggregating

this over the course of the boosting step provides information on covariate importance

in the context of componentwise likelihood-based boosting. For obtaining p-values, a

null distribution was obtained by repeating the fitting process on data with permuted

response.

We performed a simulation study in the challenging setting of high-dimensional time-to-

event data. While bootstrap inclusion frequencies were seen to provide worse covariate

identification performance compared to univariate techniques, even with correlated co-

variates, the rank-based p-values performed best in most of the scenarios. As might have

been expected, the largest gain was seen for scenarios with correlated covariates.

Inspecting the nominal and the actual Type I error rates, univariate p-values were seen to

exhibit anti-conservative behavior with correlated covariates. In contrast, the rank-based
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p-values keep their error level in most settings, showing slightly conservative behavior.

In addition, variability of Type I error rates was smaller when employing rank-based

p-values.

A similar pattern was seen in the application example with high-dimensional gene ex-

pression data and a time-to-event endpoint. The univariate p-values were systematically

larger compared to the rank-based p-values. Based on the simulation results, the latter

seem to be more reliable. When comparing genes deemed important by various criteria,

it was seen that there is considerable agreement between univariate p-values and the

rank-based p-values, and also between the latter and bootstrap inclusion frequencies. At

least, the rank-based p-values were seen to provide a reasonable ranking for the genes

selected by componentwise boosting. In addition, some genes that potentially might

have been missed were indicated.

In summary, the idea of leveraging information from a stagewise model fitting process

has been seen to be successful in providing p-values for models fitted by componentwise

likelihood-based boosting. This idea might be more generally applicable. Many ap-

proaches for fitting models to high-dimensional data, such as random forests (Breiman,

2001), employ a large number of small steps. By systematically leveraging information

from this process, reasonable quantification of uncertainty could potentially be obtained.

However, this is the subject of future research.

While currently being limited to componentwise boosting, the proposed approach at

least is a first step towards better quantification of uncertainty in high-dimensional risk

prediction models, providing a model fitting technique where p-values for single model

components are available in addition to good prediction performance. This promises to

considerably improve statistical modeling practice when linking high-dimensional molec-

ular data to clinical endpoints.
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