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Abstract

Many approaches exist for evaluating techniques for developing multivariable

regression models with potentially non-linear effects of continuous covariates. In

simulation studies to evaluate new proposals and to compare model-building tech-

niques, researchers tend to consider oversimplified settings or unrealistically complex

functional forms. The true shape of functions used for data generation is rarely rep-

resentative of what would be expected in biomedical applications. In addition, the

mean square error of prediction is often used as the main criterion for evaluation.

This is insufficient when the effect of individual variables is to be assessed, e.g., in

exploratory studies in clinical epidemiology. After reviewing some of the proposals

for simulation designs, we suggest a new design that avoids oversimplification and

tries to capture structure often found in biomedical settings. Specifically, we posit a

non-trivial correlation structure between covariates, a challenge for many techniques

of model selection. In addition to continuous covariates, binary covariates are in-

cluded. As well as strong non-linear effects, some near-linear effects of covariates are

considered. This allows one to judge whether a technique can distinguish between

important non-linear effects and effects that might reasonably be represented by

linear terms. We suggest several performance measures for capturing the potential

impact of the various components of the simulation design on model structure. Some

challenges of the simulation design are illustrated by diagnostic plots obtained after

fitting a linear model, indicating the extent to which use of an under-specified model

points towards potential non-linear effects.

Keywords: continuous covariates; model selection; non-linear effects; regression mod-

els; simulation.
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1 Introduction

In many studies, many variables are collected and it is not clear which of them should

be included in a model. Selection is an important task. Even if only fifteen variables

were investigated and inclusion or exclusion was the only issue in building a regression

model, 215 = 32768 possible models arise. Several methods of variable selection have

been known for a long time and are often used in practice. Many of these use a stepwise

approach for adding or removing covariates, guided by a cutoff for the significance level of

a covariate or by information criteria such as the AIC. For a comprehensive overview, see

for example References (1) or (2). Even when different models are selected, predictions

from these models are often similar. Little is known about properties of the selection

strategies (3). Two main aims should be distinguished when creating a model. The first is

prediction, with little consideration of the model structure. The second is explanation,

where we try to identify influential covariates and gain insight into the relationship

between the covariates and the outcome through the model structure. The distinction

between prediction and explanation was emphasized by Copas (4), who noted that a

good model “may include variables which are not significant, exclude others which are,

and may involve coefficients which are systematically biased”. Such a model would

clearly fail to satisfy the explanatory aim of many studies ((5), pp. 26-29).

Multivariable model-building is even more difficult and controversial when continuous

covariates such as age, systolic blood pressure, or (in cancer) tumour size are candidates

for inclusion in a model. What functional form should such covariates assume in a

multivariable model? Usually linearity is assumed, but it may describe the relationship

with the outcome badly. Employing some technique that potentially allows for non-

linear effects may substantially improve the fit (6). Generalized additive models (7),

using a spline component for each continuous covariate (see e.g. Reference (8) for a

comprehensive overview), and the multivariable fractional polynomial procedure (9; 10;
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5), provide two strategies to address the common problem of model-building by selection

of variables and functional forms for continuous covariates.

Despite obvious practical relevance, no systematic investigations of properties of such

approaches and direct comparisons between them have been published for settings with

a larger number of covariates (e.g. > 6). For such situations, theoretical results provide

only limited insight (see, e.g., (11) for the impossibility of obtaining the distribution

of estimators after model selection). A large simulation study is therefore currently the

only way to assess the performance of different approaches. Naturally, the design and the

evaluation criteria applied to summarize the results must be carefully chosen, depending

on the aim of the simulation study.

Many simulation designs have serious problems, such as bias in favour of a specific

approach. Often, an over-simplified design is used, having, for example, an implausibly

small number of covariates, simple or even no correlation structure, and unrealistic

assumptions. Only a small fraction of possible evaluation criteria may be considered.

Such simulation studies do not promote deeper insight into the complex issue of selecting

variables and functional forms for continuous covariates.

Here, we propose a simulation design and relevant performance measures to compare

strategies for multivariable model building requiring selection of variables and of func-

tional forms. To obtain results relevant to the analysis of real biomedical studies, we

based key components of the underlying structure on a prognostic factors study. In

such studies, interest often centres on the effects of individual variables, implying that

explanatory models are more important than models for prediction (12). The predictive

mean square error, which disregards the structure of the model, is not sufficient as a

performance measure. We suggest in addition using Type I and Type II errors and other

kinds of departure from the correct model.

Since the combination of variable and function selection is already challenging, we do
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not consider interactions between covariates. The focus is on identifying strong main

effects. In real data, interactions with respect to these main effects might be considered

in a second step. We also do not consider high-dimensional data, e.g. arising from gene

expression measurements in microarrays.

Naturally, no simulation design can cover all possible cases of interest. Other researchers

wishing to evaluate techniques for multivariable model-building may modify our design

as needed. However, retaining some of our proposed structure will enhance comparability

between different studies.

In Section 2, we give an overview of simulation designs that have been proposed for

evaluating multivariable model-building procedures allowing for non-linear effects of

continuous covariates. We consider cases with more than three candidate covariates.

Alternative criteria for model comparison are introduced in Section 3. In Section 4, the

new simulation design for comparing multivariable model-building strategies is discussed

in detail. A setting with 15 candidate covariates is considered, some covariates being

continuous and some categorical. Aspects of the simulation design are illustrated by

analyzing one data set in Section 5 assuming a linear function for each continuous vari-

able. Specifically, we assess the extent to which the residuals point towards non-linear

effects. Althoug such a poor approach as a blanket assumption of linearity may result

in acceptable prediction performance, it becomes clear that the structure of the selected

model does not adequately represent the real effects. Section 6 comprises final remarks.

The proposed design is used in a companion paper (13) for comparing two spline ap-

proaches for multivariable modeling to the multivariable fractional polynomial (MFP)

approach.
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2 Some published simulation designs

In the following, some simulation designs are discussed that have been proposed for

evaluating multivariable model-building approaches incorporating non-linear effects of

continuous covariates. We consider only designs where all covariates are treated on an

equal footing. Settings with special roles for some covariates are not discussed here, e.g.,

classical epidemiological settings where one covariate represents the effect of interest and

the others are taken to be confounders (see Reference (14), for example). Also, we focus

on designs with more than three covariates, i.e. settings where selection of covariates

starts to become important. We look only at designs with additive covariate effects, i.e.,

no interactions are taken into account.

An early proposal for a design with a larger number of covariates is given in (15). There

are p = 10 uncorrelated, uniformly distributed continuous covariates with range [0, 1] for

n = 100 or n = 200 observations. Two covariates have a non-linear effect and three have

a linear effect. While the shape of the non-linear effects (shown in the left two panels of

the first row of Figure 1) could be considered adequate for a biomedical setting, neither

the lack of any correlation structure nor the uniform distribution are realistic.

In (16), also uncorrelated covariates are used. For n = 1000 observations, a main

effects model with p = 10 continuous covariates is considered (uniformly distributed in

[0, 1]), with two additional binary covariates. Such a mixture of continuous and binary

covariates is typical of biomedical settings. Of the three continuous covariates that have

an effect, one is similar to the design in (15) (top left panel of Figure 1). The effects

for the other two are shown in the right two panels of the first row of Figure 1. The

effect in the third panel of the top row is generated by a sine wave, which does not seem

appropriate in a biomedical setting without replicated measurements. However, as only

a small part of the oscillation is used in this design, the effect might still be considered
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Figure 1: Non-linear functions considered for covariate effects in some simulation designs
proposed in the literature (left two panels of first row: (15); right two panels of first row:
(16); second row: (17); third row: (18), for k = 1 (left two panels) and k = 2 (right two
panels); fourth row: (19)).
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reasonable. This illustrates how sensitive some of the choices in simulation designs are

to the range of the covariate values. For example, if a skewed distribution had been used

in (16), some observations might have been assigned extreme covariate values that are

affected by the (unrealistic) oscillations of the sine wave.

In (17), two kinds of correlation structure are proposed. In the compound symmetry

design, each covariate is obtained via a linear combination of an independent component

and a component that is common to all covariates. Both components are uniformly

distributed. The weights of these components, which are the same for all covariates,

allow one to vary this design from an independent uniform design, as used in (16), to

one with highly correlated covariates. In the trimmed design, an AR(1) type of structure

is used. The covariate with index 1 is taken from a standard normal distribution. For

each subsequent covariate, values are obtained via a linear combination of the previous

covariate and a variable drawn from a standard normal distribution. The covariates

are then trimmed in [−2.5, 2.5] and scaled to [0, 1]. This general rule supports such a

correlation structure for a widely differing number of covariates. A disadvantage is that

the resulting structure is not very realistic. The functions shown in the second row of

Figure 1, are considered for the shape of the covariate effects. These functions are used

in a setting where four of ten covariates are informative (where n = 100), and also in

a setting where 12 covariates with adjacent indices of p = 60 covariates are informative

(where n = 500). However, for evaluating model-fitting approaches in a biomedical

context, the functions shown in the third and fourth panel of the second row might

be especially problematic. While the overall shape could still be expected in a medical

application, the local features introduced by the trigonometric functions, which generate

these shapes, are difficult to interpret.

In (18), a different kind of correlation structure is considered. For a total of p = 18

covariates, six blocks of three correlated covariates are considered, sample sizes are n =
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50 and n = 200. The covariates are from a standard normal distribution. The correlation

of two covariates with indices j and k in the same block is given by ρ|j−k|. Covariates

in different blocks are independent. This corresponds to having several independent

underlying influential factors, where the facets of each factor are represented by three

covariates. This is in contrast to the compound symmetry design in (17) with only one

common factor. Furthermore, different settings are considered in (18), where either the

first two or five of the six blocks influence the response. The shape of the effect of three

covariates in a block is given governed by a parameter k. One of the effects simply is

xk, the other two are shown in the third row of Figure 1, for k = 1 (left two panels) and

k = 2 (right two panels). The strongly local structure with a large number of extrema,

obtained for larger values of k, would not be expected in a biomedical application. This

illustrates the danger of using a parameter, such as k, for generating functional forms

automatically.

Binder and Tutz (19) consider p = 6,10, 20, and 50 uncorrelated covariates from a

standard normal distribution, truncated to the range [−2, 2]. They simulate sets of

n = 100 observations with continuous or binary responses. The number of informative

covariates is either three or six. The shape of the effect of a covariate is randomly

sampled to be the centred and standardized version of one of the functions shown in the

fourth row of Figure 1. Consequently, even within one simulation setting the shape of

the true function varies over the repetitions.

In summary, the main problems of the simulation designs we have discussed arise in

two areas: correlation structure and appropriateness of the non-linear functions for

a biomedical setting. Some correlation structure is needed for a realistic evaluation.

However, even automatically generated correlation structures, i.e., as specified by a

general rule, such as in (17), do not match the complex structure seen in biomedical

applications. Similarly, automatically generated shapes of non-linear functions, as in
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(18), make it difficult to incorporate typical shapes seen in biomedical applications and

might result in very unrealistic shapes (e.g., the rightmost function in the third row of

Figure 1). In addition, the distribution of the covariate values should not be neglected.

Uniform distributions are unrealistic, and settings with normally distributed covariates

could be made more realistic by introducing some skewness.

An alternative way to specify correlation structure and functional form is to mimic the

structure found in some real biomedical data. This is the idea behind the ART study

(5), which is considered in what follows.

3 Criteria for evaluating selected models

Consider a true model of form

yi = β0 +
∑

j∈Jlin

βjxij +
∑

j∈Jnonlin

fj(xij) + ǫi, (1)

with response yi, covariates xij , j = 1, . . . , p, and error term ǫi ∼ N(0, σ2), i.e., there

are the indices Jlin ⊂ {1, . . . , p} of covariates with truly linear effect (by definition also

including ordinal and dummy-coded categorical covariates that have an effect), specified

by the parameters βj , the indices Jnonlin of covariates with truly non-linear effects,

specified by the true functions fj, and the indices Jnoe = {1, . . . , p}\(Jlin ∪ Jnonlin) of

covariates with no effect.

A fitted model

ŷi = β̂0 +
∑

j∈Ĵlin∩Jlin

β̂ijxij +
∑

j∈Ĵlin∩Jnonlin

β̂ijxij +
∑

j∈Ĵlin∩Jnoe

β̂ijxij (2)

+
∑

j∈Ĵnonlin∩Jnonlin

f̂j(xij) +
∑

j∈Ĵnonlin∩Jlin

f̂j(xij) +
∑

j∈Ĵnonlin∩Jnoe

f̂j(xij),
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with predicted response ŷi, i = 1, . . . , n, is to be evaluated with respect to the true model

(1). The fitted model is characterized by the indices Ĵlin ⊂ {1, . . . , p} of the covariates

that have been assigned a linear effect, the indices Ĵnonlin ⊂ {1, . . . , p} of the covariates

that have been assigned a non-linear effect, where f̂j are the fitted functions, and the

indices Ĵnoe of covariates deemed to have no effect. That latter have to be determined

by some kind of model selection approach. Ĵlin and Ĵnonlin typically will not be identical

to Jlin and Jnonlin, respectively, i.e., the covariates Ĵlin ∩ Jnoe and Ĵnonlin ∩ Jnoe are

erroneously included in the fitted model.

A straightforward criterion for comparing the true model (1) with the fitted model (2)

utilizes the predictive mean square error (PMSE)

E[(y − ŷ)2], (3)

which can easily be evaluated empirically, using a reasonably large number of newly

generated observations, e.g., nnew=1000.

Prediction performance, quantified by the PMSE, is often taken as the sole measure

for comparing fitted models. However, as a global measure, it fails to capture many

aspects of model performance that may be of practical relevance, e.g., when performing

exploratory data analysis, aimed at understanding the role of each covariate. For exam-

ple, Ĵlin and Ĵnonlin often differ from Jlin and Jnonlin, which is only indirectly reflected

in measures of square error. Generally, aspects such as the complexity of a model and

of individual functions, Type I and Type II errors, and qualitative features of the fitted

functions often are at least as important as prediction performance in a biomedical set-

ting. We therefore focus on quantities aimed at capturing interpretability of the fitted

models (12).

All measures discussed in the following are summarized in Table 1 and roughly catego-
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Table 1: Summary of criteria for evaluating selected models and single fitted functions.
Type I and type II error criteria can also be considered for the single functions (see text).

Selected model Eqn. Single functions Eqn.

Predictive mean square error (3) variability (4)
Type I error for covariate inclusion (6) PED1 (5)
Type II error for covariate inclusion (7)
Type I error for fitting of non-linear effects (8)
Cross-tables of complexity levels
Type II error for fitting of non-linear effects Qualitative criteria
Costs for erroneous inclusion/exclusion

rized into criteria mainly used for judging selected models and those for judging individ-

ual fitted functions. However, many of the former can also be used to assess performance

for a subset of the covariates or even a single covariate. Except for PMSE, all measures

can be applied regardless of the response type, e.g., also for binary response models or

models for time-to-event endpoints. Table 1 is by no means comprehensive, as there

exist many quantities that could be considered as alternatives, e.g., bias, coverage, or

the number of parameters used by a model. We subjectively chose those that we deemed

the most important for assessing models in the context of selection of variables and of

functional form. These measures cannot and should not replace graphical tools, such as

plotting a random sample of fitted functions, but should complement them.

3.1 Continuous measures for fitted functions

The fitted functions f̂j are evaluated according to continuous measures. In (20) and (21)

it is suggested that functions that were fitted in bootstrap samples should be aggregated

into an overall bagging (bootstrap aggregating) estimate for closer inspection. The

variability of fitted functions can then be evaluated by

Vj =
1

nnewM

nnew∑

i=1

M∑

m=1

(f̂
(m)
j (xij)− f̂agg

j (xij))
2, (4)
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using nnew observations from a test set with the same covariate distribution as the

original data. The reference function f̂agg
j is obtained from the estimated functions

f̂
(1)
i , . . . , f̂

(M)
i inM repetitions of a simulation scenario as f̂agg

j (x) = 1/M
∑M

m=1 f̂
(m)
i (x),

where the single fits f̂
(m)
i are centered. If a covariate has not been selected in a fitted

model, the fitted function is chosen to be constant, i.e., f̂
(m)
i = 0. For more sophisticated

approaches to aligning different functions and obtaining average representatives, see

Reference (22).

The closeness of a fitted function to the true function could be quantified by mean

square difference. This measure is closely related to (3), but as indicated in (23), even

very ‘wiggly’ fits that barely resemble a true smooth function can result in a small mean

square difference.

Following (23), we suggest evaluating the mean square difference of the functions and of

their first and second derivatives. Specifically, the measure

PED1(f̂j, fj) = E[(f ′
j(xij)− f̂ ′

j(xij))
2], (5)

can be evaluated at nnew new observations, giving more weight to regions with more

observations. A similar measure might be considered for the second derivative of the

original functions. To avoid extreme values from fitted functions that tend towards −∞

or ∞ in boundary areas with only few observations, these quantities are only evaluated

for observations within the 5% and 95% quantiles (23).

3.2 Type I and Type II errors

When attempting to interpret a selected model, the components representing the effects

of the individual covariates are important. The first question is whether a covariate is

included or excluded. Depending on whether that covariate really has an effect, a Type
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I or a Type II error may result. A Type I error occurs when a covariate has no effect

and is nevertheless included in a model, i.e., the rate of Type I errors with respect to

covariate inclusion is given by

|Jnoe ∩ (Ĵlin ∪ Ĵnonlin)|

|Jnoe|
. (6)

Correspondingly, the simplest definition of the Type II error rate with respect to covari-

ate inclusion is given by

|(Jlin ∪ Jnonlin) ∩ Ĵnoe|

|Jlin ∪ Jnonlin|
. (7)

However, Type I and Type II errors with respect to the fitted shape are also important

and should be considered. For a covariate with no effect or a linear effect, selecting a

non-linear function can be considered a Type I error. Correspondingly, the rate of Type

I errors with respect to shape is given by

|(Jnoe ∪ Jlin) ∩ Ĵnonlin|

|Jnoe ∪ Jlin|
. (8)

It follows that even if a non-linear fit looks nearly linear, a Type I error will be recorded,

because a non-linear fit still results in a more complicated model equation.

We propose three ways to investigate Type II errors with respect to shape:

1. Quantify deviation via continuous measures, such as (5).

2. Cross-tabulate the true levels of complexity and fitted levels of complexity. For

levels of complexity “not included”, “linear”, and “non-linear” this results in 3× 3

tables, which could, e.g., be aggregated via ordinal variants of Cohen’s kappa.

3. Define qualitative features for each of the true functions that can be checked in the

fitted functions, e.g. monotonicity, local extrema in a certain region, larger slope

in a certain region. These depend on the specific functions. If a fitted function f̂j

14



Table 2: Scheme for assigning costs for erroneous exclusion or inclusion of covariates.
“Cor(y, xj)” indicates the marginal correlation between the covariate with index j and
the response.
true effect selected model cost

j ∈ Ĵlin ∪ Ĵnonlin 0
j ∈ Jlin ∪ Jnonlin

j ∈ Ĵnoe Cor(y, xj)

j ∈ Ĵlin ∪ Ĵnonlin minl/∈Jnoe
Cor(y, xl) ·

maxl∈Jnoe
Cor(y,xl)−Cor(y,ηj)

maxl∈Jnoe
Cor(y,xl)−minl∈Jnoe

Cor(y,xl)

j ∈ Jnoe

j ∈ Ĵnoe 0

does not exhibit all the characteristics of the underlying true function, a Type II

error is recorded.

More detailed analyses can be performed by looking at individual criteria and the con-

ditions under which they are satisfied.

The Type I and Type I error criteria (6), (7), and (8), and complexity cross-tabulation

aggregate the errors across all covariates, while with the qualitative criteria, each co-

variate is conidered separately. Also, the former criteria could be considered for each

covariate, but this might be too demanding for a larger number of covariates. When

a simulation design incorporates a mixture of many different types of covariate effects,

aggregating Type I and Type II errors provides an indication of the average performance

that can be expected. In a situation where a data analyst does not know much about

the true effects, this might be more useful compared with performance conditional on

some specific covariate effect.

3.3 Costs for erroneous exclusion or inclusion

To combine Type I and Type II errors into a single measure, costs for erroneous in-

clusion/exclusion of covariates can be assigned and summed for each selected model.

Different costs should be assigned depending on the role and importance of a covariate.
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Table 2 illustrates the scheme proposed here.

The costs for a covariate are based on the absolute value of the marginal correlation of

the corresponding true model component with the response, e.g., as determined from

a test set. For an influential covariate, the costs are equal to this value. Therefore,

excluding a covariate with a larger effect results in larger costs.

The definition of costs for erroneously including a covariate that has no effect is based on

two ideas. First, erroneous inclusion is a less severe mistake than omitting a covariate

that has an effect. Therefore, the maximal cost that can be incurred by erroneous

inclusion is set to the smallest cost that can be incurred by erroneously excluding a

covariate that has an effect. Second, the error of erroneously excluding a covariate

and instead erroneously including a highly correlated covariate should not be punished

twice in terms of costs. Therefore, a cost of zero is assigned to the covariate that has

no effect on the response, but has the largest (absolute) marginal correlation. For the

covariate with the smallest correlation, the cost is taken to be the minimal cost that can

be incurred by erroneous exclusion, as explained above. For covariates in between, costs

are allocated by the corresponding linear transformation of the correlations.

For example, consider a setting with three influential covariates with marginal correla-

tions of 0.5, 0.4, and 0.2, respectively, and two non-influential covariates with marginal

correlations of 0.3 and 0.1, respectively. A model that includes only the first of the

influential covariates, and the first of the non-influential covariates, incurs a cost of

0.4+0.3=0.7. The erroneously included covariate does not increase costs, as it poten-

tially has picked up some of the information of the erroneously excluded influential

covariates, which already resulted in a cost increase. The relatively large value of the

marginal correlation indicates that the non-influential covariate might be a reasonable

surrogate. In contrast, if the second non-influential covariate had been included, this

would have increased the costs by 0.2.
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4 Simulation design

The covariate structure of the simulation design proposed in the following is based on

the ART study, described in ((5), Ch. 10). The latter design is based in turn on the data

from the GBSG study (24), a well-known biomedical data set that has been analyzed in

several places (see (10), for example). However, we made several changes to Royston and

Sauerbrei’s design (5). There are five additional covariates (zi11 to zi15), providing one

additional covariate with a strong linear effect and more covariates without effect. As a

further major change, we suggest using different functional forms. Specifically, we have

introduced one true function with a local effect. We have also simplified the correlation

structure, using only four levels for the absolute values of the underlying correlations.

To adapt the design for use in large-scale simulation studies, several other minor changes

have been made.

Naturally, the simulation design could be modified for future applications, depending

on the particular objectives when evaluating multivariable modelling techniques. For

example, different correlation structures or effect sizes might be considered. Some of

the covariates might even be ‘forced’ into the models, reflecting scenarios where the

mandatory covariate(s) are of primary interest and others are included only for the

purpose of adjustment.

4.1 True model

4.1.1 Covariate structure

Fifteen underlying variables form the basis for deriving 17 covariates with different kinds

of distributions (e.g., skewed continuous covariates or categorical covariates). The un-

derlying variables are generated from a standard normal distribution zij ∼ N(0, 1), j =

1 . . . , 15. The partial correlations for them are indicated in Figure 2. All correlations
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Figure 2: Partial correlations of the variables zij , j = 1, . . . , 15, underlying the covari-
ates. Variables that form the basis for continuous covariates are indicated by circles,
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not explicitly indicated are equal to zero. For obtaining covariates of the type given

in Column 2 of Table 3 and for introducing a skewed distribution for all continuous

covariates except xi1, xi11, xi12, and xi13, the covariates are determined via the transfor-

mations given in Column 3. For avoiding extreme values for the continuous covariates,

xi3, xi5, xi6, xi7, xi10, xi11, xi12, and xi13 are truncated at the third quartile plus 5 time

the interquartile range for every generated data set. The type of a covariate, i.e., con-

tinuous or categorical, is indicated in Figure 2. The continuous covariate xi6 is related

to many other continuous and categorical covariates. This makes separation of effects

on the response difficult. The strongest correlation in the proposed simulation design

is between the continuous covariate xi1 and the binary covariate xi2. This structure

requires careful, systematic handling of both categorical and continuous covariates by a

multivariable model-building procedure.

4.1.2 Effect on the response

The contribution of each covariate with respect to a continuous response is given in

Column 5 of Table 3. Plots of the functions for the continuous covariates are shown in

Figure 3. While some of the functions already have a rather complicated shape, fitting

of the functions is further complicated by the distribution of the covariate values. For

illustration, the rugs in Figure 3 show the empirical distribution in an example data

set of size n = 200. This shows, for example, that the strong decrease for values of xi5

larger than 10 is difficult to identify because of limited support in the data. Similarly,

the flattening of the effect for larger values of xi6 can only be identified from a small

number of observations.

The fraction by which explained variation decreases, compared with the true model,

when removing the respective components is given in Column 6, evaluated on a test set

of size n = 10000. The covariates xi3, xi5, xi6, and xi11 are seen to have the strongest
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Table 3: Covariate structure for the multivariable simulation study. [] indicates that the non-integer part of the argument
is removed, and I() is the indicator function, which takes value 1 if its argument is true, and value 0 otherwise. For pairs
of continuous covariates and combinations of continuous and binary variables, the marginal correlation is given (only the
covariate name is indicated if absolute value < 0.3). For pairs of binary variables, the odds ratio is provided (indicated by
italics).“∆R2” indicates the fraction by which the R2 decreases, compared to the true model, when the respective component
is removed in a test set of size n=10000 (total R2 of the true model: 0.49).

variable type covariate correlation/OR predictor ∆R2

zi1 continuous xi1 = [10zi1 + 55] xi2 (-0.6), xi9a, xi9b 3.5x0.5i1 − 0.25xi1 0.05
zi2 binary xi2 = I(zi2 < 0.6) x1 (-0.6), xi15 (1.1 ) - 0

zi3 continuous xi3 = exp(0.4zi3 + 3) xi5 (0.3), xi9a, xi9b 2 · (log(xi3+10
25 ))2 0.13

zi4 ordinal xi4a = I(zi4 ≥ −1.2), xi6 (-0.3), xi8 (0.9 ), −0.4xi4a 0.02
xi9a (1.1 ), xi9b (1.2 ), xi7

xi4b = I(zi4 ≥ 0.75) xi6 (-0.3), xi9b (1.1 ), xi7 - 0
zi5 continuous xi5 = exp(0.5zi5 + 1.5) xi3 (0.3), xi12 (0.5), xi6 −(0.15xi5+ 0.18

0.75 exp(− (log(xi5)−1.5)2

0.4 ))
zi6 continuous xi6 = [max(0, 100 exp(zi6)− 20)] xi4a(−0.3), xi4b (-0.3), 0.25 log(xi6 + 1) 0.12

xi7 (0.4), xi11 (0.4),
xi5, xi9a, xi9b, xi14

zi7 continuous xi7 = [max(0, 80 exp(zi7)− 20)] xi6 (0.4), xi11 (0.3), - 0
xi4a, xi4b, xi14

zi8 binary xi8 = I(zi8 < −0.35) xi4a (0.9 ), xi9a (2.0 ), 0.4xi8 0.03
xi9b (2.4 ), xi11

zi9 categorical xi9a = I(0.5 ≤ zi9 < 1.5), xi4a (1.1 ), xi8 (2.0 ), - 0
xi1, xi3, xi6

xi9b = I(zi9 ≥ 1.5) xi4a (1.2 ), xi4b (1.1 ), - 0
xi8 (2.4 ), xi15 (0.9 ),
xi1, xi3, xi6

zi10 continuous xi10 = 0.01[100(zi10 + 4)2] - 0.021xi10 0.04
zi11 continuous xi11 = [10zi11 + 55] xi6 (0.4), xi7 (0.3), 0.04xi11 0.19

xi14 (-0.4), xi8
zi12 continuous xi12 = [10zi12 + 55] xi5 (0.5) - 0
zi13 continuous xi13 = [10zi13 + 55] - - 0
zi14 binary xi14 = I(zi14 < 0) xi11 (-0.4), xi15 (1.1 ), - 0

xi6, xi7
zi15 binary xi15 = I(zi15 < 0) xi2 (1.1 ), xi9b (0.9 ), - 0

xi14 (1.1 )
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Figure 3: True functions used for the comparison for univariate and multivariable fitting
problems. The empirical distribution in a data set of size n = 200 is indicated by rugs.
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influence, while the influence of all other covariates with a non-zero effect is similar. The

true functions for these covariates with a strong effect exhibit a linear effect (xi11), a

non-linear effect with local features (xi5) or a global non-linear effect (xi3 and xi6).

Certain pairs of covariates are of particular interest when the performance of a multi-

variable model-building technique is evaluated:

• xi1 and xi2 are strongly correlated, but only the former has an effect on the re-

sponse. However, the shape of the effect is quadratic, i.e., it is difficult to represent

it via a linear component (also compared with the other covariates with non-linear

effects). A model-selection approach that avoids the complexity of non-linear ef-

fects could easily misattribute part of the effect to the simpler binary covariate

xi2.

• There is considerable correlation between the continuous covariates xi6 and xi11,

which both have a strong effect on the response. The former has a non-linear

influence, the latter a linear effect. Due to the correlation, part of the non-linear

effect might be misattributed to xi11.

• For the pair xi5 and xi12, as well as for xi6 and xi7, the covariate with the smaller

index has a strong non-linear effect on the response, while the covariate with

the larger index has no effect. Therefore, part of the non-linear effect might be

misattributed.

4.1.3 Sample size and effect size

There are virtually no empirically supported recommendations for the number of ob-

servations needed to provide a reasonable starting-point for selecting models with po-

tentially non-linear effects and a given number of covariates. As a difficult setting, we

suggest simulation scenarios with n = 200 observations. For the 17 covariates in our pro-
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posed simulation design, this corresponds to roughly 12 observations per covariate. For

a setting in which better identification of the true functional form could be expected,

n = 500 should be considered. These recommendations are intended for continuous

response data and need to be modified for other response types. For example, for a

binary response, the number of observations in the smaller outcome group determines

the amount of information. In a time-to-event setting, it is determined by the number

of events.

The difficulty of a simulation scenario depends not only on the number of observations

but also on the signal-to-noise ratio. For scenarios with intermediate difficulty, we sug-

gest a signal-to-noise ratio of 1, obtained from an error variance of σ2 = 0.868 and

corresponding to an R2 = 0.5 for the true model, as seen from the relation

R2 = 1−
1

signal-to-noise ratio + 1
.

For a more difficult setting, a signal-to-noise ratio of 0.25 (σ2 = 3.47, R2 = 0.2) could

be considered, and for more informative settings, signal-to-noise ratios of 4 (σ2 = 0.217,

R2 = 0.80) and 9 (σ2 = 0.096, R2 = 0.90) could be used.

In their basic form, R2 and the signal-to-noise ratio are limited to continuous response

models. However, the signal-to-noise ratio can be transferred to generalized linear and

generalized additive models, i.e. for binary or counting responses (see (25), for example).

For time-to-event endpoints, several adaptations of R2 are available (see, e.g., (26) for

an overview).

4.2 Type II error criteria

Several of the covariates have no effect on the response. If they are nevertheless included

in a fitted model (or in the case of a continuous covariate, have a non-constant fit), a
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Table 4: Features of the true functions to be satisfied by a fitted function to avoid being
considered a Type II error.
covariate monotonicity extrema slope inflection point
xi1 - exactly one maximum decreasing -

between 45 and 55
xi3 strictly increasing exactly one minimum - not more than

for > 20 between 12 and 20 one, for > 20
xi5 strictly decreasing - absolute value exactly one,

for < 3 and > 9 for 7 smaller than between 3 and 9
for 2 and 10

xi6 strictly increasing - decreasing -
xi10 strictly increasing - constant -
xi11 strictly increasing - constant -

Type I error occurs. In contrast, the continuous covariates xi1, xi3, xi5, xi6, and xi10

do have an effect on the response. Even if these have non-constant fits, however, the

estimated shape may not adequately represent the true structure.

The qualitative criteria for judging Type II errors cannot be given in general form be-

cause they depend on the shape of the true function. We must decide how narrowly

these criteria should be set. We suggest using rather narrow definitions. For example,

medical understanding is little increased if a fitted function indicates only that there

is an extremum (maximum or minimum) somewhere within a wide range of covariate

values. Use of a narrower definition will increase the numbers of Type II errors, but

at the same time will also increase the chance of identifying model-building approaches

that can quite accurately detect features of the true functions.

Table 4 shows the criteria to be satisfied by the fitted functions for them to be considered

adequate in the context of the proposed simulation design. Besides forming the basis

for calculating Type II error rates, each individual requirement is considered in a more

detailed analysis.

For covariate xi1, the maximum of the true function is located in a region with many

observations. We must therefore locate this extremum rather precisely. Since there is
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no local curvature in the true function, we require a decreasing slope at all values. For

covariate xi3, the true function has an inflection point for very large values which is hardly

visible and supported by very few observations. Identification of this inflection point is

therefore not essential. For excluding local curvature, we must identify no more than one

inflection point. For covariate xi5, the true function has a small local minimum between

values 6 and 8, but this is not required for the fitted functions. The only condition for

the latter is that there is some indication of a smaller slope (in absolute value) at value

7 compared with values 2 and 10, which can be met more easily. For covariates xi10 and

xi11 not only is a constant slope (i.e. linearity) checked, which can also be seen from

3× 3 tables of complexity, but also the sign of the slope is considered.

5 Example

In the following, we illustrate the proposed simulation design by analyzing data generated

from the design but assuming linear effects of all continuous covariates. Specifically,

n = 200 observations are generated, with the error term chosen such that the signal-to-

noise ratio is approximately equal to 1, i.e. the R2 of the true model is about 0.5.

While a multivariable linear model cannot adequately represent the non-linear shapes

in the proposed simulation design, it can nevertheless potentially explain some of the

effects of the covariates on the outcome. In addition, the residuals from such a model

should indicate whether non-linear structure was missed. Often, such a linear model,

and corresponding diagnostic plots, might be the starting-point for a subsequent analysis

using techniques that allow for non-linear effects.

Figure 4 shows the residuals from a multivariable linear model, obtained by backward

elimination, guided by AIC. These are smoothed by the popular loess technique, which

fits local polynomials (here: of degree 2) (27). For the covariates with a non-linear true
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ŷ

2 4 6 8 10 12

−
2

−
1

0
1

2

x5

y
−

ŷ
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ŷ

20 30 40 50 60 70 80

−
2

−
1

0
1

2

x11

y
−

ŷ
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Figure 4: Residuals from the fit of a linear model (obtained via backward elimination)
together with loess fits (grey curves) for n = 200 observations.
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function, the smoothed residuals clearly indicate that structure has been missed. How-

ever, the smoothed residuals also indicate structure for covariates without effect. For

example, the fitted smooth function is similar for xi6 and xi7, whereas only the former

really has non-linear structure and the latter has no effect at all. We may therefore an-

ticipate that it will also be challenging for multivariable techniques that can incorporate

non-linear effects to distinguish between truly non-linear structure and artifacts.

6 Discussion

Building reliable multivariable regression models is a difficult task which is further com-

plicated when selection of appropriate functional forms for continuous covariates is re-

quired. Many techniques exist for doing this, but guidance is largely absent. More

detailed evaluation of regression modelling techniques that allow for a potentially non-

linear influence of covariates is needed. The basic tool for such investigations is sim-

ulation, since real data examples are only of limited value for comparing techniques.

However, the simulation design should reflect a real situation which is typically more

complex than most of the simple designs considered in the literature. We therefore de-

cided to base key components of our design on a real data example. This can provide

deeper insight compared with the original example alone.

After considering existing simulation designs and discussing their weaknesses, we pro-

posed a new simulation design for evaluating multivariable regression modeling tech-

niques with continuous covariates. Building on the ART study (5), the proposal includes

a realistically large number of continuous and categorical covariates with a complex corre-

lation structure. For continuous covariates with non-linear influence, we consider global

shapes as well as local effects in the true functions.

In an illustrative analysis assuming linearity, the residuals show that data generated
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from the proposed design is challenging, if identification of only the truly influential

covariates and functional forms is desired. Of course, the difficulty depends on the

number of observations and the signal-to-noise ratio. Because we believe that real data

poses similar challenges, we proposed settings that are manageable for linear regression

techniques, but might prove problematic for approaches that can support non-linear

effects. We do not know any similarly complex designs that truly challenge multivariable

modelling techniques and might thereby indicate their limits.

Helpful criteria for evaluating the quality of models is another issue requiring closer at-

tention. The mean square error of prediction does not tell us much about the properties

of selected models. For more detailed evaluation of approaches to model selection, we

have suggested several performance measures that focus not only on prediction perfor-

mance but also on the interpretability of fitted models. These measures are useful for

identifying Type I errors, reflecting overfitted models, but also for highlighting Type II

errors, where true structure has been missed.

Although the current design has been developed for a continuous response variable, most

of the measures also apply to models with other response types (e.g. binary or time-to-

event outcomes). However, adapting the design will raise additional issues. For example,

in Cox proportional hazards models for time-to-event data, misspecifying the function

for one covariate may adversely affect the estimates for all other covariates, even if they

are uncorrelated (28). Similarly, modelling time-dependent effects must be considered

in a time-to-event setting (see (29), for example).

We hope that the proposed design (and others similarly complex), customized to the

needs of a given simulation study, together with the performance measures we describe

here, will be widely adopted for evaluating various model selection techniques. We are

not aware of any other design that adequately reflects many of the challenges of multi-

variable modelling with continuous covariates in a biomedical setting. Our design may

28



therefore serve as a good starting-point for modifications suited to particular needs.

To facilitate its use, we will make the design and the measures available through an

easy-to-use R package. We hope that this will provide a building-block towards develop-

ing further guidance for multivariable model-building with continuous covariates in real

world applications.
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