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Abstract

In observational studies, many continuous or categorical covariates may be re-

lated to a response of interest. Analyses based on splines as well as the multivariable

fractional polynomial (MFP) approach can be applied to identify important vari-

ables and appropriate functional forms for continuous covariates. Whereas MFP is

one well-defined procedure, many strategies based on splines have been suggested,

and we chose to study two of them. The aim of an analysis often guides the level

of complexity that is deemed acceptable for the final model. Spline-based strate-

gies and MFP have tuning parameters for choosing the required level of complexity.

However, it is unclear whether the strategies can equally well provide simple as well

as complex models. Furthermore, a ‘reasonable’ level of complexity may depend on

the specific data situation. Therefore, we perform a comprehensive simulation study

predicated on an underlying (‘true’) structure that realistically reflects biomedical

contexts. We vary the amount of information (signal-to-noise ratio) in the data

and the complexity levels for model selection. We consider prediction performance,

Type I and Type II error rates, costs at the covariate level, and quantitative as

well as qualitative criteria for judging selected functional forms. No one procedure

performs best in all scenarios, but overall, MFP shows better performance than the

multivariable spline strategies we investigated.

Keywords: continuous covariates; fractional polynomials; model selection; non-linear

effects; simulation; splines.

1 Introduction

For building a multivariable regression model with continuous covariates, any statistical

technique needs to meet two primary challenges: selecting covariates that are related

to the response of interest, and selecting a suitable functional form for the continuous

covariates. Sometimes it may be advisable to ignore the second task; linear regression
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models (in which the functional form is assumed linear) have been quite successful (see

(1), for example). However, when the focus is on interpretability of the selected models,

a wider class of functional forms needs to be allowed for. Non-linear effects of individual

covariates have often been modeled using spline techniques (see (2), for example, for

B-splines), where local polynomials are employed for fitting non-linear effects. Several

multivariable approaches have been developed based on this. Examples are Harrell’s use

of restricted cubic splines (3), or penalized splines as described in (4). On the other hand,

the multivariable fractional polynomial (MFP) procedure, proposed in (5), formalizes the

approach of systematically testing for deviations from linearity using (global) fractional

polynomials for modeling potential non-linear effects, while performing variable selection

at the same time.

Before deciding on the technique for selecting variables and functional form, the partic-

ular aim of a study raises a fundamental question: What level of complexity is wanted

or still deemed acceptable for the selected model (6). For example, when good predic-

tion performance is the only objective, complex models that potentially are too big, i.e.,

that contain several covariates without true effect, might be advantageous (7). Most of

the techniques for variable and function selection offer a tuning parameter for choosing

complexity, e.g., the level α employed for variable selection and for testing for linearity

in the MFP procedure. Correspondingly, such complexity tuning parameters might have

to be set to a relaxed level for optimizing prediction performance. If interpretability is

required, it is more important to identify covariates that really have an effect and to

avoid erroneously calling a covariate influential that has no effect or at most a weak

effect. This consideration might imply an intermediate level for the complexity tuning

parameter. Finally, if a model is to be applied, e.g., for future patients, it might pay off

to select models with only few covariates, corresponding to a stringent significance level,

as each additional covariate increases future measurement costs. Therefore, we broadly

distinguish between complexity levels resulting from relaxed, intermediate, or stringent
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model selection criteria, each of which might be the most satisfactory, depending on the

application.

The level of complexity that can reasonably be chosen may be restricted by the situa-

tion at hand. For example, with a smaller number of observations, a relaxed selection

level could be problematic, as there might not be enough observations for reliably es-

timating model components for many covariates. The strategies differ in many aspects

and they may have advantages and disadvantages in different scenarios depending on

the significance levels for selecting variables and functional form, the sample size or the

amount of information in the data. Finally, the choice of a ‘best’ approach depends on

the definition of ‘performance’. For example, when wiggly function estimates are to be

avoided, more stringent selection of functional form might be preferred, compared with

a setting where good prediction performance is the primary aim.

Unfortunately, little is known about the properties of multivariable model-building tech-

niques based on splines, and only limited results are available for MFP (see (8), for

example). In (9), some comparison of the two types of approaches is provided, but a

comprehensive evaluation is missing. To address this, we perform an extensive simu-

lation study, taking the design from the companion paper (10). We do not expect to

identify one approach that performs best in all situations, regardless of the performance

measure considered. Such a result would at least critically depend on the specific simu-

lation design employed, as certainly another design could be devised where the identified

‘best’ approach performs less well. Instead, our aim is to provide guidance for select-

ing an appropriate technique if a certain level of complexity is wanted, with a focus on

biomedical settings with a moderate number of covariates and no interactions (see (9) for

a more detailed description of such settings). The results also indicate when a particular

complexity level might be problematic, regardless of the technique used.

The techniques to be evaluated, i.e., MFP and two approaches based on splines, are
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described in Section 2. The simulation design, as well as the performance measures

employed for evaluation, are only briefly given in Section 3, as many details and some

background for the necessary choices are provided in a companion paper (10). Section 4

presents results on prediction performance, Type I and Type II error levels, costs at the

covariate level, and functional form. Concluding remarks are given in Section 5.

2 Approaches for model selection

Given observations (yi, xi), i = 1, . . . , n, with a continuous response yi and covariates

xi = (xi1, . . . , xip)
′, the objective is to fit an additive model

yi = β0 +
∑

j∈Jlin

βjxij +
∑

j∈Jnonlin

fj(xij) + ǫi,

with error term ǫi ∼ N(0, σ2). Besides estimating the intercept term β0, the main

modeling task is to determine which covariates should enter as linear terms (by definition

also including ordinal and dummy-coded categorical covariates that have an effect), i.e.,

to identify Jlin ⊂ {1, . . . , p}, and which of the continuous covariates should enter as non

linear terms, i.e., determining Jnonlin ⊂ {1, . . . , p}, where in addition the functional form

fj has to be selected. Note that model selection in particular means identifying the set

Jnoe = Jlin ∪ Jnonlin of covariates that are not included in the model.

We consider several ways to select variables and functional forms. For modeling the

functions fj(x), evaluation is restricted to methods that can, in principle, provide an

explicit model equation. For example, kernel smoothing methods are excluded. For

methods that provide model equations, the functions fi(x) can typically be written as

some type of expression involving polynomials. We distinguish between global functions,

for example those with global polynomial terms, or local models that use local polynomial

segments, as in splines.
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As a global polynomial technique, we consider MFP. MFP formalizes and extends tra-

ditional model-building in which polynomial terms are added ‘manually’ to a regression

model according to the value of some test statistic. (A key difference is that MFP starts

from a model of predefined complexity and attempts to simplify it according to a type

of backward elimination procedure which preserves the familywise error rate.) Many

model-building techniques based on splines have been suggested, but there is no obvious

‘best’ choice; see (4) for a comprehensive overview. As a criterion, we decided to adopt

what would be available to a typical user in the R (11) statistical environment. We

therefore consider the penalized spline technique offered there as a default. As a second

approach, we consider restricted cubic splines as popularized by (3) and provided by

the widely used R package Design (12). Wherever there are choices to be made with

respect to details such as tuning parameters, we either take the default provided by the

implementation, or we attempt to imitate what a typical user would probably do, based

on the documentation available. This is especially challenging when variable selection

is required for the spline models, because no particular method has been widely recom-

mended. To address this issue, we perform variable selection for spline functions like a

typical user would do it manually. An overview of the variants of the model-building

techniques we use is given in Table 1. For two of them, the significance level is a key

tuning parameter which determines the complexity of the selected model and it must

be prespecified by the user. We choose 0.01, 0.05 and 0.157 as stringent, intermediate

and relaxed selection criteria, respectively. The last of these roughly imitates selection

according to a minimal AIC criterion (6). A brief description follows.

2.1 MFP

MFP uses (fractional) polynomial terms for non-linear effects. It was initially developed

in a univariate context with a less than ideal approach to multivariable model selection
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Table 1: Techniques for selecting variables and functional form, to be considered in the
simulation study.

Underlying technique Selection criterion
stringent intermediate relaxed

MFP approach mfp.01 mfp.05 mfp.157
Restricted cubic splines rcs.01 rcs.05 rcs.157
Penalized splines - - gamm.step

(13). An improved algorithm for the selection of variables and functional forms in a

multivariable context was described by (5). For a comprehensive overview, see (8).

First we consider a single continuous covariate x, where the straight line model, β1x

(for simplicity, we suppress the constant term, β0) is a suitable starting point. Often

it is an adequate description of the relationship, but other models must be investigated

for possible improvements in fit. A simple extension of the straight line is a power

transformation model, β1x
p. Royston and Altman (13) formalized the model slightly

and called it a first-degree fractional polynomial or FP1 function. The power p is chosen

from a pragmatically chosen restricted set S = {−2,−1,−0.5, 0, 0.5, 1, 2, 3}, where x0

denotes log x.

As with polynomial regression, an extension from one-term FP1 functions to the more

complex and flexible two-term FP2 functions follows immediately. Instead of β1x
1+β2x

2,

FP2 functions with powers (p1, p2) are defined as β1x
p1 + β2x

p2 with p1 and p2 taken

from S. If p1 = p2, Royston and Altman (13) proposed β1x
p1 + β2x

p1 log x, a so-called

repeated-powers FP2 model.

With the set S of powers as just given, there are 8 FP1 transformations, 28 FP2 trans-

formations with distinct powers (p1 6= p2) and 8 FP2 transformations with equal powers

(p1 = p2). The best fit among the combinations of powers from S is defined as that with

the highest likelihood.

Choosing the best FP1 or FP2 function by mininizing the deviance (minus twice the
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maximized log likelihood) is straightforward. However, having a sensible default function

is important for increasing the parsimony, stability and general usefulness of selected

functions.

For our situation the linear function is a natural choice. Therefore, unless the data sup-

port a more complex FP function, a straight line model is chosen. As a function selection

procedure (FSP) a closed test procedure with 3 steps is proposed. First, it investigates

whether the continuous variable has any influence on the outcome (comparing the best

FP2 model with the null model at a chosen significance level). If significant, it tests FP2

versus a straight line model, and, if also significant, a final step compares the best FP2

and FP1 models. For more details see (8).

In many studies, a larger number of predictors is available and the aim is to derive an

interpretable multivariable model which captures the important features of the data: the

stronger predictors are included and plausible functional forms are found for continuous

variables.

As a pragmatic strategy for building such models, a systematic search for possible non-

linearity (provided by the FSP) is added to a backward elimination (BE) procedure. The

extension is feasible with any type of regression model to which BE is applicable. Sauer-

brei and Royston (5) called it the multivariable fractional polynomial (MFP) procedure,

or simply MFP.

The nominal significance level is the main tuning parameter required by MFP. Actu-

ally, two significance levels are needed: α1 for selecting variables with BE, and α2 for

comparing the fit of functions within the FSP. Often, α1 = α2 is a good choice. The

extension of FPm for degree greater than 2 (m > 2) is obvious, but rarely if ever needed

in a multivariable context and will not be considered here. Since the model is derived

data-dependently, parameter estimates are likely to be somewhat biased.
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2.2 Restricted cubic splines

In methods based on splines, the function fj(x) for a covariate x can be expressed as a

sum of M basis functions

fj(x) =
M∑

k=1

βjkBjk(x),

where the basis functions Bjk(x) depend on the particular spline used and are fixed.

The parameters βk are estimated from the data. Truncated polynomial terms are often

used for the basis functions, or the latter can be re-expressed in such a form. Typically,

cubic terms (x− ξ)3+ are used, where ()+ returns the positive part of its argument or 0.

The basis functions are parametrized via the positions ξ of knots that cover the range

of the covariate values. Restricted cubic splines (RCS) (14) are parameterized such that

the functions are linear in the tails of the distribution.

Specifically, we consider the approach provided in the R package Design (12), which

has been illustrated in (3). As a starting point, a model containing all covariates is

fitted, with an RCS component for each continuous covariate. Five knots are used in

the RCS, located at corresponding quantiles of the covariate values (the default in the

R implementation).

Starting from this model, backward elimination is performed, using some suitable signif-

icance level as stopping criterion. This procedure is implemented for variable selection

and is also described in the software documentation (15). For the continuous covariates

remaining in the model after backward elimination, a test is applied to decide whether

to replace the spline component with a linear function. This is performed in a step-

wise manner. The spline component with the largest p-value is the first to be checked

for replacement by a linear function. The model is then refitted and the next spline

component is checked. This is similar to the MFP procedure.
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2.3 Penalized splines

To avoid overfitting with regression splines, only a small number of basis functions are

used. However, the positions of the knots are very influential. While placing the knots

at quantiles can be expected to result in reasonable performance, the amount of local

structure that can be modeled between two knots is limited. Methods based on penalized

splines (PS) avoid such problems by using a large number of knots. Overfitting is avoided

by penalized estimation, which discourages complex fits. The complexity is controlled

by applying a penalty parameter for each covariate. Satisfactory selection of the penalty

parameter is therefore critical. For a comprehensive discussion of penalized splines, see

(4).

To represent the functions fj(x) we use a thin plate regression spline basis (16), the

default in the package mgcv distributed with R. Fitting is done through a linear mixed

model representation, thus allowing simultaneous estimation of regression and penalty

parameters (see for example the appendix of (17), or (4; 18) for a more comprehensive

discussion). Such an approach has been shown to be competitive in terms of predic-

tion performance and to produce relatively smooth fitted functions (19). Nevertheless,

graphing the function is the main way to present results, as it is infeasible to express

the spline function as a simple formula.

To select variables and functional forms, we adapt the approach of (20). Simplified com-

plexity levels are defined for each covariate. Starting from a model that contains linear

components for all covariates, stepwise selection of complexity is carried out, guided by

the marginal AIC. For binary and categorical covariates, we consider the complexity

levels ‘not included’ and ‘included’. For continuous covariates, three complexity levels

are considered: ‘not included’, ‘included as a linear term’, and ‘included as a non-linear

term’. In each step, the complexity of the component for a given covariate is either

decreased or increased, such that the marginal AIC decreases the most. The procedure
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continues until no further improvement is possible. For more details see (21).

Model selection by AIC roughly corresponds to selection at a signficance level of α =

0.157 (6), i.e., to a relaxed model selection criterion. In principle, AIC could for example

be replaced by BIC to obtain a different level of complexity. However, there is no theory

underpinning model selection by such other criteria, in the framework of the penalized

spline representation based on the mixed model. For the PS approach, therefore, we

evaluate only models corresponding to selection at relaxed complexity levels.

3 Simulation design

3.1 True structure

We use the simulation design described in detail in the companion paper (10). For

n ∈ {200, 500, 1000} observations, 15 underlying variables are generated from a stan-

dard normal distribution, with correlation structure given in Figure 1. Covariates are

constructed from these underlying variables. Skewness is introduced for continuous

covariates and categorical covariates are obtained by categorizing their underlying con-

tinuous variables. This results in a total of 17 covariates. For the eight covariates that

have an effect on the response, x1, x3, x4a, x5, x6, x8, x10, and x11, the related compo-

nent in the true regression model is given in Figure 1. The functions for the continuous

covariates can be seen in Figure 1 of the companion paper (10), or also in Figures 5 and

6.

To obtain a continuous response variable, normally distributed error terms ǫi ∼ N(0, σ2)

are added to the linear predictors. We take σ2 ∈ {3.47, 0.868, 0.217, 0.096}, corre-

sponding to a signal-to-noise ratio ∈ {0.25, 1, 4, 9}, and an explained variation of R2 ∈

{0.2, 0.5, 0.8, 0.9} for the true model. We number the scenarios from 1 to 12, sorting
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Figure 1: Simulation design: Correlation structure of the underlying variables is indi-
cated by arrows. If the covariate built from an underlying variable is continuous, the
latter is indicated by a circle, otherwise by a rectangle. If the covariate has an effect
on the response, the circle/rectangle has grey shading, and the corresponding model
component is given besides the symbol. Note that some of the underlying variables cor-
respond to several variables/model components, e.g., variable 4 corresponds to x4a and
x4b, where only the former has a non-zero effect.
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them by R2 and by the number of observations within each level of R2. The smallest

amount of information is present in Scenario 1, with R2 = 0.2 and n = 100. In such a

scenario, multivariable model-building with selection of functional form is barely feasi-

ble. From Scenario 5 (R2 = 0.5, n = 500) on, an intermediate amount of information

is available; here, differences in multivariable model-building strategies might become

apparent.

We perform 500 repetitions for each simulation scenario. When convergence problems

occur (mostly for n = 200 and never for n = 1000), only those repetitions are considered

where results for all approaches are available. This problem affects less than 1% of the

repetitions in any scenario.

3.2 Quantifying performance

For quantifying prediction performance, we consider the prediction error

PE(ŷ) = E[(y − ŷ)2]

for predictions ŷ on new data. This is evaluated in nnew = 5000 newly drawn observa-

tions.

For judging the selected models, inclusion vs. exclusion is considered for a given co-

variate. Depending on whether the covariate does or does not truly have an effect, this

characteristic relates to the power or Type I error rate, respectively. For combining these

two measures, power and Type I error rate, costs for erroneous inclusion/exclusion of

covariates are assigned and summed for each selected model. As described in (10), the

definition of ”cost” for a covariate is based on the absolute value of the marginal correla-

tion of the corresponding true model component with the response, as determined on a

test set of size n = 5000. Erroneously excluding a covariate costs more than erroneously
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Table 2: Costs assigned for erroneous inclusion/exclusion of covariates. Smallest (for
exclusion) respectively largest (for inclusion) values in bold.

cost for erroneous exclusion
x1 x3 x5 x6 x10 x11 x4a x8
0.152 0.179 0.342 0.539 0.119 0.384 0.170 0.093

cost for erroneous inclusion
x7 x12 x13 x2 x4b x9a x9b x14 x15
0 0.021 0.082 0.052 0.029 0.093 0.079 0.001 0.086

including one. The costs depend on the correlation structure and are given in Table

2.

For evaluating the shape of the selected functions, the mean squared difference of the

first derivatives

PED1(f̂ ; f) = E[(f̂(x)− f(x))2]

is evaluated for each function, again on nnew = 5000 new observations. Here f̂ is the

selected function and f is the true function. This measure favors functions that have a

shape similar to the true function and penalizes excessive ‘wiggliness’ (22).

In addition to this quantitative measure for evaluating the selected functions, we also use

qualitative criteria, enabling us to investigate Type II errors with respect to identification

of functional form. The criteria applied in our simulation study are given in Table 3.

For details see (10).

4 Results

4.1 Prediction performance

The prediction error for all of the model-building methods and the different complexity

levels is shown in Figure 2 for various scenarios. For each scenario, the prediction error

from the unknown true model (true error variance) is used as the minimum on the y-
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Figure 2: Prediction error (median and interquartile range) for MFP (hollow circles),
RCS (filled circles) and PS (filled squares) at different complexity levels in scenarios with
different numbers of observations n and R2. The minimal value of the y-axis is the true
error variance (solid horizontal line). The median for a ‘full linear’ model is indicated
by a dashed horizontal line. For R2 ∈ {0.8, 0.9} values are larger than the y-axis. For
details see text.
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Table 3: Properties of the true functions that have to be met by a selected function for
not being considered a Type II error.
covariate monotonicity extrema slope inflection point
xi1 - exactly one maximum decreasing -

between 45 and 55
xi3 strictly increasing exactly one minimum - not more than

for > 20 between 12 and 20 one, for > 20
xi5 strictly decreasing - absolute value exactly one,

for < 3 and > 9 for 7 smaller than between 3 and 9
for 2 and 10

xi6 strictly increasing - decreasing -
xi10 strictly increasing - constant -
xi11 strictly increasing - constant -

axis. The median prediction error from a model including all 17 covariates, assuming

linearity for continuous variables (we call it a ‘full linear’ model), is shown as a horizontal

dashed line. Whereas the former is a lower bound for prediction error, the latter may

be considered an upper bound in our situation. For the two larger R2 values it is

much larger than the chosen maximum value of the scale and therefore not visible. The

prediction error from the ‘full linear’ model would be located at 0.419, 0.410, and 0.376

for R2 = 0.8, and at 0.288, 0.270, and 0.263 for R2 = 0.9, for the scenarios with n = 200,

n = 500, and n = 1000 observations respectively.

For R2 = 0.2, all approaches have values similar to the full linear model, irrespective

of the complexity level. With increasing sample size, prediction error decreases from

about 4.15 for n=200 to about 3.7. Regarding prediction error, nothing seems to be

lost by excluding variables and nothing seems to be gained by permitting non-linear

functions.

When there is little information in the data, e.g., Scenario 1, the PS approach per-

forms slightly better, also exhibiting the least variability. As more information becomes

available, PS is outperformed by both RCS and MFP. The performance of MFP is con-

sistently better or at least as good as that of RCS. For small sample size and R2 = 0.5

or R2 = 0.8, the prediction error is much smaller, but for a large amount of information,
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e.g., R2 = 0.8 and n = 500, the differences are negligible compared with the gains with

respect to the full linear model. For a very large signal-to-noise ratio and a large number

of observations (e.g., R2 = 0.8, n = 500 or R2 = 0.9, n = 500), the PS approach again

has a slightly better prediction performance.

4.2 Type I error rates and power

For MFP and RCS, different complexity levels are realized by varying the nominal signif-

icance level α ∈ {0.01, 0.05, 0.157}. The actual Type I error levels, calculated across all

covariates that have no effect — some are correlated and some are uncorrelated — are

shown in Figure 3. Also shown is the power, i.e., the proportion of covariates correctly

identified as having an effect. See Table 4 for more details of individual variables in a sce-

nario with an intermediate amount of information (Scenario 5). As expected, choosing

a larger significance level results in larger Type I error rates for all approaches.

Except for a smaller amount of information, nominal and actual significance level agree

well for MFP whereas the actual significance level is often smaller than the nominal level

for RCS. PS has the largest Type I error rate (between 16% and 20%) in all scenarios.

However, the power of PS dominates that of RCS in nearly all scenarios, indicative of

the general trade-off between Type I error and power. Overall, the power of PS is similar

to that of MFP with α = 0.157 in most scenarios. For a larger amount of information

(R2 = 0.8 or 0.9 and n ≥ 500; n = 1000 and R2 ≥ 0.5), the Type II error is negligible

for all approaches and all nominal significance levels.

Table 4 shows the Type I error rates separately for each uninfluential covariate in a

scenario with an intermediate amount of information (R2 = 0.5, n = 500). For all

approaches, the rates vary widely across covariates, with lower values mostly for the two

uncorrelated covariates x13 and x15. In principle, estimates for these two covariates may

be considered to provide the only ‘true’ Type I error estimates, as uninfluential correlated
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Table 4: Type I error rates for the covariates that have no effect (continuous on the left,
binary on the right), in a scenario with n = 500 observations and R2 = 0.5. Note that
x13 and x15 are the two uncorrelated covariates that have no effect.

x7 x12 x13 x2 x4b x9a x9b x14 x15
mfp.01 0.004 0.006 0.004 0.086 0.014 0.020 0.010 0.018 0.012
rcs.01 0.006 0.002 0.010 0.018 0.002 < 0.001 0.006 0.008 < 0.001

mfp.05 0.038 0.016 0.014 0.098 0.050 0.082 0.082 0.064 0.046
rcs.05 0.016 0.010 0.022 0.024 0.014 0.006 0.012 0.016 0.012

mfp.157 0.126 0.064 0.042 0.174 0.166 0.200 0.202 0.178 0.140
rcs.157 0.038 0.030 0.046 0.044 0.034 0.022 0.022 0.034 0.022
gamm.step 0.254 0.304 0.150 0.240 0.412 0.410 0.438 0.178 0.154

variables may sometimes be selected instead of the correlated influential partner. For

MFP, the nominal and the actual significance level for the binary covariate x15 agree

well, whereas the actual level of the continuous covariate x13 is much smaller than the

nominal level. In our design, x2 has the strongest correlation with a covariate that has

a large effect (x1), and MFP selects x2 in some repetitions instead of x1. RCS seems

to be less prone to such erroneous selection, and Type I errors are always far below the

nominal significance level. For PS, the two uncorrelated variables have a Type I error

around 15%, but correlated covariates without an effect are often selected. Six of these

seven are selected in 24% to 44% of the repetitions.

4.3 Variable selection costs

Figure 4 shows costs assigned to selected models according to the scheme in Table 2,

giving a measure that provides a trade-off between erroneous inclusion and exclusion of

covariates. It is related to the Type I error/power consideration presented in Figure 3,

but also incorporates the correlation structure of the design. A loss in power directly

adds to the costs, potentially counterbalancing gains due to a decreased Type I error

rate. PS performs best for a very low level of information (Scenario 1) and has costs

comparable to those of MFP and RCS with α = 0.157 for Scenarios 2 to 6. The large
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Figure 4: Costs (median and interquartile ranges) incurred by selected models, for MFP
(hollow circles), RCS (filled circles), and PS (filled squares) at different complexity levels
in scenarios with different numbers of observations n and R2.
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Type I error rates result in the highest costs if R2 = 0.8 or larger.

Increasing the significance level for MFP or RCS decreases the costs in all scenarios with

a lower level of information (Scenarios 1 to 5). The costs for MFP are always lower than

the cost for the corresponding RCS model.

For a stringent and intermediate significance level (α ≤ 0.05), MFP always costs little

in scenarios with much information (R2 ≥ 0.8). Costs of RCS are higher in two sce-

narios with an intermediate amount of information (Scenarios 6 and 7), but are similar

otherwise. With the relaxed significance level and much information, the Type I error

increases for MFP and dominates the cost calculations. The Type I error is less serious

for RCS and the corresponding costs are much lower.

4.4 Functional form

Figure 6 shows selected functions for a random set of 20 repetitions from the scenario

with R2 = 0.5 and n = 500 observations, i.e., a medium amount of information. We

show functions for those continuous covariates that have linear (x10 and x11) or no effect

(x12 and x13). For each type of covariate, one pair is uncorrelated (x10 and x13) and

the other (x11 and x12) is correlated with other covariates that have a non-linear effect.

As PS selects models at a more relaxed level, we also show graphs for the two other

approaches using 0.157 as the significance level. Figures with the more typical level

α = 0.05 are given in the web appendix (with some comments provided below).

Ideally, uninfluential covariates would be excluded and covariates with a linear effect

would be assigned a linear term in a model. However, even in the random set of 20

repetitions, there are several instances where a non-linear functional form has been

selected by all the approaches. This is due to the large selection level (α ≈ 0.157).

As expected due to its local character, RCS selects functions that fluctuate randomly
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Figure 5: True functions for the four covariates with linear (left two columns) or no
effect (right two columns) and fitted functions (top: mfp.157; middle: rcs.157; bottom:
gamm.step) for a random sample of 20 repetitions for R2 = 0.5 and n = 500.
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Figure 6: True functions for the four covariates with non-linear effects and fitted func-
tions (top: mfp.157; middle: rcs.157; bottom: gamm.step) for a random sample of 20
repetitions for R2 = 0.5 and n = 500.

around the true functions. In contrast, MFP selects functions that are still smooth but

which deviate with respect to global shape. A similar tendency is seen for PS; it selects

rather smooth functions, despite being based on local polynomials. For covariate x12

(no effect), PS often selects a linear function, because of the large Type I error rate in

Table 4.

Figure 6 shows selected functions for the covariates with a non-linear true function.

While RCS sometimes results in functions with local minima, e.g., around value 45

for x1, the other two approaches provide smoother functions. In several cases a linear

function is erroneously selected for x1 and x3. For MFP, this is caused by insufficient
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power to select a non-linear function, but PS misses the non-linear parts even more often,

which might also be due to low power. For x5, a very challenging function for a non-local

approach, large deviations from the true function are seen for MFP. The global character

of the function results in major differences for very low and very high values. The other

two approaches come closer, but at the price of larger variability. A detrimental effect of

the local flexibility offered by splines is seen for the true function with logarithmic shape.

While MFP fits the data well in most replications and always preserves the monotonic

structure, the functions selected by the other two approaches exhibit local minima or

decreasing slope in several instances. Using MFP and the intermediate significance level

(see Figures 1 and 2 the web appendix) gives improved results for the covariates without

an effect and the two linear functions, but slightly worse results for the true non-linear

functions. The function selection procedure in MFP more often selects linear functions.

In contrast, RCS sometimes selects even more wiggly functions with the intermediate

significance level.

More thorough investigation of the shapes of the selected functions based on example

plots is difficult. For more closely inspecting the shape of the functions, we consider

the first derivatives, following (22). Figure 7 shows the first derivatives of the selected

functions for some of the continuous covariates in 20 repetitions where all approaches

selected a non-zero effect for the considered covariates. For MFP, the smoothness of the

selected functions is seen to carry over to the first derivatives. For the spline approaches,

there is large variability that is not easily seen from the plots of the original functions in

Figures 5 and 6. For RCS, the linearity restriction for large and small covariate values

seems to be a considerable source of misfitting for all covariates that have a non-linear

effect.

For quantifying how close the shape of the selected functions is to that of the true

functions, we consider the mean squared difference between the first derivative of the
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Figure 7: First derivatives of functions (grey curves) selected by MFP (top row), RCS
(middle row), and PS (bottom row) for a random sample of 20 repetitions where all of
the approaches selected a non-zero effect for each of the shown covariates in the scenario
with R2 = 0.5 and n = 500. The derivatives of the true functions are indicated by black
curves.
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Figure 8: Median of PED1 for functions selected by MFP (hollow circles), RCS (filled circles), and PS (filled squares) at
different complexity levels (stringent: ‘s’; intermediate: ‘i’; relaxed: ‘r’) in scenarios with different numbers of observations
n and different R2 (0.2: first row; 0.5: second row; 0.8: third row; 0.9: fourth row).
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selected and the true function (PED1). As the true functions are rather smooth, low

values indicate less wiggly functions. Figure 8 shows the median value of this measure

for the continuous covariates with non-linear effect. For a small R2 there is little dif-

ference between the approaches. The complexity level seems to have little influence on

performance with respect to the shape of selected functions in all settings. When more

information is available, the performance depends on the shape of the true function. For

the true function that has a plateau (third column of plots), MFP is outperformed by

the spline approaches. For the other true functions, MFP mostly performs best. An

increase of performance with a larger number of observations is seen for all types of true

functions, except the function with a logarithmic shape (fourth column of plots). There,

only the performance of MFP increases as more observations become available. The

spline approaches do not benefit from more information.

Figure 9 shows the proportion of repetitions in which all qualitative criteria are met.

Using these criteria as a rough description of the true functional form, the proportions

may be interpreted as the probability of selecting the true function. As for the other

criteria, the performance depends strongly on the shape of the true function. For x1,

with its quadratic shape, MFP is seen to perform best, with a widening difference as the

amount of information in the data increases. The functions selected by the spline ap-

proaches rarely meet all criteria for x1. Concerning the comparison between approaches,

the results for x6 are similar. The main difference is for MFP. In contrast to x1, the

proportion of correct functions hardly increases with increasing R2. An increase in the

selection level results in a slight decrease in the percentage of correct functions. For

the functions x3 and x5, MFP performs worst. With a large amount of information the

functions selected by the spline approaches often meet all the criteria, whereas MFP only

performs well when the amount of information is very large. In addition, using a larger

significance level improves the results for MFP. PS and RCS also show a definite advan-

tage with respect to x5. As expected, the functions selected by MFP hardly ever meet
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Figure 9: Proportion of repetitions where all qualitative criteria are met (see Table 3) by MFP (hollow circles), RCS (filled
circles), and PS (filled squares) at different complexity levels (stringent: ‘s’; intermediate: ‘i’; relaxed: ‘r’) in scenarios with
different numbers of observations n and different R2 (0.2: first row; 0.5: second row; 0.8: third row; 0.9: fourth row).
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all criteria. RCS is better than PS in all scenarios. For low R2, the significance level has

an influence on the performance of RCS, but otherwise the effect seems negligible.

5 Discussion

5.1 General issues in multivariable model building

In developing regression models, data analysts are often faced with many variables that

may influence an outcome. If the main aim is to derive a suitable predictor with little

consideration of the model structure, the task is relatively easy and the mean square error

of prediction is an established and reasonable quantity for comparing the performance

of several competing models. However, complexity of the model is often a key issue.

Several studies comparing selection strategies in specific examples or simulations have

been published in many areas of science (6; 3; 23; 24). There seems to be agreement

that no selection procedure does well in small samples (25; 8; 23), and some researchers

argue that predictors from more complex models do not perform better in larger samples

(6; 23; 24). For continuous variables, these studies usually assume a linear influence on

the outcome.

A much more ambitious aim is to derive a suitable explanatory model where it is impor-

tant to identify influential predictors and for continuous variables to gain insight into the

functional relationship with the outcome. Interpretability of the individual components

and generalizability are important aims (9). Fractional polynomial functions and various

types of splines are the principal competitors for estimating the functional form.
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5.2 Issues in comparing splines and FPs in a multivariable setting

Despite enormous practical importance, we are not aware of any simulation study com-

paring FP and spline modeling in a multivariable context. We think that there are

three main reasons that such a task has not so far been addressed. (1) No spline-based

procedure for simultaneously selecting variables and functional forms has found wide

acceptance. (2) To give sufficient insight into the issues raised, a suitable simulation

design must be much more complex than most of the oversimplified designs found in

the literature, e.g., a small number of variables or variables uncorrelated. In particular,

the choice of true functions is critical in our situation. (3) As the prediction error does

not take into account the individual components of a model and also ignores whether

a postulated function is smooth or wiggly, it is an insufficient criterion for comparing

multivariable explanatory models. Even the concept of a Type II error needs extension

if a true and a selected form are to be compared.

To overcome issue (3), we have developed a new measure for judging the shape of an

estimated function which penalizes wiggliness (22). In a companion paper (10), we have

given details of a simulation design and criteria for comparing multivariable models

including functional forms for continuous variables.

Regarding methods based on splines, we have chosen restricted cubic splines (RCS) and

penalized splines (PS), and adapted common implementations for a multivariable setting.

With these decisions and new developments, we were able to compare multivariable spline

and FP modeling with 17 variables. As already mentioned for the case of selecting a

predictor, the significance level is also the key tuning parameter for model selection using

MFP and RCS. We have chosen the popular 0.05 level and also 0.01 as a more stringent

and 0.157 as a more relaxed level. From the simpler case of prediction, it is well known

that both the amount of noise in the model and the size of the sample are important

(23). Regarding noise, we have chosen a range for R2 from 0.2 to 0.9. As the aim is
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to identify the relevant factors from 17 candidates and to derive a suitable functional

form for continuous variables, we decided to use a sample size of n = 200 as a lowest

level where such complex selections may make sense. With smaller sample sizes it is

unrealistic to find any suitable explanatory model. In addition we studied sample sizes

of n = 500, which we consider as a reasonable choice to select an explanatory model

with functional forms from 17 candidate variables, and n = 1000, which was chosen to

investigate whether and which part of a model can be improved by using a large sample

size. In all we investigated 12 scenarios (four levels for R2, three sample sizes).

5.3 Summary of results from the simulation study

We have considered prediction performance and a cost function as criteria to assess the

overall performance of selected models. The cost function was constructed to provide

a trade-off between erroneous inclusion and exclusion of covariates, incorporating the

correlation structure. For individual variables, we considered Type I error rates, power,

agreement with the true functional form with a penalty for wiggliness, and the agreement

with certain qualitative criteria which aim to identify important features of the true

functional form.

For R2 = 0.2, all methods have a prediction error similar to that of the full linear model,

irrespective of the complexity level. Nothing seems to be lost by excluding variables

and nothing seems to be gained by permitting non-linear functions to be included. This

changes for larger R2, where the prediction errors of all selection procedures are much

smaller. With a medium amount of information (say, scenarios 4 to 7), MFP has smaller

prediction error than splines. A larger significance level slightly reduces the prediction

error. For a large amount of information (say scenarios 8-12), differences are negli-

gible compared with fitting a linear model, although penalized splines have a slightly

smaller prediction error for R2 = 0.9. Models selected with the different approaches and
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significance levels vary substantially in the number of variables included, which is not

accounted for in the prediction error. To take this issue into account, we defined a cost

function as a summary measure to balance Type I and Type II errors and therefore reflect

the complexity of models selected. For a medium amount of information, MFP performs

best. A more relaxed significance level improves the model, probably because variables

with a weaker effect are more often included. With a large amount of information (say,

scenarios 6 to 12), the cost functions are dominated by inclusion of variables without

an effect. Penalized splines are much worse compared with MFP and RCS. With the

two smaller significance levels, inclusion of variables without an effect is hardly critical

for MFP and RCS, but for 0.157, MFP includes more variables without an effect than

RCS does. Regarding Type I error rate, nominal and actual significance levels agree well

for MFP (as for other criteria, scenario 1 is an exception and is implicitly excluded in

parts of the discussion), whereas for RCS, the actual significance level is often smaller

than the nominal level. Penalized splines have a Type I error rate between 16% and

20% in all scenarios, but they also have a larger power, indicating the usual trade-off

between Type I error rate and power. Of course, correlation between variables influences

erroneous inclusion and exclusion of variables, and in a stricter sense, the terms Type I

error and power are valid only for uncorrelated variables.

Suitability of the functional form is a key criterion with which to judge a selected model.

The true functions we chose had very heterogeneous different forms. Due to its local

character, RCS often selects functions that fluctuate randomly around the true function,

and sometimes selects functions with local minima. In contrast, MFP selects functions

that are always smooth but sometimes deviate from the correct global shape. A function

with a plateau (the form for x5) cannot be represented by an FP model. Insufficient

power to identify non-linearity is the other critical issue of the FP-based approach.

The function selection procedure has a linear function as a default. According to the

philosophy of MFP, non-linear functions are only selected if supported by the data,
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according to a closed test procedure (8). This results in an obvious price to pay for

the intended simpler models. With larger sample sizes, however, MFP often selects

a function close to the truth, provided the true function has a global character. The

penalized spline method selects smoother functions than RCS. That can be seen from the

plots of the first derivatives of the functions and the median of the resulting summary

measure, PED1. The proposed qualitative criteria are suitable for assessing how often

a function close to the truth is chosen. Naturally, sample size, R2 and the actual true

function have a major influence. In addition, the significance level is important in some

cases with a medium amount of information. The spline methods have an advantage in

selecting more appropriate functions for x3 and x5, whereas selected and true functions

for x1 and x6 agree more often for MFP.

5.4 Final conclusions

Using extensive experience with selection of variables and functions using fractional

polynomials and splines as a starting point (13; 5; 6; 19), we published some recommen-

dations for model-building by selection of variables and functional forms for continuous

predictors under some assumptions (9). At that time we had planned to conduct such a

simulation study. With a small amount of information (scenario 1), acceptable predic-

tors can be derived with any approach, including the full linear model, but there is no

chance of deriving a suitable explanatory model. With a medium amount of information,

MFP performs better than RCS and much better than penalized splines on most criteria,

with the important exception that a true function like that for x5 will be seriously mis-

modeled. This issue should be identified by investigating the residuals, and the function

may be improved by adding a local component (26). For a large amount of information,

all strategies should select very similar models if outliers and influential points do not

harm the model-building process. In the simulation study, we tried to eliminate this
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problem by truncation (see companion paper (10)). Besides overall advantages in this

simulation study, we consider the relative simplicity in deriving models, interpreting and

transporting MFP models and learning how to work with MFP as important components

for recommending MFP as being currently the most suitable approach for multivariable

model-building with continuous covariates in many scenarios.
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