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SUMMARY.

When investigating the effects of potential prognostic or risk factors that have been measured

on a quantitative scale, values of these factors are often categorized in two groups.

Sometimes an "optimal" cutpoint is chosen that gives the best separation in terms of a two-

sample test statistic. If this approach is employed, it leads to a serious inflation of the type I-

error. Moreover, the effect of the prognostic or risk factor is overestimated in absolute terms.

The problem of inflating the type I-error rate can be avoided when correcting the P-value by

using the asymptotic distribution of the maximally selected test statistic or other

approximations; the resulting bias of the effect estimates can be reduced by applying

shrinkage methods. In this paper, a bootstrap resampling approach is used that yields

confidence intervals for the effect of a potential prognostic or risk factor with the desired

coverage. The methodology is developed within the framework of the proportional hazards

cutpoint model for censored survival data and is illustrated by means of prognostic factor

studies in breast cancer.

KEYWORDS:

Maximally test statistics; Cutpoint assessment; P-value correction; Shrinkage methods;

Bootstrap resampling; Confidence intervals; Prognostic or risk factors.



- 2 -

Introduction

In the statistical analysis of medical data, almost always some steps of model building or

model selection are involved. This may be the choice of a standard method, e.g. a regression

model with all factors to be included prespecified or, on the other hand, the use of a complex

model-selection strategy within a larger class of candidate models. When analyzing a clinical

or epidemiological study we are often in the latter situation although this is not always

recognized or, at least, not fully appreciated.

In this paper we will concentrate on a seemingly simple problem of model selection that

consists in selecting an "optimal" cutoff-value of a quantitative prognostic or risk factor that

gives the best separation between the two resulting groups in terms of a two-sample test

statistic. Since this is equivalent to the selection of a cutpoint corresponding to the minimum

P-value of the corresponding two-sample test statistic, this approach has also been termed the

minimum P-value method (Altman et al. 1994). This problem has attracted some interest both

in the statistical and in the medical literature. Starting with the paper by Miller and Siegmund

(1982) the statistical properties of various maximally selected test statistics have been worked

out (e.g. Koziol 1991; Lausen and Schumacher 1992; Betensky and Rabinowitz 1999;

Rabinowitz and Betensky 2000) allowing to calculate the distribution of these test statistics

under the null hypothesis that the prognostic or risk factor under consideration does not have

any influence on the outcome variable. On the other hand, this approach enjoys some

popularity in the medical literature where usually the "optimization" process is not adequately

taken into account and simply the minimum P-value is given as the final result of the

statistical analysis.

For example, when studying the prognostic relevance of putative prognostic factors in breast

cancer, the minimum P-value method has often been used. With regard to investigations on

the influence of S-phase fraction and cathepsin-D on disease-free survival time of breast

cancer patients several studies were identified where this approach has been taken leading to

variety of proposed cutpoints (Altman et al. 1994, Altman 1998). In a recent paper by

Linderholm et al. (2000), this approach was used to find a cutpoint for vascular endothelial

growth factor (VEGF) content. In the section on statistical methods, the authors write "For

the purpose of this study, VEGF was tested as a dichotomous variable and a continuous

variable. Survival was estimated using the Kaplan-Meier method, and comparison between

study groups was performed with the log-rank test. The optimal cut-off point for VEGF
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content, according to the lowest P-values and the highest relative risk (RR), was found at

1.75 pg/µg DNA for overall survival, and this was used as the cutpoint in univariate and

multivariate analysis". In their analysis, Linderholm et al. (2000) found a significant

difference between patients with low VEGF content and those with high VEGF content with

an impressive minimum P-value of Pmin = 0.0004. When adjusting for standard prognostic

factors in a Cox regression model (Cox 1972) the relative risk of death for VEGF using 1.75

pg/µg DNA as cutpoint was estimated as 1.82 with a 95%-confidence interval [1.11 ; 2.97];

the P-value still being Pmin = 0.0170. The authors concluded that VEGF content is a predictor

of overall survival in primary node-positive breast cancer.

The questions that arise from such an extensive use of cutpoint selection are self-evident: Is

the reported P-value correct? Is the estimated relative risk and given confidence interval

reliable? Are the conclusions valid? Whereas the correction of P-values and the reduction of

resulting bias of effect estimates has been dealt with in previous papers (Lausen and

Schumacher, 1992; Altman et al. 1994; Schulgen et al. 1994; Schumacher, Holländer and

Sauerbrei, 1997) the validity of confidence intervals has not been considered to that extent so

far. We show that the naive calculation of confidence intervals suffers from similar defects as

P-values and effect estimates; thus a bootstrap resampling approach is proposed. Together

with a shrinked estimate the bootstrap based confidence interval yields the desired coverage.

Study on prognostic value of S-phase fraction

The database of the study consists of all patients with primary, previously untreated node

positive breast cancer who were operated between 1982 and 1987 in the Department of

Gynecology at the University of Freiburg and whose tumor material was available for DNA

investigations. Some exclusion criteria (history of malignoma, T4  and / or M1  tumors

according to the TNM classification system, without adjuvant therapy after primary surgery,

older than 80 years etc.) were defined retrospectively but before the statistical analysis. This

left 139 patients out of 218 originally investigated for the analysis.

Eight patients characteristics were investigated. Besides the documentation of standard

prognostic factors in node positive breast cancer DNA flow cytometry was used to measure

ploidy status of the tumor and S-phase fraction, which is the percentage of tumor cells in the

DNA synthetizing phase obtained by cell cycle analysis. In the sequel, we consider only S-
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phase fraction as a potential prognostic factor that was available in 109 patients. The median

follow-up was 83 months. The endpoint considered is event-free survival which is defined as

the time from surgery to the first of the following events: occurrence of locoregional

recurrence, distant metastasis, second malignancy or death. Event-free survival was estimated

as 50% after five years. Further details of the study, in the sequel referred to as the Freiburg

DNA study, can be found elsewhere (Pfisterer et al. 1995); the data have been used

previously (Altman et al., 1994; Schumacher et al., 1997) and are published in Lausen and

Schumacher (1996).

P-values and confidence intervals in the proportional hazards cutpoint model

In the sequel, we restrict ourselves to the problem of selecting only one cutpoint and to a so-

called univariate analysis. This means that we consider only one covariate X  ?  in the

Freiburg DNA breast cancer data the S-phase fraction ?  as a potential prognostic factor. If

this covariate has been measured on a quantitative scale the proportional hazards (Cox, 1972)

cutpoint model is defined as

( )λ µ β λ µt X t X t| exp( ) ( | ),> = ≤ > 0 (1)

where ( ) ( )λ t h t T t h T th| lim ( Pr | ,⋅ = ≤ < + ≥ ⋅→ 0 1  denotes the hazard function of

the  event-free survival time random  variable T . The parameter ( )θ β= exp  is referred to as

the relative risk of observations with X > µ  with respect to observations with X ≤ µ  and is

estimated through ( )$ exp $θ β=  by maximizing the corresponding partial likelihood (Cox,

1972) with given cutpoint µ . The minimum P-value method is a data-dependent

categorization method where ?  within a certain range of the distribution of X , the selection

interval ?  the cutpoint $µ  is chosen so that the P-value for the comparison of observations

below and above the cutpoint is a minimum. In the proportional hazards cutpoint model, the

logrank test (Peto and Peto 1972) or the Wald or likelihood ratio test derived from the partial

likelihood is used for those comparisons. A confidence interval for β  is then calculated as

( )$ var $β βα± −
∧

z
mod1 2 (2)
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where z 1 2− α  is the ( )1 2− α -quantile of the standard normal distribution and ( )var $∧

mod β

is the model-based estimated variance of $β derived from the proportional hazards cutpoint

model (1) as if the estimated cutpoint $µ was known in advance.

Due the optimization process involved it is obvious that the minimum P-value method cannot

lead to correct results of the logrank test. However, this problem can be solved by using a

corrected P-value pcor  as proposed in Lausen and Schumacher (1992), which has been

developed by generalizing an earlier result of Miller and Siegmund (1982). The formula reads

( ) ( ) ( )
p z z

z
z

zcor = −






−




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


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

+ϕ
ε

ε

ϕ1 1
4

2

2log (3)

where f denotes the standard normal probability density function and z is the (1 – pmin / 2)-

quantile of the standard normal distribution. The selection interval is characterized by the

proportion e of smallest and largest values of X that are not considered as potential cutpoints.

It should be mentioned that other approaches of correcting the minimum P-value could be

applied; a comparison of three approaches can be found in a paper by Hilsenbeck and Clark

(1996). Especially, if there are only a few number of cutpoints an improved Bonferroni

inequality can be applied (Worsley, 1982; Lausen, Sauerbrei and Schumacher, 1994; Lausen

and Schumacher, 1996).

In order to correct for overestimation it has been proposed (Verweij and Van Houwelingen,

1993) to shrink the parameter estimates by a so called shrinkage factor. Considering the

cutpoint model the log-relative risk is then estimated by

$ $β βcor c= ⋅ (4)

where $β  is based on the minimum P-value method and c  is the estimated shrinkage factor.

Values of c close to one should indicate a minor degree of overestimation whereas small

values of c should reflect a substantial overestimation of the log-relative risk. For the

estimation of c it has to be considered that maximum partial likelihood estimation in a model

( ) ( ) ( )λ µ β λ µt X c t X| exp $ |> = ≤ (5)
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yields $c = 1  since $β  is already the maximum partial likelihood estimate. Thus cross-

validation and resampling approaches have to be employed to get sensible estimates of the

shrinkage factor; see Schumacher et al. (1997) for a comparison of several methods. In this

paper a so-called heuristic estimate

( )$ $ var $ $c mod= −








∧
β β β2 2 (6)

 was applied where $β  and ( )var $∧
mod β  are defined as above (Van Houwelingen and Le

Cessie, 1990). If $c  happened to take negative values, it was set equal to zero. This heuristic

estimate performed quite well when compared to more elaborated cross-validation and

resampling approaches of estimating the shrinkage factor c (Schumacher et al., 1997) and

was taken here for reasons of simplicity. A confidence interval for β  is then calculated as

( )$ $ var $c z
mod

β βα± −
∧

1 2 . (7)

The confidence intervals calculated so far cannot be expected to show the desired properties

with regard to coverage. The reason for this is that the variance of the estimated log-relative

risk is still model-based, i.e. is derived from a proportional hazards cutpoint model where a

fixed and predefined cutpoint is assumed.

In order to take the additional variability of both the estimated cutpoint and the estimated

shrinkage factor $c  into account, here a new approach based on bootstrap resampling is used.

For that, the complete patient's vector (survival time, censoring indicator, covariate) is

sampled with replacement, the sample size being the same as in the original data. This

process is repeated B times resulting in B bootstrap samples. In each of these a cutpoint is

estimated by the minimum P-value method, the log-relative risk and a shrinkage factor (6) is

estimated. The empirical variance of the shrinked log-relative risk over the bootstrap samples

is then obtained as

( ) ( )var $ $ $ $
∧

=
=

−
−∑

boot c
B

c cj j bootj

B
β β β

1
1 1

2
(8)
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where c bootβ  denotes the average of the shrinked estimated log-relative risks over the B

bootstrap samples.

For the calculation of a confidence interval for β  the model-based variance in formula (7) is

replaced by the empirical bootstrap variance (8).

When applying the minimum P-value method to the data on S-phase fraction, we obtain,

based on the logrank test, a selected cutpoint of 10.7% and a minimum P-value of pmin =

0.007 when the range between the 10%- and the 90%-quantile of the distribution of S-phase

values is used as selection interval. The difference in event-free survival between the two

resulting groups is rather impressive and is reflected by an estimated log-relative risk of

0.864. The corresponding 95%-confidence interval of [0.239 ; 1.489] indicates an effect of S-

phase fraction on event-free survival. After the P-value correction (3) we obtain pcor = 0.123

clearly providing no indication that S-phase is of prognostic relevance. The correction of the

log-relative risk estimate by applying the shrinkage factor (6) leads to a somewhat smaller

value of 0.743. Using the naive, model-based variance leads to a corresponding 95%-

confidence interval of [0.118 ; 1.368] that does not include a log-relative risk equal to 0; it is

therefore not consistent with the corrected P-value of pcor = 0.123.

When using the bootstrap approach with B = 100 bootstrap samples we obtain a confidence

interval that is much wider as compared to the others and does not contain the value β = 0

and is therefore consistent with the corrected P-value of pcor = 0123. . Table 1 summarizes

the results of the study in terms of log-relative risks and relative risks.

Table 1: Risk estimates with corresponding 95% confidence intervals [   ,   ] for S-phase
fraction based on optimal cutpoint in the Freiburg DNA study

log-relative risk relative risk

( )$ , var $β β
∧

mod 0.864 [0.239 ; 1.489] 2.37 [1.270 ; 4.433]

( )$ $ , var $c modβ β
∧

0.743 [0.118 ; 1.368] 2.10 [1.125 ; 3.927]

( )$ $ , var $ $
*

c cbootβ β
∧

0.743 [-0.300 ; 1.786] 2.10 [0.741 ; 5.966]

* ( )var $ $
∧

boot cβ  based on B = 100 bootstrap samples of the original data
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Random re-allocation of S-phase values

By simulating the null hypothesis of no prognostic relevance of SPF with respect to event-

free survival we illustrate that the minimum P-value method may lead to a drastic

overestimation of the absolute value of the log-relative risk. By a random re-allocation of the

observed values of SPF to the observed survival times we simulate independence of these two

variables, which is equivalent to the null hypothesis that the log-relative risk associated with

S-phase fraction, denoted by β , is equal to zero. This procedure was repeated a hundred

times and in each repetition we selected a cutpoint by using the minimum P-value method. In

the hundred repetitions, we obtained 44 significant ( )pmin < 0 05.  results for the logrank test

corresponding well to theoretical results as outlined in Lausen and Schumacher (1992).

The estimated 'optimal' cutpoints of the hundred repetitions and the corresponding estimates

of the log-relative risk are shown in figure 1A. We obtained no estimates near the null

hypothesis β = 0  as a result of the optimization process of the minimum P-value approach.

Using the correction formula in the hundred repetitions of the sampling experiment we

obtained 5 significant results ( )pcor < 0 05.  corresponding well to the significance level of

α = 005. . Figure 1B shows the results of the correction process where in addition to the

correction of P-values, the log-relative risks have been corrected by applying the shrinkage

factor (6). It can be seen that we now obtain also values close to the null hypothesis β = 0 ;

thus the bias induced by model selection has been reduced considerably.
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Figure 1: Estimated "optimal" cutpoints and log-relative risks in 100 repetitions of
randomly re-allocated S-phase values to event-free survival times before (A) and
after (B) correction.

In order to demonstrate that not only the P-value but also confidence intervals are not valid

we use again the sampling experiment described above. The results of 100 repetitions in

terms of confidence intervals are displayed in figure 2A. It is seen that 39 of these confidence

intervals do not contain the value of β = 0  corresponding well to the number of significant

results according to the minimum P-value. Figure 2B shows the resulting confidence intervals

after shrinkage of the estimated log-relative risk has been applied. There are still 17 intervals

that do not contain the value of β = 0 ; so the desired coverage is not obtained through the

shrinkage of estimates. However, when using the empirical variance of the shrinked estimates

$ $cβ  in 100 bootstrap samples in each repetition for the calculation of the confidence intervals

(Figure 2C) we end up with only 5 intervals that do not contain the value of β = 0 . As can be

seen the width of these confidence intervals is considerably larger than that of those where

the naive, model based variance of the estimated log-relative risk is used.
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Figure 2: 95%-confidence intervals for log-relative risk of S-phase fraction in 100
repetitions of randomly re-allocated S-phase values to event-free survival times
(A: estimate based on "optimal" cutpoints, naive model-based variance; B:
shrinked estimate, naive model-based variance; C: shrinked estimate, empirical
variance from 100 bootstrap samples); confidence intervals not including β  = 0
are marked with filled circles, the samples are ordered according to the values of
$β  from smallest to largest.

Simulation study

The random re-allocation experiment is based on one specific data set and gives only results

that are valid under the null-hypothesis "β  = 0" . In order to investigate whether these results

hold more generally a simulation study was performed; we considered one covariate X taken

as uniformly distributed on the interval (0 , 1), and, for simplicity, we restricted ourselves to

the situation of no censoring. It is assumed that there is a true cutpoint µ = 0 5. . Assuming β

ranging from 0 to 1 in steps of 0.1 - corresponding to relative risks ranging from 1 to 2.72 -

the survival time random variable T has been taken from an exponential distribution with

parameter ( )λ µ λ β µ= ≤ = >1 for and forX Xexp  according to the

proportional hazards cutpoint model (1). The choice of the values of β  implies that large

values of X are associated with a higher risk than for small values of X. This, however, is not

a restriction since one can simply switch from X to X - 1. In the absence of censoring we can

also assume λ = 1 without loss of generality. For each parameter constellation, we used
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1000 simulated data sets with n = 100 patients.

In a previous publication, Schumacher et al. (1997) have shown that, within the range of

values considered, the log-relative risks are overestimated in absolute terms. This problem is

particular prominent for small and moderate effects, i.e. values of β  ranging from 0 to 0.5

corresponding to relative risks between 1 and 1.6, whereas for very large values of β  some

underestimation has been observed. In addition, we were able to show that the application of

shrinkage can reduce the resulting bias considerably and, in particular, that the heuristic

shrinkage factor (6) compared quite well to other, more elaborated methods based on cross-

validation and resampling. Table 2 shows the estimated coverage of confidence intervals for

the log-relative risk where the nominal level has been set to 95%. For β  = 0 to β  = 0.3 – the

latter corresponding to a small effect – it can be seen that the coverage is far away from the

desired one and shrinkage alone is not able to compensate for this. However, taking the

empirical variance from only B = 20 bootstrap samples leads to a coverage of more than

90%. For large effects (β  = 0.6 to β  = 0.8) model building does not affect the coverage at all

whereas β  = 0.4 to β  = 0.5 representing moderate effects is somewhat in the middle of the

two extreme situations.

Table 2: Coverage (in percent) of confidence intervals for log-relative risk estimated from
1000 simulated data sets (n = 100); nominal confidence level 95%

β=0 β=0.1 β=0.2 β=0.3 β=0.4 β=0.5 β=0.6 β=0.7 β=0.8

( )$ , var $β β
∧

mod 59.5 59.7 64.3 75.2 84.1 94.4 97.5 98.0 98.5

( )$ $ , var $c modβ β
∧

76.9 79.3 80.9 86.5 89.5 96.3 97.4 97.1 97.4

( )$ $ , var $ $c cbootβ β
∧

* 91.7 92.1 90.6 91.3 90.2 93.1 95.1 97.3 98.8

* ( )var $ $
∧

boot cβ  based on B = 20 bootstrap samples of each simulated data set

In order to investigate whether the coverage could be further improved by increasing the

number of bootstrap samples we performed a second simulation study following the same

design as the first but only using values β  = 0 and β  = 0.5. For the estimate based on the

"optimal" cutpoint and the shrinked estimate, in combination with the model-based variance
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when calculating the confidence intervals, we obtained results comparable to those already

displayed in table 2. For the bootstrap confidence interval based on the shrinked estimate and

on the empirical variance from B = 100 bootstrap samples we obtained a coverage of 95.2%

for β  = 0 and of 96% for β  = 0.5, respectively. Thus the desired coverage was achieved when

a sufficient number of bootstrap replications was used. Figure 3 shows a comparison of

standard errors derived from the model-based variance with those derived from the empirical

variance based on B = 100 bootstrap samples for the situation β  = 0. In this situation, the

model-based variance should approximately be equal to ( )( )1 1n n nµ µ+ −  where nµ is the

number of patients with X ≤ µ (Kalbfleisch and Prentice 1980). Since the selection interval is

taken as the range between the 10%- and 90%-quantile of the distribution of X, the standard

errors derived from the model-based variance should range between 0.2 (nµ = 50) and 0.33

(nµ = 10 or nµ = 90). It is clearly seen that these standard errors are much smaller than those

based on the bootstrap variance in most of the simulated data sets.

Figure 3: Standard errors of log-relative risk derived from naive model-based variance vs.
those based on the empirical variance of 100 bootstrap samples; results are given
for 1000 simulated data sets with β  = 0.

In this second simulation study, we also compared the type I error rate and the power when

the test decision would be based on the various P-values and confidence intervals. Table 3



- 13 -

summarizes the results. It can be seen that test decisions based on confidence intervals using

the model based variance agree well with the use of minimum P-values whereas the bootstrap

confidence intervals reflect very closely the test decisions that would have been based on the

corrected P-values.

Table 3: Test decisions (in percentage) based on confidence intervals for log-relative risk
and on P-values estimated from 1000 simulated data sets (n = 100); nominal
significance level 5%

β  = 0 β  = 0.5

0 ∉ CI P < 0 05. 0 ∉ CI P < 0 05.

estimate based on "optimal" cutpoint;

naive model-based variance;

minimum P-value

42.0 43.2 90.4 90.8

shrinked estimate;

naive model-based variance
19.8 74.0

shrinked estimate;

empirical variance from 100 bootstrap

samples; corrected P-value

4.8 6.7 40.4 44.9

Discussion

In studies investigating the effects of potential prognostic or risk factors, values of the factors

considered are often categorized into two or three categories. Sometimes this may be done

according to medical or biological reasons or may just reflect some consensus in the scientific

community. When a "new" prognostic or risk factor is investigated the choice of such a

categorization represented by one or more cutpoints is by no means obvious. Thus, often an

attempt is made to derive such cutpoints from the data and to take those cutpoints that give

the best separation in the data at hand.

In general the minimum P-value method leads to a dramatic inflation of the type I-error rate;

the chance of declaring a quantitative factor as prognostically relevant when in fact it does

not have any influence on event-free survival, is about 50% when a level of 5% has been
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intended. Thus, correction of P-values is essential but leaves the problem of overestimation of

the relative risk in absolute terms. The latter problem is especially relevant when sample sizes

and / or effect sizes are of small or moderate magnitude and can, at least partially, be solved

by applying some shrinkage method. The construction of valid confidence intervals, however,

is still on open problem. We have proposed a bootstrap approach that has two essential

ingredients. The first is the application of a shrinkage factor to the estimated log-relative risk

in order to reduce the bias induced by selecting an "optimal" cutpoint. The second ingredient

consists of repeating the whole model selection process employed within each bootstrap

sample, i.e. selection of an "optimal" cutpoint, estimation of the log-relative risk based on

that cutpoint and application of a shrinkage factor. The resulting empirical variance of the

shrinked estimated log-relative risks over the bootstrap samples is then capable to capture all

sources of variability and thus provides a valid basis for the construction of confidence

intervals. In contrast, the use of the naive model-based variance is strictly not valid if the

cutpoint has not been prespecified in advance.

In two simulation studies we have shown that the desired coverage of the confidence intervals

can be obtained even with a moderate number of bootstrap samples, say 100. In addition, the

test decisions based on the bootstrap confidence intervals are in agreement with the corrected

P-values although the two methods do not yield identical results. So in the random re-

allocation experiment, for example, only four of the five replications with Pcor < 0.05 are

identical to those where the value of β = 0  is not contained in the bootstrap confidence

intervals. One possible reason is that the confidence intervals are closely related to Wald-type

tests whereas the correction of P-values has been applied to the logrank test as a generalized

rank test (Peto and Peto 1972) that can be derived as the score test from the partial likelihood

in the proportional hazards cutpoint model (1).

It should be noted, however, that the optimal cutpoint approach has disadvantages. One of

these is that in almost every study where this method is applied another cutpoint will emerge.

This makes comparisons across studies extremely difficult or even impossible. Altman et al.

(1994) point out this problem for studies of the prognostic relevance of S-phase fraction in

breast cancer published in the literature; they identified 19 different cutpoints used in the

literature, some of them were solely used because they emerged as the "optimal" cutpoint in a

specific data set. In a meta-analysis on the relationship between cathepsin-D content and

disease-free survival in node-negative breast cancer patients (Ferrandina et al. 1997) 12 studi
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es were included with 12 different cutpoints thus adding an additional source of heterogeneity

to this meta-analysis (Altman 2001). Interestingly, neither cathepsin-D nor S-phase fraction

are recommended to be used as prognostic markers in breast cancer in the recent update of

the American Society of Clinical Oncology (Bast et al. 2001).

Often an "optimal" cutpoint is determined by the minimum P-value method by a univariate

analysis; i.e. by taking only this prognostic or risk factor into account, which is then also used

in a multivariate analysis by including the resulting binary variable together with other

variables in a Cox regression model. By doing so, the bias from the univariate analysis is

transferred to the multivariate setting (Altman et al. 1994; Altman 1998). In the paper by

Linderholm et al. (2000) cited in the introduction, vascular endothelial growth factor (VEGF)

content is investigated together with tumor size, histopathologic grade, number of lymph

nodes and estrogen receptor status in a Cox regression model. VEGF had still a significant

effect (Pmin = 0.017) on overall survival; the log-relative risk is estimated as 0.599 with a

95%-confidence interval [0.104 ; 1.089]. Since we do not have access to the original data of

their study, we cannot apply the methodology outlined in this paper. However, by applying

the simple formula given by Altman et al. (1994) we can conclude that the corrected P-value

would be larger than 0.05 when it is assumed that for the selection of cutpoints all values

between the 10%- and 90%-quantile have been considered. The standard error based on the

naive model-based variance is 0.251 and thus the resulting estimated shrinkage factor (6) for

the log-relative risk is 0.824. Thus it remains at least questionable whether VEGF content is

of prognostic relevance in breast cancer.

Some colleagues suggested that it would be desirable to have a simple formula at hand to

correct published confidence intervals in a similar way as it is possible with the P-value

correction (Altman et al., 1994) mentioned above. When the model-based variance is

available the shrinkage factor (6) and a shrinked log-relative risk can be calculated. A

confidence interval can be derived in the situation that the null-hypothesis "β  = 0" holds true

by taking the ( )1 2− α -quantile of the asymptotic distribution of the maximally selected

logrank statistic instead of the corresponding one of the standard normal distribution. For α =

0.05 this would be 3.054 instead of 1.96 when taking the range between the 10%- and 90%-

quantile as the selection interval (Lausen and Schumacher, 1992). In the Linderholm et al.

(2000) paper this procedure would yield a 95%-confidence interval of [-0.272 ; 1.261] for the

log-relative risk. It should be stressed, however, that this procedure is not generally
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applicable since it would lead to confidence intervals that are for too wide when the true

effects are of moderate or large size. This corresponds to experience that we have already

made before when investigating various strategies for the shrinkage of effect estimates

(Schumacher et al., 1997) in order to reduce the bias induced by the model selection process.

With regard to shrinkage, we used the so-called heuristic shrinkage factor (6) throughout this

paper. In the definition of this factor the naive model-based variance is used that we showed

to be invalid for the calculation of confidence intervals. In order to resolve this contradiction

we compared the heuristic shrinkage factor with a shrinkage factor based on an additive

bootstrap approach; see Schumacher et al. (1997) for details. In this further investigation

(data not shown in detail) it turned out that the differences were negligible  thus favouring the

heuristic shrinkage factor because of its simplicity.

A key characteristic of the approach taken in this paper is that, at the end, there is one so-

called "final model". In our setting, this is an estimated cutpoint, an estimated log-relative

risk and a valid confidence interval for the log-relative risk. There are recent, alternative

approaches taking the model selection uncertainty explicitely into account. One of these

approaches is Breiman's bagging (Breiman 1996) that - applied to the cutpoint problem -

results in an estimated log-relative risk as a function of the potential cutpoints derived from

bootstrap resampling (Schumacher, Holländer and Sauerbrei 1996). In the bagging approach,

repetition of the whole model selection process within each bootstrap sample including

shrinkage is essential. Another approach would be Bayesian model averaging where the

posterior distribution of both cutpoint and log-relative risk needs to be determined (Chatfield

1995, Draper 1995, Volinsky et al. 1997, Hoeting et al. 1999).

We have studied the cutpoint model mainly for two reasons: the first is its prominence in the

medical as well as in the statistical literature; to the considerations already outlined above we

only mention that the data-driven choice of cutpoints is the basic building-stone of the well-

known classification and regression trees (CART) approach (Breiman et al. 1984). The

second reason is that we consider the cutpoint problem as some kind of prototype for other,

more complicated problems of model selection as the well-known variable selection problem

(e.g. Miller 1990), selection of the functional form of effects of quantitative factors (e.g.

Royston and Altman 1994), searching for interactive effects etc. Admittedly, these problems

are much more complex to allow a straight forward generalization of results presented in this

paper but the general idea of repeating the whole model selection process including bias
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correction within each bootstrap sample to obtain valid confidence intervals based on

bootstrap resampling seems promising also in other settings (Hjorth 1994, Sauerbrei 1999).

References

Altman, D. G. (1998). Suboptimal analysis using "optimal" cutpoints. British Journal of Cancer 78, 556-557.

Altman, D. G. (2001). Systematic reviews of evaluation of prognostic variables. In: Egger M, Smith GD,
Altman DG, eds. Systematic Reviews in Health Care: Meta-Analysis in Context. London

Altman, D. G., Lausen, B., Sauerbrei, W. and Schumacher, M. (1994). Dangers of using 'optimal' cutpoints in
the evaluation of prognostic factors. Journal of the National Cancer Institute 86, 829-835.

Bast, R.C., Ravdin, P., Hayes, D.F., Bates, S. Fritsche, H., Jessup, J.M., Kemeny, N., Locker, G.Y., Mennel,
R.G. and Somerfield, M.R. for the American Society of Clinical Oncology Tumor Markers Expert
Panel (2001). 2000 update of recommendations for the use of tumor markers in breast and colorectal
cancer: Clinical practice guidelines of the American Society of Clinical Oncology. Journal of Clinical
Oncology 19, 1865-1878.

Betensky, P. and Rabinowitz, D. (1999). Maximally selected chi-square statistics for k  × 2 tables. Biometrics 55,
317-320.

Breiman, L., Friedman, J. H., Olsen, R. A. and Stone, C. J. (1984). Classification and Regression Trees.
Wadsworth, Monterey.

Breiman, L. (1996). Bagging predictors. Machine Learning 26, 123-140.

Chatfield, C. (1995). Model selection uncertainty, data mining and statistical inference. Journal of the Royal
Statistical Society (Series A)  158, 419-466.

Cox, D. R. (1972). Regression models and life tables (with discussion). Journal of the Royal Statistical Society,
Series B 74, 187-200.

Draper, D. (1995). Assessment and propagation of model selection uncertainty (with discussion). Journal of the
Royal Statistical Society (Series B)  57, 45-97.

Ferrandina, G., Scambia, G. Bardelli, F., Benedetti Panici, P., Mancuso, S. and Messori, A. (1997). Relationship
between cathepsin-D content and disease-free survival in node-negative breast cancer patients: a meta-
analysis. British Journal of Cancer 76, 661-666.

Halpern, A. L. (1999). Minimally selected p and other tests for a single abrupt changepoint in a binary sequence.
Biometrics 55, 1044-1050.

Hilsenbeck S. G. and Clark G. M. (1996). Practical P-value adjustment for optimally selected cutpoints.
Statistics in Medicine 15, 103-112.

Hjorth, J.S.U. (1994). Computer intensive statistical methods. Validation, model selection and bootstrap.
London: Chapman and Hall.

Hoeting, J.A., Madigan, D., Raftery, A.E. and Volinsky, C.T. (1999). Bayesian model averaging: a tutorial (with
discussion). Statistical Science 14, 382-417.

Kalbfleisch, J. D. and Prentice, R. L. (1980). The Statistical Analysis of Failure Time Data. New York: Wiley.

Koziol, J. A. (1991). On maximally selected chi-square statistics. Biometrics 47, 1557-1561.

Lausen B., Sauerbrei W. and Schumacher M. (1994). Classification and regression trees (CART) used for the
exploration of prognostic factors measured on different scales. In: Dirschedl P, Ostermann R, eds.
Computational Statistics. Heidelberg: Physica-Verlag, 1483-1496

Lausen, B. and Schumacher, M. (1992). Maximally selected rank statistics. Biometrics 48, 73-85.

Lausen, B. and Schumacher, M. (1996). Evaluating the effect of optimized cutoff values in the assessment of
prognostic factors. Computational Statistics & Data Analysis 21, 307-326.

Linderholm, B., Graukvist, K., Wilking, N., Johansson, M., Tavelin, B. and Henriksson, R. (2000). Correlation



- 18 -

of vascular endothelial growth factor content with recurrences, survival, and first relapse site in primary
node-positive breast carcinoma after adjuvant treatment. Journal of Clinical Oncology 18, 1423-1431.

Miller A.J. (1990). Subset Selection in Regression. London: Chapman and Hall.

Miller, R. and Siegmund, D. (1982). Maximally selected chi-square statistics. Biometrics 38, 1011-1016.

Peto, R. and Peto, J. (1972). Asymptotically efficient rank invariant test procedures. Journal of the Royal
Statistical Society (Series A) 135, 185-198.

Pfisterer, J., Kommoss, F., Sauerbrei, W., Menzel, D., Kiechle, M., Giese, E., Hilgarth, M. and Pfleiderer, A.
(1995). DNA flow cytometry in node positive breast cancer: prognostic value and correlation to
morphological and clinical factors. Analytical and Quantitative Cytology

Rabinowitz, D. and Betensky, R. A. (2000). Approximating the distribution of maximally selected McNemar's
statistics. Biometrics 56, 897-902.

Royston, P. and Altman, D. (1994). Regression using fractional polynomials of continuous covariates:
parsimonious parametric modelling (with discussion). Applied Statistics 43, 429-467.

Sauerbrei, W. (1999). The use of resampling methods to simplify regression models in medical statistics.
Applied Statistics 48, 313-329.

Schulgen, G., Lausen, B., Olsen, J. and Schumacher, M. (1994). Outcome-oriented cutpoints in quantitative
exposure. American Journal of Epidemiology 120, 172-184.

Schumacher, M., Holländer, N., Sauerbrei, W. (1996). Reduction of bias caused by model building. In:
American Statistical Association. Proceedings of the Statistical Computing Section , p. 1-7, American
Statistical Association, Alexandria.

Schumacher, M., Holländer, N. and Sauerbrei, W. (1997). Resampling and cross-validation techniques: A tool
to reduce bias caused by model building? Statistics in Medicine 16, 2813-2827.

Van Houwelingen, H. C. and Le Cessie, S. (1990). Predictive value of statistical models. Statistics in Medicine
9, 1303-1325.

Verweij, P. and Van Houwelingen, H.C. (1993). Cross-validation in survival analysis. Statistics in Medicine 12,
2305-2314.

Volinsky, C.T., Madigan, D., Raftery, A.E. and Kronmal, R.A. (1997). Bayesian model averaging in
proportional hazard models: Assessing the risk of a stroke. Journal of the Royal Statistical Society
(Series C) 46, 433-448.

Worsley, K.J. (1982). An improved Bonferroni inequality and applications. Biometrika 69, 297-302.


