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a b s t r a c t

Partial directed coherence is a powerful tool used to analyze interdependencies in multivariate sys-
tems based on vector autoregressive modeling. This frequency domain measure for Granger-causality
is designed such that it is normalized to [0,1]. This normalization induces several pitfalls for the inter-
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pretability of the ordinary partial directed coherence, which will be discussed in some detail in this
paper. In order to avoid these pitfalls, we introduce renormalized partial directed coherence and calcu-
late confidence intervals and significance levels. The performance of this novel concept is illustrated by
application to model systems and to electroencephalography and electromyography data from a patient
suffering from Parkinsonian tremor.
raphical models
enormalization

. Introduction

When analyzing networks in neuroscience an inverse problem
as to be faced. From measured time series conclusions about the
nderlying systems are desired. Of particular interest is the anal-
sis of interrelations between the processes. Understanding such
nterrelations enables a deeper understanding of the functioning
r dysfunctioning of networks in neuroscience (Grosse et al., 2002;
ellwig et al., 2000, 2001, 2003; Hesse et al., 2003; Tass et al., 1998;
olkmann et al., 1996).

Several time series analysis techniques have been suggested
o analyze interactions between processes (e.g. Dahlhaus et al.,
997; Eichler et al., 2003; Rosenblum and Pikovsky, 2001; Smirnov
nd Bezruchko, 2003; Timmer et al., 1998). In this manuscript
e concentrate on a parametric technique that has been intro-
uced as being capable of analyzing not only multivariate networks

n neuroscience and to infer interrelations therein but also to

llow conclusions about causal dependencies. The so-called par-
ial directed coherence (Baccala and Sameshima, 2001; Sameshima
nd Baccala, 1999) is based on the concept of Granger-causality
Granger, 1969), which is based on the common sense idea that
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causes precede their effects in time and is formulated in terms of
predictability.

We mention though that in the literature other techniques have
been suggested to infer the causal interaction structure in multivari-
ate systems. The directed transfer function (DTF), which provides
the direction of information flow, but cannot distinguish direct
interactions is widely applied in neuroscience research (Kamiński
and Blinowska, 1991; Kamiński et al., 2001). Another technique in
the time domain, which is also capable in differentiating direct
and indirect interactions is the so-called Granger-causality index
(Hesse et al., 2003). The advantages and disadvantages of several
techniques have been discussed in the literature (see for instance
Winterhalder et al., 2005; Eichler, 2006).

To infer Granger-causality by partial directed coherence, a
vector autoregressive model of appropriate order p (VAR[p]) is
usually fitted to the data. Fourier transformation of the coefficients
of the vector autoregressive processes yields the partial directed
coherence. Its statistical properties have recently be examined
(Schelter et al., 2006). In particular, a significance level for testing
non-zero partial directed coherences at fixed frequencies has been
suggested. Even though there is now a strict mathematical proce-
dure to decide statistical significance of partial directed coherence

values, some desired interpretations of partial directed coherence
are impossible or at least difficult. For instance, it is impossible
to compare partial directed coherence values, that is, a higher
partial directed coherence value does not necessarily indicate a
higher coupling between the processes. The reason for this can be

http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:schelter@fdm.uni-freiburg.de
dx.doi.org/10.1016/j.jneumeth.2009.01.006
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ound in the normalization procedure. Thereby, the partial directed
oherence value does relate to the coupling strength and to the
umber and strength of all influenced processes.

To overcome this limitation we suggest a new normalization
trategy for partial directed coherence. We show that the statis-
ics for this renormalized partial directed coherence are based on
�2-distribution with two degrees of freedom. This leads to a sig-
ificance level as well as confidence intervals for partial directed
oherence that allow inference of statistical significance and com-
arison of two partial directed coherence values.

In Section 2, partial directed coherence is summarized with the
riginal normalization. The significance level is briefly presented to
llustrate the problems with interpretability of the ordinary partial
irected coherence. Furthermore, we introduce the renormalized
artial directed coherence and derive its statistical properties.

n Section 3, the performance of the new statistic is evaluated
y a Monte Carlo study based on a linear stochastic model and
wo non-linear systems, including one in the chaotic regime.
inally, an application to electroencephalographic (EEG) and elec-
romyographic (EMG) recordings from a patient suffering from
arkinsonian tremor is presented in Section 4.

. Partial directed coherence

In the following, the concepts of Granger-causality and partial
irected coherence (PDC) are briefly introduced and the main prob-

ems related to the interpretation of PDC and its estimates are
iscussed. This discussion will lead to a modified version of the
DC, the renormalized partial directed coherence.

.1. Definition and statistical properties

Let x = (x(t))t ∈Z with x(t) = (x1(t), . . . , xn(t))′ be a stationary
-dimensional time series with mean zero. Then a vector autore-
ressive model of order p, abbreviated VAR[p], for x is given by

(t) =
p∑

r=1

a(r) x(t − r)+ ε(t), (1)

here a(r) are the n× n coefficient matrices of the model and ε(t) is
multivariate Gaussian white noise process. The covariance matrix
f the noise process is denoted by �. The model is stationary if the
oefficients satisfy the condition:

et(I − a(1) z − · · · − a(p) zp) /= 0, (2)

or all z ∈C such that |z| ≤ 1 (e.g. Lütkepohl, 1993), where I denotes
he n× n identity matrix. In the following, it is assumed that the
ondition in Eq. (2) holds.

In this model, the coefficients aij(r) describe how the present
alues of xi depend linearly on the past values of the components
j . More precisely, the process xj is said to Granger-cause another
rocess xi with respect to the full process x if in the autoregressive
epresentation in Eq. (1) the entries aij(r), r = 1, . . . , p, are not all
ero or, in other words, if linear prediction of xi(t + 1) based on the
ast and present values of all variables but xj can be improved by
dding the past and present values of xj . The concept of Granger-
ausality originates from econometrics and has been introduced by
ranger (1969).

We note that the vector autoregressive modeling approach
llows only the description of linear relationships among the
ariables and hence, strictly speaking, relates to linear Granger-

ausality. In the sequel, we will use “Granger-causality” in this
estricted meaning.

In order to provide a frequency domain measure for Granger-
ausality, Baccala and Sameshima (2001) introduced the concept
f partial directed coherence. This measure has been derived from
ce Methods 179 (2009) 121–130

a factorization of the partial spectral coherence and is based on the
Fourier transform of the coefficient series:

A(ω) = I −
p∑

r=1

a(r) e−iωr. (3)

More precisely, the partial directed coherence from xj to xi is defined
as

|�i←j(ω)| = |Aij(ω)|√∑
k

|Akj(ω)|2
. (4)

Because of condition (2) the denominator is strictly positive, which
guarantees that the partial directed coherence is well defined. Fur-
thermore, the PDC |�i←j(ω)| takes values between 0 and 1 and
vanishes for all frequencies ω if and only if the coefficients aij(r) are
zero for all r = 1, . . . , p. Thus, the PDC |�i←j(ω)| provides a measure
for the direct linear influence of xj on xi at frequency ω. More pre-
cisely, it compares the linear influence of process xj on the process
xi at the frequency ω with the influence of xj on the other variables,
that is, partial directed coherence ranks the interaction strengths
with respect to a given signal source.

The interpretation of causality related to frequency is of course
challenging. However, there is a rigorous meaning what causality
at a certain frequency indicated by a significant partial directed
coherence refers to. It indicates that if the frequency content of
the source signal at a certain frequency was raised, the correspond-
ing frequency component of the Granger-causally influenced signal
would change accordingly.

The partial directed coherence |�i←j(ω)| is estimated by fitting
an n-dimensional VAR[p] model to the data and using Eqs. (3) and
(4) with the parameter estimates âij(k) substituted for the true
coefficients aij(k). The statistical properties of the estimates of par-
tial directed coherence |�̂i←j(ω)| can be derived from those of the
parameter estimates aij(k) (Schelter et al., 2006). In particular, it has
been shown that, if |Aij(ω)|2 = 0, the asymptotic distribution for N
data points of

N

Cij(ω)
|Âij(ω)|2 (5)

is that of a weighted average of two independent �2-distributed
random variables each with one degree of freedom. We mention
that for p = 1 or p ≥ 2 and ω = 0 mod � it was shown in Schelter et
al. (2006) that the distribution is a �2-distribution with one degree
of freedom.

The denominator of Eq. (5) is given by

Cij(ω) = �ii

[
p∑

k,l=1

Hjj(k, l)(cos(kω) cos(lω)+ sin(kω) sin(lω))

]
, (6)

with Hjj(k, l) being the entries of the inverse H = R−1 of the covari-
ance matrix R of the VAR process x. The critical values of this
distribution are bounded by the corresponding critical values of a
�2-distribution with one degree of freedom. It follows that the null
hypothesis of |�̂i←j(ω)| = 0 can be rejected if the estimated PDC
exceeds the value:⎛
⎜⎜⎝ Ĉij(ω) �2

1,1−˛

N
∑
|Âkj(ω)|2

⎞
⎟⎟⎠

1/2

, (7)
k

where �2
1,1−˛ denotes the 1− ˛ quantile of the �2-distribution with

one degree of freedom and Ĉij(ω) is an estimate of Cij(ω) in Eq. (6).
For details see Schelter et al. (2006).
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.2. Disadvantages of partial directed coherence

The pointwise significance level allows identifying those fre-
uencies at which the PDC differs significantly from zero, which
ndicates the existence of a direct influence from the source to
he target variable. More generally, one is interested in compar-
ng the strength of directed relationships at different frequencies
r between different pairs of variables. Such a quantitative inter-
retation of the PDC and its estimates, however, is hampered by a
umber of problems.

First, PDC measures the strength of influences relative to a given
ignal source. This seems counter-intuitive since the strength of
oupling is not affected by the number of other series that are
nfluenced by the source process. In particular, adding further vari-
bles that are influenced by the source variable decreases the
DC although the relationship between source and target process
emains unchanged. This property prevents meaningful compar-
sons of influences between different source processes or even
etween different frequencies as the denominator in Eq. (4) varies
ver frequency. In contrast it is expected that the influence of the
ource on the target process is diminished by an increasing number
f other processes that affect the target variable, which suggests to
easure the strength relative to the target process. This leads to the

lternative normalizing term:

∑
k

|Âik(ω)|2
)1/2

, (8)

hich may be derived from the factorization of the partial spectral
oherence in the same way as the original normalization by Baccala
nd Sameshima (2001). Such a normalization with respect to the
arget process has been used by Kamiński and Blinowska (1991)
n their definition of the directed transfer function. We note that
ither normalization may be favorable in some applications but not
n others.

Second, PDC is not scale-invariant, that is, it depends on the units
f measurement of the source and the target process. In particular,
he PDC can take values arbitrarily close to either one or zero if
he scale of the target variable is changed accordingly. This prob-
em becomes important especially if the involved variables are not

easured on a common scale; an example for such an application is
rovided in Section 4, where data from electroencephalography and
lectromyography are jointly analyzed for the discussion of tremor
elated interactions between the cortex and the periphery.

Third, when the PDC is estimated, further problems arise from
he fact that the significance level in Eq. (7) depends on the
requency unlike, for instance, the significance level for the spec-
ral coherence (Bloomfield, 1976). In particular, we find that the
ritical values compensate for the effects of normalization by∑

k|Âkj(ω)|2, that is, the significance of the PDC essentially

epends on the absolute rather than the relative strength of the
nteraction. Although the pointwise significance level adapts cor-
ectly to the varying uncertainty in the estimates of the PDC, this
ehavior shows clearly the need for measures of confidence in order
o be able to compare estimates at different frequencies. Without
uch measures, it remains open how to interpret large peaks that
xceed the significance level only slightly and how to compare them
ith smaller peaks that are clearly above the threshold.

In summary, the discussion has shown that PDC as a measure
f the relative strength of directed interactions does not allow con-

lusions on the absolute strength of coupling and is not suited for
omparing the strength at different frequencies or between dif-
erent pairs of variables. Moreover, the frequency dependence of
he significance level shows that large values of the PDC are not
ecessarily more reliable than smaller values, which weakens the
ce Methods 179 (2009) 121–130 123

interpretability of the PDC further. In the following, we show that
these problems may be overcome by a different normalization.

2.3. A new definition of PDC: renormalized PDC

For the derivation of an alternative normalization, recall that the
PDC is defined in terms of the Fourier transform Aij(ω) in Eq. (3).
Since this quantity is complex-valued, it is convenient to consider
the two-dimensional vector:

Xij(ω) =
(

Re Aij(ω)
Im Aij(ω)

)
, (9)

with Xij(ω)′Xij(ω) = |Aij(ω)|2. The corresponding estimator X̂ij(ω)

with Âij(ω) substituted for Aij(ω) is asymptotically normally dis-
tributed with mean Xij(ω) and covariance matrix Vij(ω)/N, where

Vij(ω) =
p∑

k,l=1

Hjj(k, l) �ii

(
cos(kω) cos(lω) cos(kω) sin(lω)
sin(kω) cos(lω) sin(kω) sin(lω)

)
.

(10)

For p ≥ 2 and ω /= 0 mod �, the matrix Vij(ω) is positive definite
(Schelter et al., 2006), and it follows that, for large N, the quantity

N �̂
◦
ij(ω) = N X̂ij(ω)′Vij(ω)−1X̂ij(ω)

has approximately a noncentral �2-distribution with two degrees
of freedom and noncentrality parameter N �ij(ω), where

�ij(ω) = Xij(ω)′Vij(ω)−1Xij(ω).

If p = 1 or ω = 0 mod �, the matrix Vij(ω) has only rank one and
thus is not invertible. However, similar arguments as in Schelter
et al. (2006) show that in this case N �̂

◦
ij(ω) with Vij(ω)−1 being

a generalized inverse of Vij(ω) has approximately a noncentral
�2-distribution with one degree of freedom and noncentrality
parameter N �ij(ω).

The parameter �ij(ω), which is nonnegative and equals zero if
and only if Aij(ω) = 0, determines how much Xij(ω) and thus Aij(ω)
differ from zero. Consequently, it provides an alternative measure
for the strength of the effect of the source process xj on the target
process xi.

The most important consequence of the normalization by Vij(ω)

is that the distribution of �̂
◦
ij(ω) depends only on the parame-

ter �ij(ω) and the sample size N. In particular, it follows that the

˛-significance level for �̂
◦
ij(ω) is given by �2

df,1−˛
/N and thus is con-

stant unlike in the case of the PDC. Here, �2
df,1−˛

denotes the 1− ˛

quantile of the �2-distribution with the corresponding degrees
of freedom (2 or 1). More generally, confidence intervals for the
parameter �ij(ω) can be computed; algorithms for computing con-
fidence intervals for the noncentrality parameter of a noncentral
�2-distribution can be found, for instance, in Kent and Hainsworth
(1995). We note that the properties of noncentral �2-distributions
(e.g. Johnson et al., 1995) imply that the end-points of such confi-
dence intervals for �ij(ω) increase monotonically with �̂

◦
ij(ω), that

is, large values of the estimates are indeed likely to correspond to
strong influences among the variables. Finally, we note that the
parameter �ij(ω) is also scale invariant which can be shown by few
evaluations.

With these properties, �̂
◦
ij(ω) seems an “ideal” estimator for

�ij(ω). However, it cannot be computed from data since it depends

on the unknown covariance matrix Vij(ω). In practice, Vij(ω) needs

to be estimated by substituting estimates Ĥ and �̂ for H and � in
Eq. (10). This leads to the alternative estimator:

�̂ij(ω) = X̂ij(ω)′V̂ij(ω)−1X̂ij(ω).
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Fig. 1. Renormalized partial directed coherence (off-diagonal) for the example of
the VAR[3] process. Results are sorted as a matrix, where in the ith row and the
jth column the influence from process j onto process i is displayed. The solid lines
are the renormalized partial directed coherence values and the corresponding 5%-
confidence intervals are indicated by the gray areas. The dashed horizontal lines
are the 5% significance levels. The simulated causal influences are reproduced cor-
rectly since only partial directed coherences |�3←1|, |�4←1|, |�1←2|, |�3←2|, |�5←4|,
and |�4←5| are significant. The influence from process x4 → x5 and vice versa x5 → x4
24 B. Schelter et al. / Journal of Neur

t can be shown by Taylor expansion that under the null hypothesis
f �ij(ω) = 0 this statistic is still �2-distributed with two respec-
ively one degrees of freedom, that is, the ˛-significance level
emains unchanged when �̂

◦
ij(ω) is replaced by �̂ij(ω). In con-

rast, the exact asymptotic distribution of the new estimator under
he alternative is not known. Nevertheless, the simulations in the
ext section show that approximate confidence intervals can be
btained by applying the theoretical results obtained for the “ideal”
stimator �̂

◦
ij(ω) to the practical estimator �̂ij(ω).

. Simulations

In the first part of this section we demonstrate the performance
f the proposed significance level for a vector autoregressive pro-
ess. We shall see that the method even works well when the true
odel is overfitted. This robustness becomes particularly impor-

ant when an unknown system is investigated since the correct
rder of the process is not known. In this first example that should
erve as an illustrative example we assume that the asymptotic dis-
ribution of �̂ij(ω) is identical to that of �̂

◦
ij(ω). In a second example

he performance of the renormalized partial directed coherence
ˆ

ij(ω) in combination with its confidence intervals and significance
evel is tested in a more rigorous manner. This analysis shows that
or practical purposes the distributional properties of �̂

◦
ij(ω) can be

sed for the evaluation of the estimator �̂ij(ω). In a third example
e show that renormalized partial directed coherence is not influ-

nced by a certain strength of the signal source. In a fourth and
fth example, to further illustrate the wide-spread applicability
f renormalized partial directed coherence we apply it to a sys-
em of coupled non-linear van-der-Pol oscillators and to a system
f coupled Rössler oscillators in the chaotic regime. These non-
inear systems are genuine examples where model-overfitting is
nevitable as high model orders are required to model the non-
inear behavior sufficiently well (Schelter et al., 2006).

.1. Vector autoregressive process I

The five-dimensional VAR[3] process:

1(t) = 0.9x1(t − 1)+ 0.3x2(t − 2)+ ε1(t), (11)

2(t) = 1.3x2(t − 1)− 0.8x2(t − 2)+ ε2(t), (12)

3(t) = 0.3x1(t − 2)+ 0.6x2(t − 1)+ ε3(t), (13)

4(t) = −0.7x4(t − 3)− 0.7x1(t − 3)+ 0.3x5(t − 3)+ ε4(t), (14)

5(t) = 1.0x5(t − 1)− 0.4x5(t − 2)+ 0.3x4(t − 2)+ ε5(t), (15)

erves as a first example for the performance of the renormal-
zed partial directed coherence and the corresponding confidence
ntervals. Here, the εj are standard normally distributed random
ariables. In this example 3.000 data points have been simulated.
or the fitted model system a VAR of order 50 was used, thus, a
onsiderably overfitting of the true model which is of order 3. The
ollowing directed interactions are present, from process x1 → x3,
1 → x4, x2 → x1, x2 → x3, x4 → x5, and x5 → x4. This is guaranteed
y non-zero coefficients in the model system.

In Fig. 1 the results for the renormalized partial directed coher-
nce analysis are shown. The figure represents the renormalized
artial directed coherence estimated from one single realization of
he system. The results are sorted as a matrix, where in the ith row

nd the jth column the influence from process xj onto process xi is
isplayed. The gray areas are the confidence intervals. If the con-
dence interval is compatible with zero, the directed influence is
ot considered to be present. This is also indicated by the dashed
orizontal line, which is the 5%-level of significance.
are of similar strength as the renormalized partial directed coherences take simi-
lar values. The interaction from process x2 → x3 and x1 → x4 are stronger than the
x1 → x3, while the interaction of x2 → x1 and x1 → x3 are similar strength. This is in
agreement with the simulated interaction strength.

First of all, only the valid interactions are detected by the renor-
malized partial directed coherence. Moreover, the influence from
process x4 → x5 and vice versa x5 → x4 are of similar strength as the
renormalized partial directed coherences take similar values. The
interaction from process x2 → x3 and x1 → x4 are stronger than the
x1 → x3, while the interaction of x2 → x1 and x1 → x3 are of similar
strength. This is in agreement with the simulated interactions. High
coefficient values in the autoregressive model correspond to high
renormalized partial directed coherence values.

3.2. Vector autoregressive process II

To complement the analysis above, a more rigorous study is per-
formed in this section that shows that the statistics of �̂

◦
ij(ω) is also

suitable for �̂ij(ω). To this aim, the five-dimensional VAR[2] process:

x1(t) = 1.9x1(t − 1)− 0.999x1(t − 2)+ �1(t), (16)

x2(t) = 0.9x2(t − 2)− 0.2x1(t − 1)+ �2(t), (17)

x3(t) = −0.3x3(t − 1)+ 0.4x4(t − 1)− 0.3x5(t − 2)+ �3(t), (18)

x4(t) = 1.3x4(t − 1)− 0.7x4(t − 2)+ �4(t), (19)

x5(t) = 0.7x5(t − 2)+ 0.3x1(t − 1)+ �5(t), (20)

has been simulated 1000 times with 3000 data points each. The
investigated VAR process covers a variety of parameter values. Here
the order of the fitted VAR process was 50. The 1000 realizations
allow estimation of an empirical critical value for a certain signifi-
cance level. Having 1000 realizations at hand the highest and lowest
25 renormalized partial directed coherence values are skipped. The
interval between these two is the empirical 95% confidence interval
of the average renormalized partial directed coherence. In Fig. 2 the
results are displayed. The dashed black lines indicate these empir-

ical confidence intervals. For all subplots but (2, 1), (3, 4), (3, 5),
and (5, 1), where (i, j) is the subplot in the ith row and jth col-
umn, they comprise zero. This argues for the following directed
interactions: x1 → x2, x4 → x3, x5 → x3, and x1 → x5, which corre-
sponds to the simulated ones. The result of the 1001st realization
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Fig. 2. Renormalized partial directed coherence (off-diagonal) for the example of
the VAR[2] process. The results are sorted as a matrix, where in the ith row and
the jth column the influence from process j onto process i is displayed. The black
line represents the renormalized partial directed coherence values while the gray
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the renormalized partial directed coherence (black line). For lower
parameters a the lower confidence level is compatible with zero.
Thus, the direction of information transfer is correctly detected for
a considerable large range of parameter values. A Granger-causal

Fig. 4. Renormalized partial directed coherence for varying parameter a represent-
reas mark the corresponding 95% confidence intervals of one single realization.
rom 1000 realizations empirical confidence intervals have been derived. These are
ndicated by the dashed black lines. Only the valid interactions are revealed by this
nalysis.

s also contained in the same plot indicated by the black line and
he gray areas. Thereby, the gray areas represent the confidence
ntervals derived above used for the plugin-estimator �̂ij(ω) instead

f �̂
◦
ij(ω). We want to stress that they are derived from this one

ingle realization. Analyzing these renormalized partial directed
oherence values yield very similar results as the 1000 realizations.
he confidence intervals comprise zero for almost all subplots but
2, 1), (3, 4), (3, 5), and (5, 1), which are the same as above. How-
ver, the confidence intervals from one single observation seem to
e slightly larger than the ones obtained from the 1000 realiza-
ions. This becomes evident since the gray area usually contains
he black dashed lines. Thus, the confidence intervals are shown to
e reasonable and the statistics from �̂

◦
ij(ω) suits for �̂ij(ω).

Moreover, we substantiate that the renormalized partial
irected coherence �̂ij(ω) is �2

2-distributed under the null hypoth-
sis. To this aim, the distribution of the 1000 realizations at an
rbitrarily chosen frequency of 0.08 Hz are displayed in Fig. 3 in
a) for the subplot (3, 1), in (b) for (2, 3), and in (c) for (3, 4). The
ertical line indicates the 95% significance level which corresponds
o a critical value of 0.002. In (a) and (b) there are hardly any values
bove the critical value. Indeed the significance level is conserva-
ive. In contrast in (c) where a directed influence is present the
orresponding histogram is distant from the critical value indicat-
ng 100% power, i.e. the ability to detect the violation of the null
ypothesis, of the proposed renormalized partial directed coher-
nce in this setting.

To illustrate the power of the renormalized partial directed
oherence to detect interactions if present, a two-dimensional
utoregressive process:

1(t) = 1.7x1(t − 1)− 0.9x1(t − 2)+ �1(t), (21)

2(t) = 0.9x2(t − 2)− ax1(t − 1)+ �2(t), (22)

ith a simulation period of 5000 data points has been analyzed.
he parameter a quantifies the strength of the influence from x1
nto x2 while there is no causal influence in the opposite direction.

he order of the fitted VAR process was again set to 50. In Fig. 4 (a)
he interdependence from process x2 onto x1 is correctly revealed
y renormalized partial directed coherence analysis for a > 0.03 at
frequency of 0.08 Hz, which is indicated by the fact that zero is
ot comprised in the gray area representing the 95% quantiles of
Fig. 3. Histograms of the distribution of the 1000 realizations of renormalized partial
directed coherence values: (a) for subplot (3, 1), (b) for (2, 3), and (c) for (3, 4). The
smaller subplots are copied from Fig. 2.
ing a causal influence from x2 onto x1. The black line represents renormalized partial
directed coherence values with its confidence band (gray area). (a) The information
transfer from x2 onto x1 is correctly revealed for a > 0.03 while in (b) the renor-
malized partial directed coherence is always compatible with zero for the opposite
direction. Please note the difference in the scale of the vertical axis by an order of a
magnitude.
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ig. 5. Renormalized partial directed coherence. The black line represents the reno
5% confidence intervals. The relative interaction strength at the two dominant freq
as 0.6 and for f2 0.8.

nfluence from x1 onto x2 is in accordance with the simulated sys-
em not observed (Fig. 4(b)).

To check whether renormalized partial directed coherence is
ble to reveal the interaction strength at different frequencies
etween two processes, we simulated a mixture of two autoregres-
ive processes of order 2:

i(t) = aixi(t − 1)+ bixi(t − 2)+ �i(t), (23)

ith

i = 2e−(1/�i) cos
2�

Ti
and bi = e−(2/�i), (24)

or i = 1 and 2. The parameters have been chosen to be T1 = 10,
2 = 2.5, and �1 = �2 = 100 resulting in the oscillation frequencies

1 = 0.1 and f2 = 0.4. Both processes were filtered around their
scillation frequency with a FIR filter of order 30 and normal-
zed to unit variance. The relative strength of interaction (delay
0 data points) of these processes onto process x3(t) was var-

ed. Observed were the processes y1(t) = x1(t)+ x2(t)+ 3�y1 (t) and
2(t) = x3(t)+ 3�y2 (t). The �·(t) are standard white noise processes.
imulated were 100,000 data points to get reliable estimates of the
nteraction strengths. Fitted was an autoregressive process of order
0.

In Fig. 5 the results of the renormalized partial directed coher-
nce analysis are shown for two different relative strengths. In
ig. 5(a), the strength of the influence at the frequency f = 0.1 was
.4 while the one at frequency f2 = 0.4 was 0.8. In Fig. 5(b), the
trength of the influence at the frequency f1 = 0.1 was 0.6 while
he one at frequency f2 = 0.4 was 0.8. This result illustrates that
enormalized partial directed coherence is able to measure the
nteraction strength between two processes at different frequen-
ies. We mention that similar to the results shown in Fig. 4 the
elation between the renormalized partial directed coherence value
nd the interaction strength seems to be non-linear. Additionally,
he renormalized partial directed coherence values are compatible
etween (a) and (b) at f = 0.4, which has to be the case as both
trengths of interaction have been simulated with 0.8.

The opposite direction from process y2 on y1 was not detected
y renormalized partial directed coherence which is again in accor-
ance with the simulation. The results are not shown.

.3. Vector autoregressive process III
As a third example the following five-dimensional VAR[2] pro-
ess.

1(t) = 0.9x1(t − 1)− 0.3x1(t − 2)+ �1(t), (25)

2(t) = 0.6x2(t − 1)+ 0.2x4(t − 2)+ �2(t), (26)
ed partial directed coherence values while the gray areas mark the corresponding
es of f1 = 0.1 and f2 = 0.4 was varied: (a) for f1 it was 0.4 and for f2 0.8; (b) for f1 it

x3(t) = 0.5x3(t − 1)+ 0.4x2(t − 2)+ 0.4x4(t − 1)+ 0.2x5(t − 2)

+�3(t), (27)

x4(t) = 1.2x4(t − 1)− 0.4x4(t − 2)+ �4(t), (28)

x5(t) = 0.3x5(t − 1)+ 0.3x5(t − 2)+ 0.2x3(t − 1)+ 0.3x4(t − 1)

+0.2x1(t − 2)+ 0.3x2(t − 2)+ �5(t), (29)

is used. This example is utilized to show that the renormalized par-
tial directed coherence does not measure the strength of influences
relative to a given signal source. Renormalized partial directed
coherence should not be influenced by the number of other series
that are influenced by the source process.

As shown in Fig. 6 (a), the renormalized partial directed coher-
ence again correctly reproduces the interaction structure realized
by the simulated model system. Only those �̂

◦
ij(ω) that correspond

to non-zero coefficients in the VAR[2] process above are signifi-
cantly different from zero. In Fig. 6(b) the result is shown, when the
above VAR[2] is simplified to

x1(t) = 0.9x1(t − 1)− 0.3x1(t − 2)+ �1(t), (30)

x2(t) = 0.6x2(t − 1)+ �2(t), (31)

x3(t) = 0.5x3(t − 1)+ 0.4x4(t − 1)+ �3(t), (32)

x4(t) = 1.2x4(t − 1)− 0.4x4(t − 2)+ �4(t), (33)

x5(t) = 0.3x5(t − 1)+ 0.3x5(t − 2)+ �5(t). (34)

In other words, all interactions are absent but the interaction from
process x4 to x3, which is kept constant. Since the absolute value of
�̂
◦
34(ω) remains unchanged with respect to the confidence intervals,

we have illustrated that renormalized partial directed coherence
does not measure the strength of interactions relative to a given
signal source.

To summarize the above results, renormalized partial directed
coherence �̂ij(ω) has been assessed by means of different model
systems. It has been shown to be a powerful technique to infer
the interaction structure in these systems. The rigorous assess-
ment has moreover demonstrated that the technique is slightly
conservative but that the power is sufficiently high to be able
to detect interactions if present and that the derived statistics
that is strictly only valid for �̂

◦
ij(ω) can be readily applied. Addi-

tionally, fitting models of order 50, which is more than 10 times

higher than the true process order, does not hamper the appli-
cability of the renormalized partial directed coherence. Thus, we
can conclude similar to ordinary partial directed coherence that
overfitting the data favorable compared to underfitting the process
since the latter would result in false positive conclusions about the
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Fig. 6. Renormalized partial directed coherence (off-diagonal) for the example of the
VAR[2] process of section “vector autoregressive process III”. The results are sorted as
a matrix: in the ith row and the jth column the influence from process j onto process
i is displayed. The black line represents the renormalized partial directed coherence
values while the gray areas mark the corresponding 95% confidence intervals. (a) The
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Fig. 7. Results of the renormalized partial directed coherence analysis for a network
of four coupled van-der-Pol oscillators. The coupling is bidirectional between oscil-

To demonstrate that renormalized partial directed coherence is
capable in providing the actual interaction structure also for chaotic
ntire system is correctly revealed by the renormalized partial directed coherence.
b) Only the directed influence between process x4 and x3 remains constant, all the
thers are zero.

oupling. We like to stress that prior to any application we recom-
end testing renormalized partial directed coherence tailored to

he problem.

.4. Coupled van-der-Pol oscillators

As demonstrated above, renormalized partial directed coher-
nce analysis is able to detect the network structure underlying
inear vector autoregressive processes, for which it has been devel-
ped. To demonstrate its wide-spread applicability we applied it to
system of coupled stochastic van-der Pol oscillators:

¨ i = �(1− x2
i )ẋi +ω2

i xi + 	i�i +
∑
j /= i


ij(xj − xi) (35)

or i = 1, . . . , 4. The non-linearity parameter was chosen to be � = 5
or all oscillators, the standard deviation of the Gaussian white noise
i was 	i = 1.5. The frequency of the four oscillators was slightly
etuned around ω = 2�f = 1.5 Hz by setting ω1 = 1.5 Hz, ω2 =

.53 Hz, ω3 = 1.48 Hz, and ω4 = 1.44 Hz. The coupling scheme
nsures that oscillators 1 and 2 are mutually coupled while the cou-
ling from oscillator 2 onto 4 and from 3 onto 1 was unidirectional.
he parameters were 
12 = 
21 = 0.4, 
13 = 0.4, and 
42 = 0.4. In
ig. 7 the results of renormalized partial directed coherence analysis
lators 1 and 2 and unidirectional from oscillator 2 to oscillator 4 and from oscillator
3 to oscillator 1. The dashed horizontal line marks the 5% significance level, while
the gray area represents the 95% confidence intervals.

for 10,000 data points for each oscillator and a model order p = 200
are depicted. The dotted horizontal line marks the 5%-significance
level, while the gray area represents the 95% confidence imtervals.
At the oscillation frequency of approximately 0.2 Hz only those
renormalized partial directed coherence values are significant that
correspond to the true interaction structure.

To further substantiate this finding we varied the coupling
between two van-der-Pol oscillators. As it is visible from Fig. 8 the
renormalized partial directed coherence values evaluated at the
oscillation frequency increase for increasing coupling between the
oscillators. Thus, renormalized partial directed coherence does not
only detect the true interaction structure but provides addition-
ally a measure for the strength of the interaction also in non-linear
stochastic systems.

3.5. Coupled Rössler oscillators
Fig. 8. Coupled van-der-Pol oscillators. Renormalized partial directed coherence for
various coupling strengths 
12. The dashed horizontal line marks the 5% significance
level.
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Fig. 9. Results of the renormalized partial directed coherence analysis for a network
coupled Rössler oscillators. The coupling is bidirectional between oscillators 1 and 2
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nd unidirectional from oscillator 2 to oscillator 4 and from oscillator 4 to oscillator
. The dashed horizontal line marks the 5% significance level, while the gray area
epresents the 95% confidence intervals.

ystems, four coupled stochastic Rössler oscillators

�̇j =
(

Ẋj

Ẏj

Żj

)
=

⎛
⎜⎜⎜⎝
−ωj Yj − Zj +

⎡
⎣∑

i,i /= j

εj,i

(
Xi − Xj

)⎤⎦+ 	j�j

ωj Xj + a Yj

b+ (Xj − c) Zj

⎞
⎟⎟⎟⎠ ,

i, j = 1, . . . , 4 (36)

ave been simulated with 50,000 data points with a sampling rate
f 10 Hz. The integration step was 0.004. The parameters are set to
= 0.15, b = 0.2, c = 10, ω1 = 2�f1 = 1.01, ω2 = 2�f2 = 0.99, ω3 =
�f3 = 0.97, and ω4 = 2�f4 = 1.03 ensuring a chaotic behavior in
he deterministic case. For the noise term 	j �j a standard deviation
f 	j = 1.0 is chosen and �j is standard Gaussian distributed. The
idirectional coupling ε12 = ε21 = 0.04 between oscillator �1 and
scillator �2 and the unidirectional coupling between oscillators �3
nd oscillator �1, ε31 = 0.04, and between oscillators �4 and oscilla-
or �3, ε34 = 0.04, corresponds to phase synchronization between
he oscillators.

The X-components of the individual oscillators enter the renor-
alized partial directed coherence analysis with a model order
= 250. From the results in Fig. 9 the true interaction structure

an be reproduced. This demonstrates that renormalized partial
irected coherence is capable in revealing the actual interaction
tructure also for non-linear chaotic systems.

. Application to Parkinsonian tremor

Indications for the pathophysiological basis of Parkinsonian
remor, a common neurological disease, have been found from ani-

al experiments and some human studies (Hellwig et al., 2000).
arkinsonian tremor manifests itself mainly in the upper limbs,
sually when the hands are in a relaxed position. Parkinsonian
remor is a unilateral form of tremor, i.e. in general the trembling
ccurs on one side. The trembling frequency of the hand is 4–10
z. To elucidate the tremor generating mechanisms in Parkinsonian

remor, relationships between the brain and trembling muscles are

f particular interest. Tremor correlated cortical activity has been
bserved by coherence analysis of simultaneously recorded elec-
roencephalography and electromyography (Hellwig et al., 2000).

ithin that study it was not possible to differentiate whether the
ortex imposes its oscillatory activity on the muscles via the corti-
ce Methods 179 (2009) 121–130

cospinal tract or whether the muscle activity is just reflected in the
cortex via proprioceptive afferences. No consistent results could be
detected by analyzing the phase spectra. Moreover, interactions at
the tremor frequency and at the first higher harmonic have been
detected. It stands to elucidate which of the two frequencies is of
particular importance for Parkinsonian tremor. Therefore, to get
deeper insights into tremor generation, partial directed coherence
analysis and renormalized partial directed coherence analysis is
applied to data recorded from patients suffering from Parkinsonian
tremor.

For one illustrative patient with Parkinsonian tremor, the
EMG from the right wrist extensor as well as the EEG recorded
over the left sensorimotor cortex are analyzed. Unilateral pos-
tural tremor was recorded for 300 s using a sampling rate of
1000 Hz. EEG data were band-pass filtered between 0.5 Hz and
200 Hz. To avoid movement artifacts, EMG data were band-pass
filtered between 30 Hz and 200 Hz and rectified afterwards.
Since the raw EMG is essentially modulated noise, taking the
absolute value after subtracting the mean, which is referred to
as rectification, is mandatory. It ensures to get the modula-
tion function of the noise which constitutes the physiologically
meaningful signal. The filters applied are to avoid movement
artifacts and to avoid aliasing and are therefore essential for a
reasonable analysis of the data. The hardware filter itself has
been proven not to introduce unwanted delays between the time
series.

In Fig. 10 a, results of the partial directed coherence analysis
for the EMG and the EEG channel are shown. On the diagonal the
spectra of the processes are given. The tremor frequency indicated
by the sharp peak in the right EMG-spectrum is almost 5 Hz. Sig-
nificant partial directed coherences at the corresponding tremor
frequency and its higher harmonics are detected for the direc-
tion from the right EMG to the left, contralateral EEG, and vice
versa.

The partial directed coherence indicating a causal influence from
the right EMG to the left EEG is much higher than the partial
directed coherence indicating a causal influence from the left EEG to
the right EMG (Fig. 10). Moreover the influence at the double tremor
frequency appears to be almost as strong as the one at the tremor
frequency. The significance level increases at the tremor frequency
for the influence from the EMG to the EEG; this might already indi-
cate that the influences are not of equal importance. This, however,
cannot be investigated using partial directed coherence.

In Fig. 10 b, the results of the renormalized partial directed
coherence are displayed in the same way as for the ordinary par-
tial directed coherence. It is now visible that the influence at the
first higher harmonic frequency from the EMG onto the EEG is
higher than the one at the tremor frequency. The afferent influ-
ence is more pronounced at the double tremor frequency than at
the tremor frequency itself even though both contribute. Interac-
tions at the double tremor frequency seem to be important for
the afferent interactions between cortical signals and the muscle
activity.

The results found for directed influences from the cortex to the
muscles and in the opposite direction are comparable under the
assumption that the signal-to-noise ratio is similar for both pro-
cesses. This is hardly expected in the case of EEG and EMG. While
the EMG represents a signal with very high signal-to-noise ratio
the EEG is expected to be contaminated with a lot of noise. Thus,
we can only state that there is influence from the cortex onto the
muscles.
In summary, since causal influences from the EEG to the corre-
sponding contralateral EMG are present, participation of the motor
cortex in tremor generation is strongly indicated. Moreover, there
is also a significant partial directed coherence from the EMG to
the contralateral EEG at the tremor frequency. This corresponds
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ig. 10. Partial directed coherence (a) and renormalized partial directed coherence
iagonals the spectra of the electroencephalogram and electromyogram are shown
artial directed coherences, respectively. Directed influences in both directions are
ecide that the directed influence from the EMG onto the EEG at the tremor frequen

o a feedback from the muscles to the somatosensory cortex.
specially for this feedback the influence at the first higher har-
onic frequency seems to be very important for Parkinson tremor.

hysiological consequences from this result should be based on
he analysis of more patients which is beyond the scope of this

anuscript but currently under investigation.

. Conclusion

Partial directed coherence is a powerful analysis technique to
etect causal influences in multivariate stochastic systems with
espect to Granger-causality. However, partial directed coherence
uffers from some conceptual problems that manifest themselves
n an arbitrary and disadvantageous normalization. We presented
way out of this dilemma by suggesting a different normalization
trategy. For this renormalized partial directed coherence calcu-
ation of the statistical properties is also possible. Moreover, it
as possible to derive confidence intervals that hold under the
ull hypothesis of absent coupling but also under the alternative
ypothesis.
r a representative example of a patient suffering from Parkinsonian tremor. On the
off-diagonal elements show the partial directed coherence and the renormalized

nt. However, only the renormalized version of partial directed coherence is able to
statistically significantly lower than at the first higher harmonic.

The performance of the proposed renormalized partial directed
coherence, its confidence intervals, and significance level has been
shown by means of a linear and non-linear, including chaotic,
stochastic model system. We have presented an exemplary appli-
cation to EEG and EMG data from a patient suffering from
Parkinsonian tremor. Using partial directed coherence and espe-
cially renormalized partial directed coherence in combination with
the confidence intervals and the significance level allows to detect
causal influences between EEG and EMG recordings in Parkinsonian
tremor and provides thus closer insights into the tremor generating
mechanisms. A distinction of the strength of the directed influence
between the tremor frequency and its higher harmonic became
possible.
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Kamiński MJ, Ding M, Truccolo WA, Bressler SL. Evaluating causal relations in neural
systems: Granger causality, directed transfer function and statistical assessment
of significance. Biol Cybern 2001;85:145–57.

Kent J, Hainsworth T. Confidence intervals for the noncentral chi-squared distribu-
tion. J Stat Plan Infer 1995;46:147–59.

Lütkepohl H. Introduction to multiple time series analysis. Springer; 1993.
Rosenblum M, Pikovsky A. Detecting direction of coupling in interacting oscillators.

Phys Rev E 2001;64:045202.
Sameshima K, Baccala L. Using partial directed coherence to describe neuronal

ensemble interactions. J Neurosci Methods 1999;94:93–103.
Schelter B, Winterhalder M, Eichler M, Peifer M, Hellwig B, Guschlbauer B. Testing

for directed influences among neural signals using partial directed coherence. J
Neurosci Methoths 2006;152:210–9.

Smirnov DA, Bezruchko BP. Estimation of interaction strength and direction from
short and noisy time series. Phys Rev E 2003;68:046209.

Tass P, Rosenblum MG, Weule J, Kurths J, Pikovsky A, Volkmann J. Detection of n:m
phase locking from noisy data: application to magnetoencephalography. Phys
Rev Lett 1998;81:3291–5.

Timmer J, Lauk M, Pfleger W, Deuschl G. Cross-spectral analysis of physiological
tremor and muscle activity. I. Theory and application to unsynchronized EMG.
Biol Cybern 1998;78:349–57.
Volkmann J, Joliot M, Mogilner A, Ioannides A, Lado F, Fazzini E. Central motor loop
oscillations in Parkinsonian resting tremor revealed by magnetoencephalogra-
phy. Neurology 1996;46:1359–70.

Winterhalder M, Schelter B, Hesse W, Schwab K, Leistritz L, Klan D. Comparison of
linear signal processing techniques to infer directed interactions in multivariate
neural systems. Sig Proc 2005;85:2137–60.


	Assessing the strength of directed influences among neural signals using renormalized partial directed coherence
	Introduction
	Partial directed coherence
	Definition and statistical properties
	Disadvantages of partial directed coherence
	A new definition of PDC: renormalized PDC

	Simulations
	Vector autoregressive process I
	Vector autoregressive process II
	Vector autoregressive process III
	Coupled van-der-Pol oscillators
	Coupled Rossler oscillators

	Application to Parkinsonian tremor
	Conclusion
	Acknowledgements
	References


