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Abstract

Objective: Retrospective evaluation and comparison of performances of a multivariate method for seizure detection and prediction on
simultaneous long-term EEG recordings from scalp and intracranial electrodes.
Methods: Two multivariate techniques based on simulated leaky integrate-and-fire neurons were investigated in order to detect and pre-
dict seizures. Both methods were applied and assessed on 423 h of EEG and 26 seizures in total, recorded simultaneously from the scalp
and intracranially continuously over several days from six patients with pharmacorefractory epilepsy.
Results: Features generated from simultaneous scalp and intracranial EEG data showed a similar dynamical behavior. Significant per-
formances with sensitivities of up to 73%/62% for scalp/invasive EEG recordings given an upper limit of 0.15 false detections per hour
were obtained. Up to 59%/50% of all seizures could be predicted from scalp/invasive EEG, given a maximum number of 0.15 false pre-
dictions per hour. A tendency to better performances for scalp EEG was obtained for the detection algorithm.
Conclusions: The investigated methods originally developed for non-invasive EEG were successfully applied to intracranial EEG. Espe-
cially, concerning seizure detection the method shows a promising performance which is appropriate for practical applications in EEG
monitoring. Concerning seizure prediction a significant prediction performance is indicated and a modification of the method is
suggested.
Significance: This study evaluates simultaneously recorded non-invasive and intracranial continuous long-term EEG data with respect to
seizure detection and seizure prediction for the first time.
� 2007 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Epilepsy patients are afflicted with sudden and recurrent
brain dysfunctions, which manifest as seizures. Because
most patients cannot anticipate seizure occurrences, life-
threatening situations may arise in day-to-day situations
(Cockerell et al., 1994). Therefore, treatment strategies
are needed to reduce the psychological stress on patients
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and their social environment to improve their quality of life
(Murray, 1993).

Nowadays most epilepsy patients are treated by antiepi-
leptic medications. In the case of pharmacorefractory focal
epilepsy, surgical removal of brain tissues early involved in
the seizure generation is a possible treatment. Diagnostic
evaluations of EEG recordings of patients are necessary
to determine the seizure onset zone. Patients undergo a
long-term monitoring, i.e. simultaneous EEG and video
recordings with scalp, and – if necessary – also with intra-
cranial electrodes. Due to the apparent unpredictability of
gy. Published by Elsevier Ireland Ltd. All rights reserved.
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seizures, monitoring takes several days to weeks and is
accompanied by the collection and visual inspection of
large amounts of EEG and video data. Automatic detec-
tion of seizure onsets in EEG can facilitate long-term epi-
lepsy monitoring for diagnostic purposes (Gotman, 1990,
1999), e.g. by on-line detection systems that trigger warn-
ing mechanism to alert medical staff (Saab and Gotman,
2005).

Seizure warning devices could also be used for more
effective therapeutic treatments. For instance, upcoming
seizures could be suppressed by electric stimulation or
delivery of short-acting drugs (Stein et al., 2000; Osorio
et al., 2005). Alarm systems could also be utilized to warn
patients. They also allow behavioral adjustments. Such
devices would be of particular interest for epilepsy patients
to whom present treatments fail or are ineffective.

In recent years, efforts were undertaken to automatically
detect and predict epileptic seizures using EEG data.
Numerous univariate, bivariate and multivariate algo-
rithms were published based on EEG analysis of single or
multiple electrodes to solve the problem of seizure detec-
tion (Osorio et al., 1998; Gotman, 1990, 1999; Schindler
et al., 2001; Jerger et al., 2001, 2005; Frei et al., 2002; Saab
and Gotman, 2005; Bhavaraju et al., 2006) and prediction
(Lehnertz and Elger, 1998; Iasemidis et al., 1990; Le van
Quyen et al., 1999, 2000; Mormann et al., 2000, 2003a,b,
2006; Le van Quyen et al., 2001a,b; Jerger et al., 2001; Litt
et al., 2001; Navarro et al., 2002; Schindler et al., 2002).
Especially multivariate approaches have become a focus
of attention recently in EEG analysis as promising tools
in epilepsy research (Mueller et al., 2006; Bialonski and
Lehnertz, 2006; Schindler et al., 2007).

In general, a detection or a prediction method is
designed and evaluated with respect to scalp or invasive
EEG data. Whereas in most studies seizure detection or
prediction has been performed on either intracranial or
non-invasive, surface EEG data, it yet remains an open
question whether intracranial or non-invasive, surface
EEG should be preferred. This paper is motivated by this
question.

If one attempts to compare a prediction or detection
method based on univariate or bivariate measures applied
to scalp and intracranial EEG recordings, the problem
arises how to choose the electrodes in order to obtain a reli-
able comparison between those positioned on the scalp and
for example with those positioned at the seizure onset zone.
If the electrode or channel combination is not determined
in advance by explicit criteria, using different electrode
combinations for the comparison and performance evalua-
tion leads to undesirable multiple testing problems (Schel-
ter et al., 2006a).

Hence, in this paper we examined a multivariate method
for automatic seizure detection based on neuronal net-
works using simulated leaky integrate-and-fire neurons,
which was introduced by Schindler et al. (2001). It is based
on a simulated neuronal cell model that extracts spatio-
temporal information from multi-channel EEG recordings,
like spatially synchronous, fast-transient and rhythmic
activities, as they often appear in EEG patterns from epi-
leptic activity (Engel, 1987; Dichter and Ayala, 1987). In
a subsequent publication, a modification of the detection
algorithm was presented to detect pre-seizure changes from
EEG in order to achieve a prediction of seizure onsets
(Schindler et al., 2002). These two algorithms yield mea-
sures for seizure detection and prediction, which are char-
acterized by a few continuously adjustable parameters. By
definition they predict or detect using a one dimensional
feature even though they can take into account informa-
tion of all EEG electrodes. The here investigated two
methods possess the unique advantage that a preselection
of electrodes is not necessary and thus the above-men-
tioned multiple testing problem between performances
from different selections of electrode combinations does
not emerge.

While both algorithms mentioned above have been
applied to scalp and foramen ovale EEG recordings before
(Schindler et al., 2001, 2002; Sazonov et al., 2002) we inves-
tigated the questions whether these two methods are also
applicable to intracranial EEG, what kind of differences
will occur when compared with applications to scalp
EEG, and whether they perform better on scalp or intra-
cranial EEG data.

To obtain reliable comparisons, we used continuous
long-term EEG data from six patients with simultaneous
recordings from scalp and intracranial EEG. This allows
comparison of the respective features calculated from
scalp and invasive EEG recordings for the detection and
the prediction method directly. The data comprise long
interictal periods, which are necessary for assessing a high
specificity. Sleep and awake phases as well as sub-clinical
events were not excluded from the data as they are part of
a realistic EEG sample and occur also in prospective set-
tings regarding seizure detection and prediction utilizing
EEG.

Seizure detection as well as seizure prediction perfor-
mance were evaluated and compared retrospectively in a
patient-individual manner using both types of EEG data.
The seizure prediction performance was assessed with the
seizure prediction characteristic in terms of sensitivity,
specificity, and intervention times (Winterhalder et al.,
2003). A reliable prediction method has to be superior to
a prediction by chance, hence the evaluated performances
were compared with a random predictor (Mormann
et al., 2006; Schelter et al., 2006a). For assessing the perfor-
mance of the investigated detection method, we adapted
the concept of the seizure prediction characteristic with
its statistical evaluation for seizure detection.

In the following section, we set out the used data pool
and the patients’ characteristics and give an outline of the
investigated methods. The evaluation procedure of the sei-
zure detection and seizure prediction method is described.
In Section 3, the results obtained on scalp and invasive
EEG recordings are presented and compared. A discussion
of the results follows in Section 4.
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2. Methods

2.1. EEG data and patient characteristics

The present study was carried out on continuous long-
term EEG recordings from six patients. All patients suf-
fered from pharmacoresistant focal epilepsy and underwent
a pre-surgical video-EEG monitoring at the Epilepsy Cen-
ter of the University Hospital Freiburg, Germany. Scalp
and intracranial EEG data were recorded simultaneously
and continuously over several days. Invasive recordings
were performed via stereotactically implanted depth elec-
trodes, subdural strip and grid electrodes, which had been
implanted through burr holes or open skull surgery, respec-
tively. For each patient 30–90 focal and extrafocal invasive
electrodes and 21 scalp electrodes, placed according to the
international 10–20-system, were analyzed. Focal elec-
trodes are defined as early involved in ictal activity while
extra-focal electrodes do not show any ictal activity or
are involved late in seizure spread. Focal and extra-focal
electrodes were determined by a board-certified epileptolo-
gist and confirmed through surgical follow-up. In total,
423 h of EEG data with 26 seizures was investigated.

For the EEG analysis reference electrodes had to be
chosen. The choice of reference is a crucial point in EEG
analysis as it could influence the results depending on the
respective analysis method (Zaveri et al., 2000; Schiff,
2005). Here, for each patient a single intracranial electrode
was chosen as reference for scalp and intracranial EEG.
Thereby, reference electrodes were selected by common cri-
teria, i.e. their signal had to be free of artifacts, they did not
show ictal activity, and the electrode was located far from
the epileptic area.

For the evaluation of the seizure prediction performance
with the seizure prediction characteristic, interictal periods
were distinguished from preictal, ictal, and postictal peri-
ods in EEG data. Interictal periods are time intervals with-
out clinically manifested seizure activity. We used EEG
periods distanced by two hours from an electroencephalo-
graphic end of the preceding seizure and the following sei-
zure onset to represent interictal periods. Preictal periods
Table 1
Characteristics of patients and EEG data

Patient Sex Age Seizure
type

Outcome Electrode
type

No. of int
Electrodes

01 m 31 SP, CP, GTC 1b g, s, d, Sca 56
02 m 25 SP, CP 1a g, s, d, Sca 90
03 m 43 SP, CP, GTC 1a d, Sca 30
04 f 42 SP 1d g, Sca 64
05 m 47 CP, GTC no surgery s, d, Sca 75
06 m 20 SP, CP, GTC 1a s, d, Sca 40

Sum
Mean

Abbreviations: m, male; f, female. Seizure types: simple partial (SP), complex p
classification. Intracranial electrodes: grid (g), strip (s), depth (d). Scalp electrod
of seizures analyzed with the prediction method are given in brackets.
are the time intervals immediately preceding seizure onsets.
For each investigated seizure, one hour preceding the elec-
troencephalographic seizure onset was analyzed to cover
the preictal period. Subsequent seizures distanced by less
than two hours to a preceding seizure were excluded from
the prediction analysis to prevent analysis of possible post-
ictal activity from the preceding seizure. Therefore, one sei-
zure of patient 02 and three seizures of patient 04 were not
analyzed. The duration of continuous interictal periods
varied between 1.9 and 55.5 h. In total, interictal periods
of at least 24 h up to 76.8 h per patient were used.

The EEG data comprise circadian variations and differ-
ent sleep stages but also sub-clinical seizures as well as
short interruptions in the time continuous recording
sequence due to diagnostic procedures like MR imaging.
Characteristics of patients and corresponding EEG data
are shown in detail in Table 1. All patients gave their
informed consent to the evaluation of their EEG data.
Evaluation of data was approved by the Ethics Committee,
Medical Faculty, University of Freiburg.

2.2. EEG data acquisition

The EEG data were obtained using a Neurofile NT
(TM) digital video–EEG system with 128 channels at a
sampling rate of 256 Hz, and a 16-bit A/D converter. An
integrated high and low pass filter of the used amplifier lim-
ited the recording bandwidth of the EEG signal to 0.032–
97 Hz. EEG recordings of surface and intracranial elec-
trodes were further low-pass filtered using a butterworth
filter of 8th order with a cut-off frequency of 20 Hz follow-
ing Schindler et al. (2002). The data were visually inspected
by board-certified epileptologists who marked clinical and
electroencephalographic events. These time-points were
determined in mutual consent of at least two board-certi-
fied epileptologists for each patient.

2.3. The seizure detection and prediction algorithm

The investigated multivariate algorithms are described
in detail in Schindler et al. (2001, 2002). Substantially, they
racranial Total
interictal
period [h]

EEG
recording
total [h]

No. of
seizures

Average seizure
duration in
EEG [s]

72.9 93.7 4 (4) 100
52.6 74.7 5 (4) 70
76.9 93.4 4 (4) 210
24.0 41.1 6 (3) 50
50.5 69.6 5 (5) 50
38.6 50.5 2 (2) 95

315.5 423.0 26 (22)
52.6 70.5 4.3 (3.7)

artial (CP), generalized tonic–clonic (GTC). Outcome according to Engel
es (Sca): 21 scalp electrodes placed according to the 10–20-system. Number
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focus on local slopes in EEG signals. Times at which the
absolute values of the time-differentiated EEG signal
exceed a certain threshold T1 are marked with unit pulses
for each investigated EEG channel. The resulting pulse
trains are spatio-temporally integrated by simulated leaky
integrate-and-fire neurons. Whenever the accumulation of
unit pulses reaches a certain threshold T2, the simulated
neurons create a spike and are reset to zero. The inte-
grate-and-fire neurons act as coincidence detectors for syn-
chronous activity between pulse trains. Frequent
coincidences and coincidences between many unit pulse
trains increase the spiking rate SR, i.e. the number of
spikes per second. The spiking rate is used for seizure
detection. The algorithm detects a seizure whenever the
spiking rate exceeds a fixed threshold.

In order to predict seizures, the detection method has to
be modified. An average spiking rate SRav is calculated
from SR using a time-causal sliding window with a window
length of 20 min and a sliding step size of one second.
From the time course of SRav, the feature FSz(t) is extracted
for seizure prediction by

F SzðtÞ ¼
X
t0<t

sgn
dSRavðt0Þ

dt0

� �
ð1Þ

where sgn denotes a weighting function given by the sign
function

sgnðxÞ ¼
�1 if x < 0

0 if x ¼ 0

1 if x > 0:

8><
>: ð2Þ

Whenever the feature FSz(t) exceeds a fixed threshold, the
algorithm detects pre-seizure changes. The time-points of
detection of pre-seizure changes were used for predicting
seizures.

The continuously adjustable algorithmic parameters T1

and T2 were varied patient-individually resulting in several
features of the spiking rate and FSz for each patient. For
scalp and intracranial EEG the parameters ranged between
0:4 mV

s
6 T 1 6 33:8 mV

s
and 0.05 6 T2 6 15 (in arbitrary

units).
The originally published algorithm uses a posteriori

information about the actual occurrence of seizure onset
for the computation of the feature FSz(t), i.e. FSz(t) is reset
to zero whenever a seizure occurs (Schindler et al., 2002).
As we wanted to avoid the usage of a posteriori informa-
tion for the computation of features, we omitted this step
in the presented computations. Furthermore, the originally
used weighting function was the asymmetric sgn-function,
i.e. there were no zero weightings. This function was
replaced by the symmetric sgn-function above, but this
has only minor effects on FSz(t), as zero changes of the spik-
ing rate occur rarely in the computation of the feature.
Assuming that SRav reflects some kind of spatio-temporal
synchronization of electrical activity in the brain, the sym-
metric weighting function weights only changes, i.e. an
increase and decrease of synchronization.
2.4. Retrospective assessment of the performance

Spiking rates SR(t) and features FSz(t) were computed
for each patient from scalp and invasive EEG recordings
separately. Pulse trains were calculated from slopes of all
available EEG channels and served as input for the inte-
grate-and-fire neurons for the calculation of SR. Features
FSz were obtained from SR as described above. Thresholds
were set retrospectively for SR and FSz as described in
Schindler et al. (2001, 2002).

The performance of the algorithm for seizure detection
as well as for seizure prediction was assessed retrospec-
tively. The performance was quantified by sensitivity with
respect to the false positive rate, i.e. the false detection rate
FDR or the false prediction rate FPR, respectively. The
false positive rate depends on the parameters of the corre-
sponding algorithm, i.e. different parameters can lead to
the same false positive rate but do not have to result in
the same sensitivity. To enable a comparison of perfor-
mances that can be achieved for different patients, sensitiv-
ity was estimated for a range of upper bounds of the false
positive rates, here denoted as maximum false detection
rate FDRmax and maximum false prediction rate FPRmax.
To obtain a unique result, those parameter values were
chosen that corresponded to the best sensitivity and lowest
effective false positive rate for a given maximum false posi-
tive rate. The maximum false positive rate can be regarded
as a measure of specificity in the context of seizure detec-
tion or prediction and restricts the number of false posi-
tives in a given time interval. Note that sensitivity could
always be increased at the expense of specificity.

2.4.1. Assessment of the seizure detection performance

Time-points where SR(t) exceeded the threshold were
compared with electroencephalographically marked seizure
onsets. After a detection, no further threshold crossings
were evaluated within a preset patient specific time interval,
the mean seizure duration. These time intervals were cho-
sen in order to prevent multiple detections of single sei-
zures. The relative number of correct detections yields
estimates of the sensitivity S, while the number of wrong
detections in a given time interval results in the false detec-
tion rate FDR, which represents the specificity. Sensitivity
was estimated for different upper bounds of the false detec-
tion rate, given by FDRmax.

2.4.2. Assessment of the seizure prediction performance
For the assessment of the seizure prediction method the

seizure prediction characteristic S(IT, SOP, FPRmax) was
used (Winterhalder et al., 2003). Sensitivity S of the predic-
tion method was evaluated depending on three factors: the
intervention time IT, the seizure occurrence period SOP,
and the maximum false prediction rate FPRmax. The inter-
vention time describes the time required for a successful
intervention, e.g. allowing the delivery of drugs to prevent
an upcoming seizure. For a correct seizure prediction, it is
required that no seizure occurs within this time interval.
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The seizure occurrence period reflects a possible temporal
variability of the occurrence of a predicted seizure.

For each patient the time courses of the features FSz(t)
from scalp and invasive EEG recordings were separated
into interictal and preictal periods. Whenever the feature
FSz crossed the threshold in upward direction a seizure
was predicted. The prediction was judged to be correct if
an electroencephalographic marked seizure occurred
within the seizure occurrence period. Sensitivity was esti-
mated on the preictal data segments from the relative num-
ber of correct predictions, while the false prediction rate
was determined on interictal segments. Sensitivity was esti-
mated for different values of FPRmax, IT, and SOP.

The seizure prediction characteristic was compared
with the performance of an unspecific random predictor
(Schelter et al., 2006a). The random predictor is based
on a Poisson process. Its performance can be derived
from a binomial distribution with probability
P ¼ 1� e�SOP�FPRmax . From the performance of the random
predictor, a significance level can be calculated. A critical
value rrand,a for the sensitivity of a random prediction
can be determined analytically as a function of FPRmax

and SOP, the total amount K of investigated seizures,
and significance level a as

rrand;a ¼
1

K
maxfkjP binomfk; K; Pg > ag � 100% ð3Þ

with

P binomfk; K; Pg ¼ 1�
X
j<k

K

j

� �
P jð1� P ÞK�j

 !d

: ð4Þ
Fig. 1. Detection of seizures: Time course of the spiking rate SR over 90 h c
Electroencephalographic seizure onsets are marked by triangles. An exemplar
spiking rate increases significantly. Threshold crossings coincide with marked se
invasive EEG data.
The parameter d reflects a correction term for multiple test-
ing, when several independent features are used for a per-
formance assessment. Assuming that the investigated
features of each patient are not independent, the parameter
d is set to d = 1 following Schelter et al. (2006a). With these
assumptions, a seizure prediction method is significantly
better than a random predictor at significance level a, if
its sensitivity is higher than the respective critical value
rrand,a.

The definition of a critical value rrand,a for the sensitivity
of a random prediction was adapted for seizure detection.
A critical value for the sensitivity of a random detection
was calculated analogously by the equations above, where
the maximum false prediction rate and SOP were replaced
by the maximum false detection rate and the mean seizure
duration.
3. Results

In the following, exemplary features of SR and FSz are
shown. The estimated performances are presented for each
patient by means of the sensitivity for the detection and
prediction method dependent on the corresponding param-
eters, FDRmax and FPRmax, SOP, and IT. Comparisons
between the results obtained from scalp EEG data and
invasive EEG data are shown.

The ranges of parameters are restricted, i.e. SOP was
varied between 2 and 30 min and IT between 5 and
30 min, such that IT + SOP 6 1 h, which is the duration
of the analyzed preictal periods. The units of FDRmax

and FPRmax are specified by false positive rates per hour,
alculated on scalp (a) and invasive (b) EEG recordings from patient 01.
y threshold for SR is given by a horizontal line. At the seizure onsets the
izures in (a) and (b), i.e. all four seizures are detected using scalp as well as
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i.e. of number of false detections FD and false predictions
FP/h, respectively. The ranges of false positive rates are
restricted by the length of the analyzed EEG data. The
lower bound for FPRmax depends on the length of the
interictal periods. The duration of interictal periods in
our data pool differs between patients (Table 1). As the
minimal length of an investigated interictal period is 24 h,
sensitivities for less than one false alarm per day, i.e.
0.042 FP/h, are not available for patient 04. Altogether,
FPRmax was varied between 0.015 and 0.5 FP/h. Analo-
gously, there are restrictions to FDRmax for the seizure
detection. For FDRmax, we set a lower bound to the min-
imal length of the EEG recording, i.e. in our case
0.024 FD/h. As an upper reference point for FPRmax and
FDRmax the mean seizure frequency can be used (Maiwald
et al., 2004). During presurgical monitoring, an average sei-
zure frequency of 0.15 seizures per hour was reported for
pharmacorefractory epilepsy (Haut et al., 2002).
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3.1. Results for seizure detection

In Fig. 1, an exemplary time course of a spiking rate is
shown. It was calculated from scalp (a) and invasive (b)
EEG recordings of patient 01. Electroencephalographic sei-
zure onsets are marked by triangles. The horizontal line
represents a threshold for the spiking rate. At each seizure
onset the spiking rate increases and crosses the threshold
which yields detection times of seizures. For this patient
all four seizures were detected from scalp as well as invasive
EEG data without false positives.

There is a characteristic dynamic pattern of the spiking
rate with a rapid increase and decrease right within the
electroencephalographic marked seizure onset and end,
which is similar for all four seizures. This is illustrated
for this patient in more detail in Fig. 2. For a better visual
representation the spiking rate is shown only at regions of
several minutes around the seizures. Vertical lines mark the
electroencephalographic seizure onsets and seizure ends,
respectively. This behavior is observed in features from
invasive EEG as well as from scalp EEG, whereas there
is a steeper increase of the feature from invasive EEG than
from scalp EEG.

Due to this observed different patterns of the spiking
rates from scalp and invasive EEG during the seizures,
detection latencies and differences in the threshold crossing
times between seizures detected from scalp and intracranial
EEG data were investigated. In order to compare the
threshold crossing times between different features
obtained from scalp and invasive EEG, we chose for each
feature the smallest possible threshold for a given maxi-
mum false detection rate of 0.15 FD/h. The latencies were
determined by comparing the detection time-points
obtained from scalp and invasive EEG data of respective
seizures with their electroencephalographic seizure onsets,
i.e. the latency is the difference between the time-point of
detection and the time-point of the electroencephalo-
graphic onset.

In Fig. 3 the latencies of threshold crossing times of the
spiking rate from scalp EEG and invasive EEG with
respect to the electroencephalographic seizure onset are
shown for all investigated 26 seizures of the six patients.
The latencies are in general positive, i.e. most of the sei-
zures are detected after the occurrence of the electroen-
cephalographic seizure onset. The latencies are also
compared between scalp and invasive EEG. As not all sei-
zures are detectable from invasive as well as scalp EEG
recording, the latencies are only comparable for in total
ten seizures of the patients 01, 02, 03, 05 and 06. For
patient 01 and patient 02, as well as for patient 06, the dif-
ferences D = latencyi � latencys between the latencies from
invasive and scalp EEG are negative, i.e. an earlier detec-
tion was possible using invasive EEG recordings. For
patient 03 and patient 05, latency differences D are positive
and therefore the seizures of these patients were detected
earlier using scalp EEG recordings than invasive EEG
recordings.

Patient individual results of the detection performances
from invasive and non-invasive EEG recordings are pre-
sented in Fig. 4. The performances are given in dependence
on FDRmax, which was varied between 0.025 and 1 FD/h.
For patient 01 a sensitivity of 100% is obtained for all val-
ues of FDRmax with either type of data acquisition. For
patient 02, sensitivity increases from 0% to 80% with
increasing FDRmax. For this patient there is no clear supe-
riority over performances either from scalp or from inva-
sive EEG recordings. For FDRmax < 0.1 FD/h sensitivity
obtained from scalp EEG is higher than sensitivity from
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Fig. 4. Sensitivity of the investigated detection method in dependence on the maximum false detection rate for each patient. Different graphs result from
the scalp EEG (·) and from invasive EEG (s) recordings. Gray shaded areas mark non-significant regions rrand,0.05 of sensitivity.
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invasive EEG. For FDRmax > 0.1 FD/h there is a reverse
behavior. For patient 03 sensitivity from invasive EEG is
100% and always higher than sensitivity from scalp EEG.
However for patient 04 and patient 05 sensitivity deter-
mined from scalp EEG recordings is higher than from inva-
sive EEG. In particular for patient 04, we obtained a
difference in sensitivity between the recording sites of up
to 100% for FDRmax less than 0.5 FD/h. In this case, the
sensitivity from invasive EEG is in accordance with the
critical value of a random detector at 5% significance level.
For patient 06 sensitivity from invasive EEG data is higher
than or equal to the sensitivity obtained from scalp EEG
data. Although the recordings of the investigated intracra-
nial electrodes of patient 06 did not result in an exact deter-
mination of the seizure onset zone, all seizures could be
detected from the spiking rate calculated from invasive
EEG recordings. Sensitivities from scalp and invasive
EEG of all patients are almost always above respective crit-
ical values of a random predictor and indicate that signifi-
cant detection performances could be obtained for all six
patients.

The estimated averaged performance of the detection
method, evaluated from 26 analyzed seizures from invasive
and non-invasive EEG recordings, is shown in Fig. 5.
Regions below the averaged critical values rrand,0.05 of a
5% significance level of a random detector are shown by
gray areas. The sensitivity from scalp EEG data varies
between 61% and 88%. Sensitivities from scalp EEG
recordings are always higher than sensitivities from inva-
sive EEG recordings, which range between 38% and 77%.



FDR
max

 [FD/h]

se
ns

iti
vi

ty
 [%

]

0.01 0.02 0.03 0.05 0.1 0.5 1

0

20

40

60

80

100
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recordings. Gray shaded areas mark regions below averaged critical values
rrand,0.05 of a 5% significance level of a random detector.
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The differences in the performances correspond to a differ-
ence of two up to eight seizures of all investigated seizures
that were detected from the spiking rate from scalp EEG
recordings but not from the spiking rate from invasive
EEG recordings. The obtained sensitivities are clearly
above critical values of a random detector and thus
strongly indicate significant detection performances from
scalp and invasive EEG data.

3.2. Results for seizure prediction

Exemplary time courses of the features FSz(t) are shown
in Fig. 6, which are calculated from invasive EEG and
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Fig. 6. Time continuous course of feature FSz(t) over 90 h calculated o
Electroencephalographic seizure onsets are marked by vertical lines.
scalp EEG recordings for patient 01 over nearly four days.
Electroencephalographic seizure onsets are marked by ver-
tical lines. There are four seizures occurring. Both features
show a characteristic pattern around the seizure onsets.
Especially for this patient, a drop in the feature can be
observed around the seizure onsets, which is more distinct
in the feature from invasive EEG data. Note that such a
drop was not observed for the other patients.

For some patients, generated features FSz reflect circa-
dian changes in EEG dynamics. For example in Fig. 7, fea-
tures calculated from scalp and invasive EEG data are
shown for patient 06 over two days. Both features show
a similar dynamical behavior with time. During night when
the patient was sleeping, the features are fluctuating
strongly with increased values. Changes in the features
due to seizure onsets are not as obvious as for patient 01.

For an intervention time of 5 min and a seizure occur-
rence period of 30 min, estimates of sensitivity are shown
for each patient in dependence on the maximum false pre-
diction rate in Fig. 8. Different graphs result from calcula-
tions from scalp EEG and from invasive EEG recordings.
Critical values of a 5% significance level of sensitivity
rrand,0.05 are also shown.

With increasing FPRmax, sensitivity and critical values
increase, too. Only for patient 02 and patient 06 sensitivity
evaluated from invasive EEG data remains constant at
50%. For patient 03, patient 04, and patient 06, sensitivities
obtained from scalp EEG recordings are always higher
than or equal to those from invasive EEG recordings.
For patient 03 sensitivities from invasive EEG correspond
to the critical values rrand,0.05 for all investigated values of
FPRmax and are therefore non-significant.
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Fig. 7. Features FSz(t) of patient 06 calculated from invasive EEG (black) and scalp EEG (gray) data showing a circadian rhythm. Electroenceph-
alographic seizure onsets are marked by vertical lines. Shaded regions mark times at which the patient was sleeping.
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Fig. 8. Sensitivity of the investigated seizure prediction method in dependence on maximum false prediction rate for each patient. IT and SOP are fixed at
5 and 30 min, respectively. Different graphs result from scalp EEG (·) and from invasive EEG (s) recordings. Gray shaded areas mark regions below
critical values rrand,0.05 of a 5% significance level of a random predictor.
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The averaged sensitivity of the prediction performances
is shown in Fig. 9 for both recording sites. The averages are
obtained by equally weighting all investigated seizures of
all patients. Sensitivities from scalp and invasive EEG data
are always above the averaged critical values rrand,0.05 of a
random predictor, indicating significantly better perfor-
mances than a random predictor. On average a sensitivity
of about 59% was obtained from scalp recordings, which
is about 9% larger than from invasive recordings. This dif-
ference corresponds to the prediction of two additional
seizures.

In Fig. 10 sensitivity is shown in dependence on the
intervention time IT for each patient and recording site.
Seizure occurrence period and maximum false prediction
rate are fixed to SOP = 30 min and FPRmax = 0.15 FP/h.
The sensitivities vary only slightly with respect to IT and
recording site for all patients, i.e. differences correspond
to the prediction of one seizure. Compared to the critical
values rrand,0.05, we find for most of the patients ranges
of IT where the sensitivity is larger than rrand,0.05, i.e. for
those ranges of IT the prediction performance may be sig-
nificantly better than a random predictor. For patient 03
and patient 06 performances obtained from invasive EEG
recordings are in accordance with the critical value of the
used random predictor for all investigated values of IT
and therefore non-significant.

4. Discussion

In this study, we investigated long-term EEG data of
non-invasive and intracranial EEG electrodes in order to
compare them with respect to seizure detection and seizure
prediction. The usage of simultaneously recorded non-
invasive and intracranial EEG recordings allowed a direct
comparison of generated features and estimated perfor-
mances. We assessed a seizure detection and a seizure pre-
diction method based on integrate-and-fire neurons which
is able to incorporate EEG information without restric-
tions to the number of electrodes (Schindler et al., 2001,
2002). Two multivariate measures were utilized, the spik-
ing rate SR and the feature FSz, while the original
computation proposed for FSz was modified in order to
avoid usage of a posteriori knowledge. The idea behind
these two measures is based on physiological and patho-
physiological properties of brain activity with respect to
synchronization and desynchronization in advance of
seizure generation. Therefore, the spiking rate can be inter-
preted as a measure that represents the level of spatio-tem-
poral synchronized bioelectrical activity in the brain. In
that sense, the feature FSz represents a measure for the
gradually increase and decrease of spatio-temporal syn-
chronization, respectively. We note that the performance
evaluation carried out here was based on a retro-
spective analysis of the features, as parameters are set
retrospectively.

4.1. Seizure detection

Detection of seizures corresponded to a rapid change
of the spiking rate SR at seizure onset towards higher
spiking rates, indicating an increase of synchronous activ-
ity in multichannel EEG. At a seizure end, SR dropped
rapidly to low spiking rates. This is in agreement with
Schindler et al. (2001). The same dynamical behavior
was observed at spiking rates calculated from invasive
EEG recordings.

The rapid increase and decrease of the spiking rate may
be used for the identification of the electroencephalo-
graphic seizure onset and seizure end and provides a useful
tool, for example to mark seizure onsets and seizure ends in
EEG recordings or to confirm seizure times obtained from
visual inspection of EEG at monitoring.

For some patients we observed, that if detection is pos-
sible from the spiking rate computed from invasive and
non-invasive EEG data, seizures can be detected earlier
from invasive EEG. The earlier detection using intracranial
EEG recordings may reflect the coverage of the seizure
onset zone whereas surface EEG is dependent on the
latency of propagation of epileptic activity to areas of the
convexity with involvement of extended pyramidal neuro-
nal networks. Otherwise, the high sensitivity of seizure
detection based on surface EEG may depend on the degree
of propagation for clinically manifested seizures investi-
gated here and may not be transferable to its performance
on subclinical electrographic ictal events. Note that we also
observed a tendency of the detection method to detect sei-
zures after their electroencephalographic detection time-
point. Anyway, for the interpretation of this observation
one has to consider that the detection of seizures by the
human observer uses a posteriori information. That
means, seizure onsets are identified retrospectively using
clearcut seizure patterns determined during the course of
the seizures to identify the earliest detectable signs of
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Fig. 10. Dependency of sensitivity on the intervention time IT with fixed SOP = 30 min and FPRmax = 0.15 FP/h. Different graphs result from scalp EEG
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these patterns. In contrast to this, the detection algorithm
here uses only information included in the EEG sections
preceding the seizure. Thus, the time-causal processing
of EEG data but also the choice of parameter settings
for the detection algorithm may contribute to a latency
between the visual determination of the first presence of
the seizure pattern and the detection of ictal activity by
the algorithm.

For the investigated data the performances of seizure
detection differed with respect to recording site and patient,
especially for one patient a performance difference of up to
100% was obtained. The result of this single patient may
have mainly influenced the observation of a tendency to
a better average performance utilizing scalp EEG than
invasive EEG. Possible explanations may be the effect of
the variable locations of invasive EEG electrodes for mea-
suring the spatio-temporal synchronization with the spik-
ing rate. The scalp EEG electrodes cover a large area of
the brain and collect smoothed superpositions of brain sig-
nals, whereas intracranial electrodes record signals of small
brain areas. Thus, measuring spatio-temporal synchroniza-
tion might be dependent on the location of electrodes.
Moreover, the spiking rate is based on rather specific
assumptions on the evolution of seizures, i.e. a seizure
has to cause an increase of the spiking rate due to an
increase of the spatio-temporal synchronization of bioelec-
trical activity. These assumptions might not be fulfilled for
the evolution of seizures for all patients and thus cause
variations in the performance between patients (Shoeb
et al., 2004; Schindler et al., 2007).
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For the evaluation of the investigated multivariate
detection method, we made no preselection of electrodes
either for scalp or invasive EEG. For the here used mul-
tivariate algorithms it is not necessary to select certain
single electrodes to measure spatial synchronous activity
in the brain. The simulated integrate and fire neurons
of the algorithms can be regarded as coincidence detec-
tors that extract electrodes that comprise this type of
activity via the spatio-temporal integration. This is in
contrast to former evaluations of published bivariate pre-
diction measures where it was necessary to compare elec-
trodes pairwise, which led to multiple testing problems
(Schelter et al., 2006a). This problem can be avoided
using multivariate algorithms like the here investigated
ones.

In an earlier evaluation of the detection method which
was used in this study applied to about 11 h scalp EEG
recordings of 15 patients by Sazonov et al. (2002), a sensi-
tivity of 87% and a false detection rate of about 61.18 FD/h
were found. This result agrees with ours, though we inves-
tigated false detection rates 61 FD/h. Compared to other
published detection methods like, for instance, Wilson
et al. (2004) or Saab and Gotman (2005), our results show
similar detection ability, when choosing comparable false
detection rates.

4.2. Seizure prediction

For a successful seizure prediction with regard to clinical
applications, required values of sensitivity, specificity, and
prediction times strongly depend on the mechanism of an
intervention system and its effect on patient (Winterhalder
et al., 2003). Although we obtained an average sensitivity
of 59% from scalp EEG and 50% from invasive EEG on
our data pool, for clinical applications sensitivity should
be increased to obtain a sufficient seizure prediction with
small FPRmax (FPRmax < 0.15 FP/h) (Aschenbrenner-
Scheibe et al., 2003; Maiwald et al., 2004). This is based
on considerations, that e.g. for pharmacorefractory
patients with a typical mean seizure frequency of three sei-
zures per month (Bauer and Burr, 2001), for an interven-
tion system with a false prediction rate of 0.15 FP/h, up
to 97% of all alarms would be false alarms, even for a sen-
sitivity of 100%. If we apply these considerations to our
results obtained from 420 h EEG and 22 seizures, a sensi-
tivity of 50% would cause 85% false alarms.

An important standard for the assessment of the perfor-
mance of a prediction method is the comparison with the
performance of a random predictor (Mormann et al.,
2006). A critical value rrand,a for a significance level a of
such a random predictor was presented for estimations of
sensitivity of prediction methods from EEG signals in an
earlier study (Schelter et al., 2006a). The comparison of
the performances of the prediction method investigated
with rrand,a for a = 0.05 indicates that on average the pre-
diction method may perform better than an unspecific ran-
dom predictor regardless of the recording site of the
investigated EEG, but for single patients also non-signifi-
cant sensitivities were obtained. Further, a reliable predic-
tion method should provide a patient specific value for the
intervention time. In our study, for most patients sensitiv-
ity is nearly independent of the investigated duration of the
chosen intervention time IT.

A possible explanation of this insufficient performance
may be found by regarding the features itself. Characteris-
tically for the seizure prediction pattern of the investigated
method, the feature FSz increases before seizure onset. But
this pattern also appears within interictal segments, during
which FSz oscillates irregularly with comparable amplitude
to preictal segments. For one patient we also found a char-
acteristic sudden drop in FSz which interrupts the increase
of FSz some minutes in advance of the seizure onset. For
other patients, features obtained from scalp as well as from
invasive EEG recordings actually showed circadian varia-
tions. This indicates that the feature FSz is also sensitive
to non-seizure related brain activities.

For patient 06, an extensive coverage of brain areas
mostly secondarily involved in epileptic activity shows par-
ticularly clearly a circadian rhythmicity which corresponds
well to changes in vigilance derived from sleep staging of
surface EEG. Thus, there is a major increase in the baseline
of the feature FSz when this patient fell asleep and a
decrease to a lower level of FSz when the patient awoke
again over several cycles. Altogether these observations
confirm well the results of a previous study based on
non-intracranial EEG (Schindler et al., 2002), where the
features also oscillated with increased amplitude during
night, indicating sleep induced changes of the measure.

Such circadian changes may markedly affect the perfor-
mance of seizure prediction algorithms when a single
threshold crossing is used as a criterion for the identifica-
tion of the preictal period (Schelter et al., 2006b). For
example increases of the feature FSz during sleep may cause
increased false predictions at night, due to the application
of a fixed threshold in the presented retrospective analysis.
The usage of a continuously adapted threshold compensat-
ing for increases of mean and variance of the feature may
obviate such false predictions during sleep and thus
improve the performance (Mormann et al., 2003a; Esteller
et al., 2005; Schelter et al., 2006b). Moreover, an analysis of
false predictions, for example by visual inspection of fea-
tures and respective EEG data in a retrospective analysis,
may help to provide insights into underlying mechanisms
causing false predictions (Navarro et al., 2005). But note
that false predictions during periods of sleep may not have
the same therapeutic implications for patients (Schelter
et al., 2006b).

Thus, the measure used here certainly does not only
reflect synchronous behavior of pathological activity as
expected in the seizure onset zone but also physiological
changes. Such not epilepsy-related variability may limit
the specificity of the measure for seizure prediction but
otherwise it may offer additional fields of implementations.
Interestingly the features obtained from simultaneous scalp
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and intracranial EEG recordings comprise a very similar
dynamic behavior and showed similar influences of seizure
and non-seizure related influences from EEG.

4.3. Conclusions and outlook

Features of the prediction method obtained from scalp
and corresponding invasive EEG recordings showed a sim-
ilar dynamical behavior. Conspicuous differences between
the respective performances were not observed. An adapta-
tion of the investigated multivariate prediction method
originally developed for non-invasive EEG to intracranial
EEG data is possible. The prediction performances
achieved on the investigated data pool were not sufficient
regarding a clinical valid seizure prediction with large sen-
sitivities and specificities, but alterations of the prediction
algorithm, e.g. utilizing dynamical thresholds, in order to
improve the performance are conceivable.

Further we observed that seizure detection is also possi-
ble on intracranial EEG recordings. Depending on the
patient, detection performances may be superior utilizing
scalp or intracranial EEG. Due to the obtained detection
performances, possible supporting applications of the
detection method are conceivable, for instance an auto-
matic detection of epileptic seizures during clinical moni-
toring with large sensitivities and reasonable false
detection rates.

We observed influences of sleep on the spiking rate and
FSz. Future investigations will examine the effects of sleep
as well as changes of vigilance, and subclinical seizures
on the performance of the considered detection and predic-
tion method. In this study and previous applications of the
investigated detection and prediction method, fixed thresh-
olds were used for seizure detection and prediction. A fur-
ther current point of interest is the application of
dynamical thresholds in order to improve performances
(Schelter et al., 2006b).

In particular, the usage of time-continuous, simulta-
neous EEG recordings of scalp and invasive electrodes
enables new possibilities in analyzing multivariate seizure
detection and prediction algorithms. It may provide new
insights into underlying mechanisms of generation and
propagation of seizures as well as physiological synchroni-
zation mechanisms. Thus, further collection of such data is
an important objective and will improve future efforts in
statistical validations in this field.
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