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Abstract

In this Letter, we show that coherence and phase synchronization analysis are sensitive but not specific in detecting the correct class of underly-
ing dynamics. We propose procedures to increase specificity and demonstrate the power of the approach by application to paradigmatic dynamic
model systems.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Several approaches and strategies exist for analyzing the
great variety of time series generated by multivariate dynamic
processes

(1)ẋ(t) = f
(
x(t),p(t),η(t)

)
.

The multivariate process is denoted by x(t), p(t) is a set of pa-
rameters, and η(t) a multidimensional noise process. The type
of dynamics and the interaction structure between the processes
is modeled by the function f. In the following, we concentrate
on two main classes of processes: non-linear deterministic and
linear stochastic processes [1,2]. For both classes different tools
have been developed in order to analyze time series generated
by these processes. These analysis techniques have been widely
applied to empirical time series [3–18].
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In the non-linear deterministic case, systems of coupled
self-sustained oscillators are examined. Coupled self-sustained
oscillators are able to synchronize [19]. Apart from oscilla-
tors characterized by a limit cycle behavior, chaotic oscil-
lators attracted particular interest over the last years. Based
on the different synchronization regimes gained by coupled
chaotic oscillators, the further analyses concentrate on these
oscillators. Increasing the coupling strength between chaotic
non-identical oscillators can lead to a transition from unsyn-
chronized to phase synchronized oscillators [20]. In addition,
phase synchronization is characterized by almost uncorre-
lated amplitudes since their correlation increases slow com-
pared to the phase correlation. Phase synchronization precedes
a lag and almost complete synchronization accompanied by
highly correlated amplitudes [21]. Since in applications data
are influenced by noise, the underlying theory of non-linear
deterministic dynamics has been extended to stochastic sys-
tems [8].

In the linear stochastic case, transfer function systems are
investigated [1]. Transfer functions represent filters relating
processes. While processes and filters initially were assumed
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to be linear, linearity of processes is not necessary, and the
corresponding analysis techniques have been extended to cer-
tain types of non-linear transfer functions and feedback systems
[22,23].

It is important to note that systems from these two classes
show different dynamic behavior. Transfer function systems are
characterized by a clearly defined input and output. The output
signal ceases to exist in absence of an input. For synchronizing
systems, however, there is no input and output since both oscil-
lators are self-sustained and continue oscillating independently
in absence of any coupling. Thus, coupled self-sustained oscil-
lators are able to synchronize which is impossible for transfer
function systems.

For either systems, analysis techniques have been developed
which have been shown to be sensitive in detecting the dy-
namic properties if the assumed class of processes is present.
For instance, coherence analysis is able to detect interactions in
transfer function systems. This procedure is referred to as the
so-called direct problem.

However, in application to empirical data, one faces an in-
verse problem, since the underlying dynamics generating the
data is not known in advance. For instance, it is not possible to
unequivocally conclude a transfer function system from a sig-
nificant coherence spectrum. Therefore, it is desirable to apply
analysis techniques that are specific in detecting these differ-
ent dynamic properties only if the assumed class of processes
is present.

The established analysis techniques coherence and phase
synchronization are widely used in applications, for instance in
neuroscience to electroencephalographic recordings. When uti-
lized to learn neurophysiological or pathophysiological mech-
anisms, knowledge of the specificity of the time series analysis
techniques applied is essential. In this Letter, we show that co-
herence and phase synchronization are sensitive but not specific
in detecting the correct class of underlying dynamics generating
the time series investigated.

A coupled stochastic Roessler system is used as an example
for the class of coupled self-sustained oscillators. As a repre-
sentative for transfer function systems, the x-component of a
Roessler oscillator is time-delayed and propagated through a
first order low-pass filter. These two classes of dynamic sys-
tems are introduced in Section 2. In Sections 3 and 4, we
demonstrate sensitivity and lack of specificity of phase syn-
chronization and coherence analysis for the systems under in-
vestigation. To overcome the limitation of low specificity of
coherence and phase synchronization analysis, we propose a
combination of both methods and a detailed analysis of the
phase signals in Section 5. For the paradigmatic model sys-
tems investigated, we show that a specific inference of the
underlying dynamics is possible by the proposed methodol-
ogy.

2. Two classes of dynamics

In the following subsections, examples of the two classes,
namely coupled self-sustained non-linear oscillators and linear
transfer function systems, are introduced.
2.1. Coupled self-sustained oscillators

As a representative of coupled self-sustained and therefore
necessarily non-linear oscillators, the stochastic extension of
a coupled Roessler system with frequencies ω1,2 [24]

ẋ1,2 = −ω1,2y1,2 − z1,2 + ε1,2(x2,1 − x1,2) + σ1,2η1,2,

ẏ1,2 = ω1,2x1,2 + ay1,2,

(2)ż1,2 = b + (x1,2 − c)z1,2

is investigated. Coupling strength and direction between the
two oscillators are determined by the parameters ε1,2. Dy-
namic noise influence is modeled by Gaussian distributed ran-
dom variables η1,2 ∼ N (0,1) leading to the variance σ 2

1,2 of
the noise term σ1,2η1,2. Using a = 0.15, b = 0.2, c = 10, and
ω1,2 = 1 ± 0.015 Hz leads to chaotic oscillations for the deter-
ministic system [20] (cf. Fig. 1(a)).

2.2. Transfer function systems

As a representative of a transfer function system, we investi-
gate a first order low-pass filtered and time-delayed propagated
signal

(3)u(t) = a1u(t − 1) + a2x(t − τ) + σ η̃(t),

where x(t) is the x-component of a stochastic Roessler system
with a = 0.15, b = 0.2, c = 10, and ω = 1 (Fig. 1(b)). The low-
pass filter is realized by the autoregression of order one with
parameter 0 � a1 < 1, since the spectrum of process (3) is given
by

(4)Su(ω) = Sa2x+σ η̃(ω)

|1 − a1e−iω|2
ω�1= Sa2x+σ η̃(ω)

(1 + a1)2 + a1ω2
,

where S(·) denotes the spectrum of process (·). The spectrum
of the output signal u(t) shows that small frequencies are
weighted with a higher amplitude, which characterizes a low-
pass filter. The magnitude and lag of the time-delayed influence
are quantified by the parameters a2 and τ , respectively. σ η̃(t)

represents additional stochastic influences modeled by uncorre-
lated Gaussian noise η̃ ∼N (0,1).

The major difference between system (2) and system (3) can
be illustrated by choosing ε1,2 = 0 and a2 = σ = 0, respec-
tively. As the Roessler oscillators are self-sustained, both con-
tinue oscillating independently, while in the case of the transfer
function system, the output signal u(t) decreases exponentially
for arbitrary initial conditions.

In the following investigations, the standard deviation of the
noise is chosen to be σ1,2 = 1.5 for the coupled Roessler system
and σ = 1.5 for the transfer function system, respectively.

3. Phase synchronization

To detect phase synchronization of coupled non-identical
chaotic oscillators with ω1,2 = 1 ± �ω, phase and amplitude
of the real-valued signal have to be considered. Several ap-
proaches for calculating phase and amplitude of a signal were
proposed [20,25,26]. In what follows the definition based on
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Fig. 1. Time series of a coupled stochastic Roessler system (a) and of the considered transfer function model (τ = 64) (b). Phase difference Φ1,1 for the coupled
stochastic Roessler system (c) and for the transfer function model (d). The small subplot in (d) shows a section of the phase difference of two time units duration
more closely. Considering the temporal evolution of the phase differences Φ1,1, rapid phase changes in one direction are preferred for the transfer function model.
For the coupled stochastic Roessler system, phase jumps in both directions occur with almost the same frequency in this example. Corresponding normalized
histograms of Ψ1,1 in (e) and (f). Even if both systems possess a different dynamic behavior, a preferred value of Ψ1,1 is taken for both. A differentiation between
both classes of dynamics is impossible by just applying phase histogram analysis.
Gabor’s analytic signal representation [27]

(5)ψ(t) = x(t) + ix̂(t),

expressed via its polar representation

(6)ψ(t) = A(t)eiΦ(t),

where A(t) denotes amplitude and Φ(t) phase of the analytic
signal, is used. The Hilbert transform [28]

(7)x̂(s) = 1

π
P.V.

∫
x(t)

1

s − t
dt

yields the imaginary counterpart x̂(t) of the real-valued ob-
served signal x(t); P.V. refers to Cauchy’s principal value. This
procedure is reasonable for oscillatory signals with an almost
clearly defined single frequency [29]. Broad-band signals or
signals with more frequency components are band-pass filtered
in order to apply the analytic signal approach.

If the phase locking condition [20]

(8)
∣∣nΦ(1) − mΦ(2)

∣∣ = |Φn,m| < const,

is fulfilled for two non-identical oscillators, where Φ(i) denotes
the phase of time series i and Φn,m the phase difference for
given integers n and m, these oscillators are referred to as n:m
phase synchronized. In the presence of additional stochastic in-
fluence, phase jumps of ±2π,±4π, . . . occur. Therefore, the
distribution of

(9)Ψn,m = Φn,m mod 2π
is investigated. For two phase synchronized processes, a sharp
peak in the histogram of the phase differences is observed [8].
A synchronization index, quantifying the sharpness of these
peaks, is given by [30,31]

(10)R2
n,m = 〈

cosΨn,m(t)
〉2 + 〈

sinΨn,m(t)
〉2

.

This synchronization index is normalized with Rn,m = 1 indi-
cating a constant phase difference and Rn,m = 0 for uniformly
distributed phase differences.

3.1. Sensitivity

Since phase synchronization analysis has been developed for
detection of weak coupling between self-sustained oscillators,
to investigate sensitivity, in Fig. 1(c) the phase difference Φ1,1
calculated for the x1,2-components of the Roessler system (2)
with a frequency mismatch 2�ω = 0.03 is investigated. The
bidirectional coupling is chosen to be ε1,2 = 0.1. Several phase
jumps of 2π are observed while the phase difference in between
is almost constant. This leads to a sharp peak in the distribu-
tion of Ψ1,1, illustrated in Fig. 1(e). The synchronization index
R := R1,1 = 0.76 substantiates the presence of phase synchro-
nization in this case.

3.2. Specificity

To investigate specificity, phase synchronization analysis is
applied to the transfer function system, Eq. (3), with a1 = 0.3
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and a2 = 0.7 using the x-component of a stochastic Roessler
oscillator as input process. In Fig. 1(d) the phase difference
Φ1,1 between the input process x and the output process u (cf.
Eq. (3)) and in Fig. 1(f) the corresponding distribution of Ψ1,1 is
shown. Due to the sharp peak, a phase synchronization between
the two processes is also strongly indicated. But the input sig-
nal and the filtered and propagated output signal do not fulfill
the necessary conditions for phase synchronization as they are
not self-sustained. Thus, quantifying the histogram of the phase
difference is not a specific analysis technique and it is therefore
not possible to conclude the type of underlying dynamics by
just investigating the distribution of the phase difference Ψ1,1.

4. Coherence analysis

A classic analysis technique for detection of linear rela-
tionships in transfer function systems is coherence analysis.
Briefly, coherence is the Fourier domain counterpart of the
cross-correlation function. Coherence between two processes
xi and xj is defined as

(11)Cohij (ω) = |CSij (ω)|√
Sii(ω)Sjj (ω)

,

while

(12)Sii(ω) =FT
{
ACFii (τ )

}
and

(13)CSij (ω) =FT
{
CCFij (τ )

}
, i �= j.

FT {·} denotes the Fourier transformation, ACF the auto-
covariance, and CCF the cross-covariance function. Sii(ω)

denote the auto- and CSij (ω) the cross-spectra. Coherence is
normalized in the unit interval [0,1], while a coherence value
of 1 is observed for a perfect linear relationship between the
processes. For a α-significance level, absence of a linear re-
lationship between the two processes can be deduced from a
coherence value below a critical value

(14)s =
√

1 − α
2

ν−2 .

The equivalent number of degrees of freedom ν depends on the
estimation procedure [23,32–36].

4.1. Sensitivity

Since coherence analysis has been developed to detect in-
teractions in linear transfer function systems, to investigate
sensitivity, coherence analysis is shown for our transfer func-
tion model, Eq. (3), in Fig. 2(a). The critical value for a 1%-
significance level is marked by the vertical line. Especially at
the oscillation frequency (dotted line), a highly significant co-
herence is observed. It reflects the transfer function system sim-
ulated and indicates sensitivity of the analysis technique. The
almost vanishing coherence for higher frequencies is due to the
filter properties and the additional stochastic noise influence.
Fig. 2. Coherence between the x-component of a Roessler oscillator and its
propagated signal u (a) and coherence between the x1- and x2-components of a
bidirectionally coupled stochastic Roessler system (b). The dotted vertical line
indicates the oscillation frequency of the input oscillator in (a) and the common
frequency of the synchronized oscillators in (b). Since in both figures coher-
ence exceeds the critical values for a 1%-significance level, given by the solid,
horizontal line, a linear relationship is strongly indicated. A differentiation be-
tween both classes of dynamic systems is impossible by just applying coherence
analysis.

4.2. Specificity

To investigate specificity, coherence analysis is applied to
the coupled stochastic Roessler system Eq. (2). The critical
value for a 1%-significance level is marked by the vertical
line. A highly significant coherence is detected between the
x-components, cf. Fig. 2(b). Thus, coherence analysis is not
specific in detecting linear transfer function systems.

5. Approach to increase specificity

In this section, we propose for both, coherence and phase
synchronization analysis, an approach to increase specificity
in detecting the type of underlying dynamics. The first step is
to investigate the direction of phase slips. Second, coherence
analysis is applied to the fluctuations of the phase signals.

5.1. Direction of phase jumps

In Fig. 1(c), phase jumps occur in both directions with al-
most the same frequency for the example of a bidirectionally
coupled stochastic Roessler system. In contrast in Fig. 1(d),
phase changes in one direction are preferred for the transfer
function model under investigation. Due to the rapidity of these
phase changes, caused by trajectories of the analytic signal
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Fig. 3. Washboard potential of the phase difference for two different parameter
choices. In (a) a low coupling strength and a high frequency mismatch between
the Roessler systems is chosen. In (b) the frequency mismatch is chosen to
be low compared to the high coupling. The stochastic influence may lead to
jumps of the phase difference in both directions with almost the same probabil-
ity in (b). In contrast, phase jumps in the positive horizontal direction are more
likely in (a).

close to the origin of the phase space, they are not distinguish-
able from phase jumps between synchronized self-sustained os-
cillators and are therefore also referred to as phase jumps in the
following.

In order to explain the difference in the directionality of
phase jumps for the two classes (cf. Fig. 1), an approximation
of the potential for the phase difference [19]

(15)V (Φ1,1) = 2�ωΦ1,1 + ε cos(Φ1,1)

is considered for coupled oscillatory systems. The correspond-
ing potential is outlined in Fig. 3(a) and (b). In Fig. 3(a) the
coupling strength is chosen to be low compared to the frequency
mismatch. In Fig. 3(b) the potential for a highly synchronized
state is shown. For the stochastic Roessler system under inves-
tigation, the noise influence leads to jumps of the phase differ-
ence. According to the different steepness of the potentials for
the phase difference, phase jumps in one direction are preferred
for high frequency mismatches and low coupling strengths (cf.
Fig. 3(a)) or phase jumps in both directions are observed with
almost the same probability for highly synchronized states (cf.
Fig. 3(b)). However, for a high frequency mismatch and a low
coupling strength, a rather low synchronization index would be
observed. The potential of the phase difference has no clearly
pronounced minimum (Fig. 3(a)).

In the case of the transfer function model under investiga-
tion, phase jumps in one direction seem to be preferred as illus-
trated in Fig. 1(d). This effect can be motivated by the following
argument. Imagine that there is no low-pass filter. Then the in-
put Roessler system shows phase trajectories close to the origin
of the phase space, leading to phase slips. The output signal, a
time-shifted version of the input signal, exhibits phase slips a
few steps time-lagged to the input signal. Due to the fact that
the additional noise influence in the output signal usually is ex-
pected to lead to more phase jumps in u than in x, one preferred
direction of phase jumps is observed.
In order to investigate the direction of phase jumps and to
test the validity of the hypothesis above, the number of phase
jumps in negative direction pj− and in positive direction pj+
are counted and a normalized index

(16)Π = |pj+ − pj−|
pj+ + pj−

is introduced. This index is close to one, if phase jumps in one
direction are preferred and zero, if phase jumps in both direc-
tions occur with almost the same frequency. If pj+ = pj− = 0,
Π is set to zero. This index is illustrated in Fig. 4(a) for the cou-
pled stochastic Roessler system and Fig. 5(a) for the transfer
function model under investigation. In Fig. 4(b) and Fig. 5(b),
respectively, corresponding values of the phase synchronization
index R (cf. Eq. (10)) are given.

For the coupled stochastic Roessler system the frequency
mismatch �ω between the two oscillators and the bidirectional
coupling strength ε1,2 are controlled. High synchronization val-
ues for certain parameter ranges in Fig. 4(b) strongly indicates
phase synchronization between the two oscillators. The corre-
sponding area belongs to a small frequency mismatch combined
with a rather strong coupling. For these parameter values, the
number of phase jumps in positive direction is approximately
of the same order of magnitude as the number of phase jumps
in negative direction and therefore the index Π is close to zero,
which confirms the observation in Fig. 1(c). For some combi-
nations of the parameters ε1,2 and �ω, phase jumps in both
directions occur but with a higher frequency in one direction.
This is indicated by a value of the index Π > 0. For the area
corresponding to a high frequency mismatch and a low coupling
strength, phase jumps with one preferred direction occur. This
area of parameters, however, corresponds to rather low values
of the phase synchronization index.

In the case of the transfer function system the two parame-
ters a1 and a2 are varied. Values of the synchronization index R

indicate a relationship between the two processes for a2 > 0.2
and almost independent of a1 (Fig. 5(b)). The parameter a2
represents the direct influence of the input signal to the output
signal. In this area, phase jumps are preferred in one direction.
Therefore, the index Π is close to one. But in a small range of
parameters a1 and a2, the index Π is close to zero while the
synchronization index R indicates an interaction between the
processes.

5.2. Coherence applied to phase fluctuations

Phase synchronization is a frequency related phenomenon.
Therefore, a relation between the phases is expected exclusively
at the oscillation frequency for phase synchronizing systems. In
contrast, a phase relations between a time-shifted and filtered
output signal and its corresponding input signal is expected to
be present over a certain range of frequencies. Based on this
assumption, coherence analysis is applied to the amplitudes A1
and A2 and to the phase fluctuations

(17)Φ(1,2)(t) − Ω1,2t
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Fig. 4. (a) Index Π (cf. Eq. (16)) for a coupled stochastic Roessler system depending on the bidirectional coupling ε1,2 and frequency mismatch �ω. (b) Values
of the corresponding synchronization index R (cf. Eq. (10)). The upper right corner shows high values of R, strongly indicating a preferred value of the phase
difference. In the area with high synchronization index R, the index Π quantifying a preferred direction of phase jumps is close to 0. The high values of Π in the
lower left area can be neglected since no phase synchronization is detected by the index R.

Fig. 5. (a) Index Π (cf. Eq. (16)) for the transfer function system depending on parameters a1 and a2. (b) Values of the corresponding synchronization index R

(cf. Eq. (10)). If a2 exceeds a value of 0.2, independent of a1, high values for the synchronization index are estimated leading erroneously to conclusion of phase
synchronization. The index Π indicating a preferred direction of phase jumps is close to one in the area of high values of R. Only in a small area for a1 between 0.6
and 0.8, the index Π is close to zero.
estimated from the analytic signal representation (cf. Eq. (6)),
in order to distinguish between both types of dynamics.

In the following, coherence between the x-components, am-
plitudes and phase fluctuations for various coupling strengths
of the coupled stochastic Roessler system are considered. For
a low coupling strength ε1,2 = 0.008, no significant coher-
ence can be detected in any case (Fig. 6(a)). This coupling
strength corresponds to non-synchronized oscillators in the
deterministic case. Increasing the coupling to ε1,2 = 0.024
(Fig. 6(b)), which refers to the onset of phase synchroniza-
tion in the deterministic case, leads to a significant coherence
of the x-components at their oscillation frequency ω1,2/(2π) ≈
0.16 Hz. Additionally, the amplitudes of the analytic signal A1
and A2 (cf. Eq. (6)) are also coherent at this frequency, while
their phase fluctuations are still uncorrelated. A further increase
of the coupling strength to ε1,2 = 0.084 increases the coher-
ence between A1 and A2 and between x1 and x2 in the low
frequency range (Fig. 6(c)). For this coupling strength, there is
also a significant coherence between the phase fluctuations at
the oscillation frequency. For ε1,2 = 0.084, phase synchroniza-
tion between both oscillators is given in the deterministic case.

In the case of the transfer function system with a1 = 0.3
and a2 = 0.7, a significant coherence over a broad frequency
range is detected for all three coherence spectra (Fig. 7). Here,
coherence between the phase fluctuations is also significant
in the low frequency range. This is different for the coupled
stochastic Roessler system, where the coherence spectra yield
only significant coherence values at the oscillation frequency
but not in the low frequency range. Since there exists an al-
most constant phase difference between the x-components of
the coupled stochastic Roessler system, a significant coherence
between the phase fluctuations at the oscillation frequency is
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Fig. 6. Coherences estimated between the components x1 and x2, the am-
plitudes of the analytic signal A1 and A2 as well as coherence between the
phase fluctuations for three coupling strengths ε1,2 of a bidirectionally cou-
pled stochastic Roessler system. The 1%-significance level is given by the solid
horizontal lines. (a) For a low coupling strength of ε1,2 = 0.008, no signif-
icant coherences are detected in neither of these coherence spectra. (b) For
ε1,2 = 0.024, significant coherences are observed for the x-components and
the amplitudes at the oscillation frequency ω/2π ≈ 0.16 Hz, while the phase
fluctuations are still not coherent. (c) Coherences for a coupling strength of
ε1,2 = 0.084. All three coherence spectra show a significant peak at the oscilla-
tion frequency. The coherence between the phase fluctuations is exclusively
significant at the oscillation frequency. Additionally, coherence between the
components as well as coherence between the amplitudes is significant in the
low frequency range.

expected. But at the remaining frequencies, no significant co-
herences are present as phase synchronization is a frequency
related phenomenon. In contrast, highly significant coherences
between phase fluctuations are expected for the transfer func-
tion system, as the output signal is only the time-shifted and
filtered input signal. A time-shift and filter lead to only slight
changes in the relationship between the phase signals. Coher-
ence spectra between phase fluctuations yield thus a feature
to distinguish between coupled self-sustained oscillatory and
transfer function systems.

These results are substantiated for various values of �ω and
ε1,2 or a1 and a2 in Fig. 8(a) and (b), respectively. Significant
coherence values in a frequency range between 0.02 and 0.12
are averaged. In contrast to the coupled stochastic Roessler sys-
tem, the average values for the phase fluctuations are highly
coherent in case of the transfer function system for a1 < 0.8
and a2 > 0.4.

5.3. Procedure with high specificity

We have introduced two different approaches to increase
specificity in the previous sections. The corresponding results
are summarized in Fig. 8. The upper row shows average coher-
ence values (a), values of the phase synchronization index R

(c) and values of the index Π (e) for the coupled stochastic
Roessler system. In the lower row, the corresponding values
are shown for the transfer function model under investigation
(Fig. 8(b), (d), (f)).

To exclude false positive conclusions about the underlying
dynamics for phase synchronization and coherence analysis,
our investigations suggest the following rule for a sufficiently
high synchronization index R: If phase jumps in one direction
are preferred and phase fluctuations are significantly coherent
over a broad range of frequencies, there is strong evidence for a
transfer function system. In contrast, if phase jumps have no fa-
vorite direction and coherence between the phase fluctuations
is not significant or only at the oscillation frequency, there is
strong evidence for a coupled self-sustained stochastic oscilla-
tory system.

Conclusions about the underlying dynamics have to be taken
with care, if results do not clearly fit into one of these two cases.
For example, for a1 ≈ 0.7 and a2 ≈ 0.9 in the transfer function
system considered, there is no favorite direction of phase jumps
quantified by an index Π ≈ 0 arguing for phase synchronization
(Fig. 8(f)). But as phase fluctuations are highly significantly co-
herent (Fig. 8(b)), a false conclusion to a coupled self-sustained
oscillatory system is prevented.

It should be emphasized that the rules derived above do not
apply in general. For instance, in the case of almost complete
synchronization there are no phase jumps at all and the coher-
ence will be broad-band. Following the above mentioned rules
no conclusion is possible, especially no erroneous conclusion is
drawn. For other cases, simulation studies as presented in this
Letter have to be tailored to the given problem. This is not a
weakness of this approach but reflects the challenge of solving
an inverse problem.

6. Conclusion

Based on results of analysis techniques applied to empiri-
cal time series, conclusions about the nature of the underlying
system are drawn in many applications. Frequently, the type of
underlying dynamics is of particular interest. If analysis tech-
niques are sensitive but not specific in detecting the type of un-
derlying dynamics, conclusions about the dynamic are difficult
and sometimes even impossible. We illustrated missing speci-
ficity of two widely used analysis techniques by investigations
of two representatives of coupled self-sustained oscillators and
transfer function systems. Furthermore, conditional on these
representatives, we presented extensions to improve specificity
based on a detailed analysis of the established methods, coher-
ence and phase synchronization analysis. As a first extension,
we investigated the direction of phase jumps. As a second ap-
proach, coherence analysis was extended to phase fluctuations
estimated from the analytic signal representation.

Given a large phase synchronization index R, examination of
the direction of phase jumps and coherence between the phase
fluctuations leads to the following rule to increase specificity for
the investigated model systems: If phase jumps in one direction
are preferred and phase fluctuations are significantly coherent
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Fig. 7. Coherences between the components x and u, between the amplitudes A1 and A2 as well as coherence between the phase fluctuations for the transfer
function system. The 1%-significance level is given by the solid horizontal lines. All three coherence spectra are highly significant over a broad frequency range.
Especially a significant coherence between the phase fluctuations is detected in the entire low frequency band. This is in contrast to the coupled stochastic Roessler
system.

Fig. 8. Averaged coherence values between the phase fluctuations (a), values of the phase synchronization index R (c), and values of the index Π quantifying direc-
tion of phase jumps (e) for the coupled stochastic Roessler system. Averaged coherence values between phase fluctuations (b), values of the phase synchronization
index R (d), and values of the index Π (f) for the transfer function system. For a high value of the synchronization index R, combination of coherence applied to
the phase fluctuations and the direction of phase jumps allows for specific conclusions about the underlying dynamics.
over a broad range of frequencies, there is strong evidence for
a transfer function system. In contrast, if phase jumps have no
favorite direction and coherence between the phase fluctuations
is not significant or only at the oscillation frequency, there is
strong evidence for a coupled self-sustained, stochastic oscil-
latory system. For results which do not clearly fit into one of
these two cases, conclusions to the underlying dynamics have
to be taken with care for the model systems under investigation.

The restriction to two representatives prevents a general con-
clusion whether analysis techniques with high specificity could
be developed for a larger number of model systems. How-
ever, since the proposed adaptations of analysis techniques to
increase specificity are based on rather general heuristic theo-
retical motivations, they are expected to work for a wider class
of processes. Further work will be devoted to the investigation
of systems such as other transfer function systems and excitable
systems [37–39].
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