
†Author for c

Received 7 A
Accepted 3 A
Analysis of single ion channel data
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Hidden Markov models are widely used to describe single channel currents from patch-clamp
experiments. The inevitable anti-aliasing filter limits the time resolution of the measure-
ments and therefore the standard hidden Markov model is not adequate anymore. The notion
of time-interval omission has been introduced where brief events are not detected. The
developed, exact solutions to this problem do not take into account that the measured
intervals are limited by the sampling time. In this case the dead-time that specifies the
minimal detectable interval length is not defined unambiguously. We show that a wrong
choice of the dead-time leads to considerably biased estimates and present the appropriate
equations to describe sampled data.
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1. INTRODUCTION

Ion channels are large proteins which are situated in
the cell membrane and which control the flux of ions
from one side of the cell membrane to the other. It is
assumed that these proteins can exist in different
configurations which correspond to minima of the
energy landscape of the protein. The stochastic
switching of the protein between these configurations
or states is thus adequately described by a continuous-
time Markov chain.

Usually the channels exhibit only two experimen-
tally distinguishable conductance levels—open or
closed. Since in general more physiological configur-
ations of the protein exist the switching between the
states cannot be observed directly. Therefore, the
measured current through single ion channels is
described by an aggregated Markov process. The
unobserved dynamical behaviour of the channel is
modelled by a Markov chain and the observed current
depends on whether the occupied state belongs to the
closed or the open aggregate. Information on modelling
of ion channels with aggregated Markov models can,
e.g. be found in Colquhoun & Hawkes (1982) or Fredkin
et al. (1985). Hidden Markov models additionally
incorporate the observational noise which is assumed
to be white and Gaussian. Since in aggregated models
the states of the underlying Markov chain are also
hidden we will in the following not distinguish between
these two terms. For a detailed description of hidden
orrespondence (yuki@fdm.uni-freiburg.de).
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Markov models confer, e.g. Rabiner (1989) and
MacDonald & Zucchini (1997). A thorough review
can be found in Ephraim & Merhav (2002).

Owing to the aliasing effect the measured currents
have to be low-pass filtered before sampling which
violates the assumption of the standard hidden Markov
model that the noise-free current changes instan-
taneously between open and closed and the observa-
tional noise is white. If the noisy, filtered time series is
fitted to a hidden Markov model it has been shown
that this violation biases the parameter estimates
(Venkataramanan et al. 1998b). Furthermore when
different models are compared this misspecification can
lead to the selection of the wrong model (Michalek et al.
1999). Several approaches to extend hidden Markov
models to incorporate the filter effects have been
developed (Venkataramanan et al. 1998a,b, 2000;
Michalek et al. 2000; Qin et al. 2000; Fredkin & Rice
2001). All these extensions have the major drawback
that they are numerically expensive.

In another approach the noisy signal is idealized and
converted into a sequence of open and closed dwell
times, e.g. by means of a half-amplitude threshold. The
filter gives rise to the omission of brief intervals since
this threshold is not achieved by events that are too
short. Thus, a constant dead-time t of the filter is
introduced and, for example, all open times shorter
than this dead-time t are added to the adjacent closed
times forming long apparent closings.

Hawkes et al. (1990) have developed recursion
formulas for the exact solution of the problem. Since
with these equations the open time and closed time
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Figure 1. Illustration of the filter model with fixed time resolution and of the extended open and closed times, etO and et C. The
upper panel displays an idealized current before filtering, the observed current is shown in the lower panel. The extended dwell
time-intervals are equivalent to the observed intervals shifted by an amount t.
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distributions cannot be calculated reliably for large
dwell times, t, Jalali & Hawkes (1992) have given an
approximate solution for this case. However, their
model assumes that the measured time-intervals are
obtained exactly, i.e. without sampling. Such continu-
ous interval durations can, e.g. be achieved if the
idealization of the data is performed by interpolation or
time course fitting (Colquhoun & Sigworth 1983).

If instead the dwell time lengths are obtained by a
simple threshold crossing method, they are multiples of
the sampling time. In this paper we derive the
appropriate solution for this situation. In this case the
dead-time t cannot be imposed on the data unambigu-
ously. Let Dt denote the sampling time and n a natural
number and consider the case that all events from the
sampled data record shorter than, e.g. nDt are missed.
If the dead-time t is defined such that all events strictly
shorter than t are missed and all events longer than or
equal to t are detected, the dead-time should be chosen
as tZnDt. If, conversely, the dead-time t is defined
such that all events shorter or equal to t and all
intervals strictly longer than t are detected, the dead-
time should be chosen as tZ(nK1)Dt. Even all times
between (nK1)Dt and nDt would be possible choices of
the dead-time t.

We show here that the choice of t being a multiple of
the sampling time leads to a substantial bias in the
estimation. Moreover, we derive the appropriate
equations for the case of sampled data in the fashion
of Hawkes et al. (1990) and Jalali & Hawkes (1992).

The method presented here is applicable for the
analysis of ion channels that exhibit only two con-
ductance levels but a generalization to ion channels
with subconductance levels is possible.

The corresponding theoretical considerations are
presented in the next section where the exact and the
approximate solution for sampled data are determined.
In §3 we investigate the validity of the approximate
solution and compare the sampled and unsampled
versions in their ability to estimate parameters.
2. THEORY

2.1. Filtering with fixed dead-time

First, we introduce the filter model which is illustrated
in figure 1. The upper panel displays an idealized single
J. R. Soc. Interface (2006)
channel current before filtering. The second open time
which is shorter than t is not detected which is shown in
the lower panel. Our definition of the time resolution
t is such that intervals that are shorter than or equal to
t are not detected.

This is an approximation to the behaviour of real
low-pass filters but it is applicable if short intervals do
not occur in quick succession. Indeed, the commonly
used Bessel filter distorts the form of the incoming
signal. However, relevant for the analysis is only the
duration above or below the half-amplitude threshold.
If an interval is long enough that the Bessel-filtered
signal reaches its full amplitude, the duration above
threshold has the same length as the unfiltered signal.
Thus, the dead-time t is chosen such that intervals
shorter than that are missed and has to be imposed on
the current record retrospectively.

Such a simple filter model is not adequate if the
incoming signals contain many consecutive short
intervals. The Bessel-filtered output would result in
an averaged, observed current near the half-amplitude
threshold.

In figure 1 the definitions of the extended open
and closed time-intervals etO and etC are also
illustrated which were introduced by Ball & Sansom
(1988). The length of an extended dwell time is the
same as the corresponding observed dwell times. The
extended dwell times are merely shifted by an
amount t. We will denote by et without index ‘O’
or ‘C’ an extended dwell time regardless of being an
open or closed time.
2.2. Computation of the likelihood

Here, we will derive the likelihood for the observed
process with sampling time Dt and dead-time t. To this
end, consider the underlying Markov chain with m
states, generator matrix Q and initial probability
distribution p. Without loss of generality the state
space is partitioned into CZ{1, ., nC} and
OZfnCC1;.;nCCnOZmg. In the following we
will adopt the convention that all times are specified
in units of the sampling time Dt.

Let egij(t) denote the probability that an extended
dwell time et ends at time t and the Markov chain is in
state X(t)Zj at time t given that state i is occupied at
time tZ0. eG(t), the matrix with entries egij(t),
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possesses the natural partitioning of
eG (t) = eG (t)

eGCO(t)0
The matrices Q, AZexp(QDt) and the vector p are
partitioned in the same fashion. If t equals zero we
return to the classical hidden Markov models and we
can readily calculate the matrices

GOCðtÞZ ðAOOÞtK1AOC for tO0; t2N: ð2:1Þ

We will omit the superscript ‘e’ to denote the matrices
corresponding to the standard hidden Markov case.
Given a sequence of measured dwell times
etO1;

etC1; .; etOn;
etCn the likelihood can be calculated

from these matrices as (Colquhoun et al. 1996)

LZpo
eGOCð etO1Þ eGCOð etC1Þ .eGOCð etOnÞu O;

ð2:2Þ
uO denotes a column vector of ones with appropriate
dimension. The form of the likelihood is similar to that
for hidden Markov models and suggests to perform the
calculation in the fashion of the forward-algorithm
developed by Baum et al. (1970).

The underlying Markov process including time-
interval omission is usually referred to as a semi-
Markov process. A semi-Markov process passes
through states according to a Markov chain having
a transition probability matrix P. The sojourn times
in the individual states are conditionally independent
given successive states visited and the distribution of
the sojourn times depends only on the state currently
visited and the state subsequently entered (Karlin &
Taylor 1975). For the unobserved switching of the
single channel with time interval omission these
properties are inherited from the underlying Markov
process. The sojourn time distributions are given
by the matrix eG(t) and the transition probability
matrix P by PZ

ÐN
0

eGðtÞ dt. The problem of time
interval omission when the underlying process itself is
a semi-Markov process has been addressed by Ball
and co-workers (Ball et al. 1991, 1993a,b; Ball &
Yeo 1994).

To calculate the matrix-valued functions eGOC(t) it
is convenient to define the matrix RO(t). The ij th
component of RO is the probability that the Markov
chain is in state X(t)Zj2O at time t given that the
state i2O has been occupied at time zero and no
closing has been detected in the interval [0,.,t ]. The
matrix RC is defined similarly. Thus, the matrix eGOC

can be expressed as
eGOCðtÞ ZROðtKtK1ÞAOCA

t
CC: ð2:3Þ

2.3. Exact solution of RO(t)

The key to the calculation of the likelihood lies in the
determination of RO. The corresponding form for RC

can be obtained by exchanging the indices O and C.
Hawkes et al. (1990) derived an expression for the

Laplace-transform of RO(t). When we replace the
Laplace-transforms in their derivation by Z -transforms
we can apply the same arguments and obtain the

OC 0
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following equations for R�
OðzÞ:

R�
OðzÞZ z1KAOOKAOC

XtK1

tZ0

ðAt
CCACOz

KtK1Þ
 !K1

z;

ð2:4Þ
R�

OðzÞZ
XN
kZ0

ðK1ÞkðT�
OCðzÞAt

CCAOCz
KðtC1ÞÞkT�

OOðzÞ:

ð2:5Þ

An asterisk will be used throughout this paper to
indicate the Z -transform f *(z) of a function f (t), t2N.
The matrix function T(t)dAt describes transitions of
the underlying Markov chain. Let us define

HOOðtÞdTOCðtÞAt
CCACO for tR0: ð2:6Þ

Then the Z-transform equation (2.5) can be inverted,
resulting in

ROðtÞZ
XK
kZ0

ðK1ÞkðH5k
OO5TOOÞðtKkðtC1ÞÞ; ð2:7Þ

where 5 denotes the discrete convolution. Note, that
from the infinite sum in equation (2.5) only a finite
number of terms is nonzero in equation (2.7) and the
upper limit K is the greatest natural number obeying
tOK(tC1).

Hawkes et al. (1990) found that for exactly measured
intervals the kth-summand in equation (2.7) is a
product of a polynomial in t of degree k with expo-
nential terms exp(mit). The time constants mi of the
exponential terms are the eigenvalues of the matrix Q.

When the data are sampled the solution of equation
(2.7) similarly leads to the product of a polynomial in t
with exponential terms lti . In this case the constants li
are the eigenvalues of the matrix A.

To calculate the convolutions of equation (2.7) it is
necessary to compute the finite sums which arise in
discrete convolutions. Therefore, we make use of the
following two lemmata. The proofs are given in
appendices A and B.

Lemma 2.1. For r, t2N and a2R, as1 the following
equation holds:

Xt
t 0Z0

at
0
t 0
r Z atC1

Xr
kZ0

Pr
lZ0 E

r
lka

l

ð1KaÞrC1
tk C

Xr
lZ0

Fr
l a

l

ð1KaÞrC1
:

ð2:8Þ

Recursion formulas for the coefficients Er
lk and Fr

l are
given in appendix A.

Lemma 2.2. For t, r2N the following sum can be
written as a polynomial in t of degree rC1:

Xt
t 0Z0

t 0
r Z

XrC1

kZ0

grk t
k : ð2:9Þ

The coefficients grk can be calculated recursively as is
shown in appendix B.

With these lemmata we are able to solve the
convolutions of equation (2.7). It is convenient to
define MkðtÞdðH5k

OO5TOOÞðtÞ. Then equation (2.7)
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reads

ROðtÞZ
XK
kZ0

ðK1ÞkMkðtKkðtC1ÞÞ; ð2:10Þ

and the solution of RO is given by the following
theorem.

Theorem 2.3. If A has the real eigenvalues li , iZ1,.,m,
then

MkðtÞZ
Xm
iZ1

BikðtÞlti for tO0;

where Bik(t) is a polynomial in t of degree k with
coefficients Cikr , so

BikðtÞZ
Xk
rZ0

Cikrt
r :

The coefficients Cikr are nO!nO-matrices.

Proof. The proof is by induction over k. Consider the
spectral decomposition of AZ

Pm
iZ1 li

~Ai. Then, from
the Z-transform of T(t) follows:

M0ðtÞZTOOðtÞZ ðAtÞOO Z
X
i

ð ~AiÞOOl
t
i ;

and the theorem is true for kZ0 with Ci00Zð ~AiÞOO.
We assume that the theorem is true for k and
calculate

MkC1 Z ðHOO5MkÞðtÞ;
where HOO(t) has been already defined as
HOOðtÞdTOCðtÞAt

CCACO. For convenience we define
the nO!nO-matrix Didð ~AiÞOCA

t
CCACO and note

that HOOðtÞZ
P

Dil
t
i . We thus obtain

MkC1 Z
Xt
t 0Z0

Xm
iZ1

Dil
tKt 0

i

 ! Xm
jZ1

Xk
rZ0

Cjkr t
0rlt

0

j

 !

Z
Xm
iZ1

Di

 Xm
j;jsi

 Xk
rZ0

Cjkrl
t
i

Xt
t 0Z0

lj

li

� �t 0

t 0
r

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
ð�Þ

!

Clti

Xk
rZ0

Cikr

Xt
t 0Z0

t 0
r

|fflfflffl{zfflfflffl}
ð��Þ

!
:

If the terms (�) and (��) are replaced by equations
(2.8) and (2.9) of lemmata 2.1 and 2.2, respectively,
the equation reads

MkC1Z
Xm
iZ1

Xm
j;jsi

Di

Xk
rZ0

Cjkr ltC1
j

Xr
sZ0

Pr
lZ0E

r
lsl

rKl
i llj

ðliKljÞrC1
ts

  (

CltC1
i

Xr
lZ0

Fr
l l

l
jl

rKl
i

ðliKljÞrC1

!

Clti

Xk
rZ0

Cikr

XrC1

sZ0

grs t
s

 !!)
:
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If we interchange the indices i and j of the
summand in the first row we obtain

MkC1 Z
Xm
iZ1

lti

Xm
j;jsi

Dj

Xk
rZ0

Cikr

Xr
sZ0

Pr
lZ0 E

r
lsl

rKl
j llC1

i

ðljKliÞrC1
ts

 ! !(

CDi

Xm
j;jsi

Xk
rZ0

Cjkr

Xr
lZ0

Fr
l l

l
jl

rKlC1
i

ðliKljÞrC1

 ! 

C
Xk
rZ0

Cikr

XrC1

sZ0

grs t
s

 !!)
:

Exchanging the order of summations over s and r
and sorting the terms by powers of ts gives the
desired result

MkC1 Z
Xm
iZ1

lti tkC1DiCikkg
k
kC1

�

C
Xk
sZ1

ts
Xm
j;jsi

Dj

Xk
rZs

Cikr

Pr
lZ0 E

r
lsl

rKl
j llC1

i

ðljKliÞrC1

 !"

CDi

Xk
rZsK1

Cikrg
r
s

#

C
Xm
j;jsi

Dj

Xk
rZ0

Cikr

Pr
lZ0 E

r
0sl

rKl
j llC1

i

ðljKliÞrC1

 ! 

CDi

Xk
rZ0

Cjkr

Xr
lZ0

Fr
l l

l
jl

rKlC1
i

ðliKljÞrC1

 !!

C
Xk
rZ0

DiCikrðgr0ÞgZ
! Xm

iZ1

lti

XkC1

sZ0

CiðkC1Þst
s:

&

The recursion formulas for Cikr can be read off by
comparing the coefficients of powers of ts. The
comparison gives

CiðkC1ÞðkC1Þ ZDiCikkg
k
kC1;

CiðkC1Þs Z
X
j;jsi

Dj

Xk
rZs

Cikr

Pr
lZ0 E

r
lsl

rKl
j llC1

i

ðljKliÞrC1

 !

CDi

Xk
rZsK1

Cikrg
r
s for 1%s%k;

CiðkC1Þ0 Z
Xm
j;jsi

Dj

Xk
rZ0

Cikr

Pr
lZ0 E

r
0sl

rKl
j llC1

i

ðljKliÞrC1

 ! 

CDi

Xk
rZ0

Cjkr

Xr
lZ0

Fr
l l

l
jl

rKlC1
i

ðliKljÞrC1

 !!

C
Xk
rZ0

DiCikrðgr0Þ:

The recursion starts with Ci00Zð ~AiÞOO.
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Figure 2. The simulated gating scheme.
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2.4. The asymptotic form of RO

The computational complexity for the calculation of
RO(t) increases with growing dwell time t and
eventually becomes unstable. The absolute value of
the involved coefficients becomes large whereas the
entries of the matrix RO remain between zero and one.
The subtraction of the large, rounded quantities leads
to a cancellation error in the calculation. We, therefore,
present an asymptotic form of RO valid for large dwell
time t. The derivation follows the method of Jalali &
Hawkes (1992).

We define the matrix-valued functions H(z) and
W(z)

HðzÞdAOO CAOC

XtK1

tZ0

At
CCACOz

KtK1;

W ðzÞdzKHðzÞ;

9>=
>; ð2:11Þ

and obtain from equation (2.4)

R�
OðzÞZ ðzKHðzÞÞK1z ZW ðzÞK1z:

The formula for the inverse Z -transform and the
residue theorem

ROðtÞZ
1

2pi#C
R�

OðzÞztK1dz Z
X

Resiz
tK1
i ; ð2:12Þ

imply that the asymptotic behaviour of RO(t) is given
by the poles zi of RO(t) with largest absolute value.
Here Resi denotes the residues of R�

OðzÞ at the pole zi
and the sum is over all poles of R�

OðzÞ. The pole with
largest absolute value corresponds to the root of the
determinant of W(z) with largest absolute value.

We will now state the main results in the form of two
theorems which give the asymptotic distribution of
RO(t).

Theorem 2.4. If H(z) is irreducible, det W(z) always has
a simple real root z1!1 which is greater than the
absolute value of any other root. Then, as t/N, RO(t)
is given by

ROðtÞzzt1
c1r1

r1W
0ðz1Þc1

;

where c1 and r1 denote the right and left eigenvectors of
H(z1) corresponding to the eigenvalue z1.

The proof is shown in appendix C. The asymptotic
distribution can be improved, when the generator
matrix Q of the underlying Markov chain obeys the
law of detailed balance. A system that is in equilibrium
is subject to this principle which is sometimes also
termed microscopic reversibility. In this case we can
show that R�

OðzÞ has exactly nO real roots which also
contribute to the asymptotic behaviour.

Theorem 2.3. If H(z) is irreducible and Q obeys the
principle of detailed balance, det W(z) has exactly nO
real roots zi . If all roots are distinct, then, as t/N,

ROðtÞz
XnO
iZ1

zti
ciri

riW
0ðziÞci

:

Again ci and ri denote the left and right eigenvectors of
H(zi) corresponding to the eigenvalue zi .

The proof is performed exactly as the proofs of
theorems 2.2 and 3.2 in Jalali & Hawkes (1992).
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It is reported that in the continuous-time case these
asymptotic solutions work well for even moderate dwell
times t which is in accordance with our experience.
From the numerical studies, we have performed we
suppose that the same applies for the approximation
presented here.
3. SIMULATION STUDY

3.1. Open and closed time distributions

As a numerical example we consider the gating scheme
sketched in figure 2. The sampling time was chosen as
DtZ0.02 ms and a dead-time of tZ4Dt was imposed on
the data. In figure 3 the open and closed time
distributions are displayed. The open time distribution
is calculated by

fOðtÞZpO
eGOCðtÞuC;

uC denotes a vector of ones with dimension nC.
The exact dwell times can be calculated reliably
for dwell times as large as t%110DtZ22ðtC1Þ.
The approximate solution has been applied for larger
times.

In figure 4 we compare the exact open and closed
time distribution with the asymptotic approximation
for large dwell times t. The difference between these
distributions relative to the exact distribution is shown.
For t%2t the approximation underestimates the true
distribution. For moderate values around tO2t the
approximation is already good. This is in accordance
with the findings of Hawkes et al. (1990, 1992) who
reported a good agreement for similar times t.
3.2. Parameter estimation

In this section we compare the continuous-time model
of Hawkes et al. (1990) and the procedure derived in §2
with respect to estimation of rate constants. We show
that for sampled data the solution of Hawkes et al.
(1990) leads to biased estimates if the dead-time t is
chosen as a multiple of the sampling time Dt.
3.2.1. Two-state model. We simulated 500 datasets
each with 1 500 000 data points from the simple two-
state gating scheme sketched in figure 2. Again, the
sampling time was chosen as DtZ0.02 ms and open and
closed time intervals were determined by a half-
amplitude threshold. This resulted in dwell times that
are integer multiples of the sampling interval. A dead-
time t was imposed on the data such that all events
shorter than or equal to tZ4DtZ0.08 ms are missed.

We re-estimated the parameters by maximizing the
likelihood with the equations given by Hawkes et al.
(1990) and Jalali & Hawkes (1992) using three different
dead-times. The time resolution has been chosen as
tZ4Dt, 4.5Dt and 5Dt. Furthermore, we re-estimated
the parameters with the equations developed in §2,
where the dead-time is uniquely defined. The likelihood
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Table 1. Mean value and standard deviation (s.d.) of the parameter estimates. (For the model of Hawkes et al. (1990), we chose
three different dead-time t. For the model including sampling, the dead-time is defined unambiguously.)

true value

dead-time t
including
sampling4Dt 4.5Dt 5Dt

mean value of qCO 200.0 177.4 200.2 231.7 200.3
s.d. — 3.7 4.6 5.7 4.7
mean value of qOC 7500.0 6949.8 7499.1 8173.2 7501.7
s.d. — 122.0 142.5 169.7 141.9
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has been maximized numerically by a quasi-Newton
method from the NAG-library (subroutine e04ucf of
The Numerical Algorithms Group Ltd 1999). In all
cases we used the approximate solution for values of
tO11t. The necessary search for the roots of det W(z)
has also been performed by a routine from the NAG-
library (subroutine c05avf and c05azf ).

In table 1 the mean value and standard deviation of
the estimates for the various methods are summarized.
It shows that the method of Hawkes et al. (1990) and
Jalali & Hawkes (1992) leads to a considerable bias
downwards for both rate constants when the dead-time
is chosen as tZ4Dt. The rate constant qCO is under-
estimated about 30 Hz which corresponds to a relative
difference of 16% and the estimate of the rate constant
qOC has a bias of 550 Hz giving a relative difference
of 7%. Both parameters obtained with a dead-time of
tZ5Dt are overestimated. The magnitude of the bias is
J. R. Soc. Interface (2006)
the same as for the case of tZ4Dt. When the dead-time
is chosen in the centre between these two times the
parameters are estimated unbiased. The model incor-
porating the sampling of the data also gives the correct
estimates. The standard deviations increase with larger
estimates. The standard deviations obtained from the
continuous-time formulation with tZ4.5Dt and from
the model incorporating sampling are essentially the
same.

The distribution of the parameter estimates for the
different dead-times are displayed in figure 5. The right-
most graphs show the distribution of parameter
estimates obtained from the model incorporating the
sampling of the data. The arrows mark the true values.
The figure confirms the biases when using a multiple of
the sampling time as dead-time. It also shows that the
maximum likelihood estimators are in good approxi-
mation Gaussian distributed.
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Figure 5. Distribution of the estimated parameters from 500 datasets for the different dead-times t. The right-most graph shows
the distribution of parameter estimates obtained from the model incorporating the sampling of the data. The true values are
marked by the vertical arrows.

Figure 6. Four state gating scheme.
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3.2.2. Four state model. As a second example the four
state gating scheme sketched in figure 6 is investigated.
Again, 500 datasets each with a length of 1 500 000 data
points have been simulated from the model. The
sampling time has been chosen to be 0.02 ms and the
dead-time of tZ4DtZ0.08 ms has been imposed on the
data. For each dataset the maximum likelihood
estimators have been calculated.

Again, the maximum likelihood estimators have
been calculated with the method of Hawkes et al. (1990)
for three distinct dead-times and with the procedure
developed in §2. In all cases the approximate solution
has been applied for dwell times larger than tO11t. The
findings for the four state scheme are similar to those for
the two-state model and are summarized in table 2. It
shows the mean values with standard errors and the
standard deviations of the parameters determined from
the 500 simulated datasets. The parameter estimates
obtained from the method of Hawkes et al. (1990) and
Jalali & Hawkes (1992) with a dead-time of tZ4Dt are
biased downwards whereas the estimates determined
with a dead-time of tZ5Dt show a bias upwards. The
largest relative bias amounts to approximately 35%
in this simulation study. If the dead-time is chosen as
tZ4.5Dt the parameters are estimated unbiasedly. The
method developed here yields also unbiased estimates.
4. DISCUSSION

Continuous-time hidden Markov models with binary
outcomes are widely used to describe single ion channel
currents. To account for the necessary low-pass filter
the standard model has been extended taking into
account that intervals shorter than a fixed dead-time t
are not detected.

This task has been solved exactly by Hawkes et al.
(1990) and their method is widely used for the analysis
of single-channel currents (Colquhoun et al. 2003;
Hatton et al. 2003; Beato et al. 2004; Burzomato et al.
J. R. Soc. Interface (2006)
2004). For the determination of dwell time distri-
butions it is necessary to calculate expressions contain-
ing m-fold convolutions, where m denotes a natural
number. The corresponding integrals can be solved
straightforwardly by integration by parts. The result-
ing distributions are piecewise defined and in the range
[(nC1)t,(nC2)t] they have the form of a sum of
polynomials of degree n multiplied with exponentially
decaying terms of the form exp(lit), where li denotes
the eigenvalue of the matrix Q. The coefficients of the
polynomials are calculated recursively from the rate
constants qij .

However, the model of Hawkes et al. (1990) assumes
dwell time intervals on a continuous time-scale. If the
idealization of the data is performed by time course
fitting (Colquhoun & Sigworth 1983) or by interpolat-
ing between sample points, continuous durations can be
obtained. However, there exist other idealization
techniques, e.g. half-amplitude threshold crossing, the
Hinkley detector (Schultze & Draber 1993) or the
segmental k-means method (Qin 2004), such that
the accuracy of the measured times is limited by the
sampling interval Dt. Then, the dead-time entering the
equations of Hawkes et al. (1990) is not clearly defined.
If all intervals shorter than or equal to nDt are
undetected it is not clear which time between nDt and
(nC1)Dt should be chosen as dead-time t.

In this paper we have derived the appropriate
equations to analyse a sampled, continuous-time
hidden Markov model incorporating time interval
omission if the idealization yields time intervals that
are multiples of the sampling time. We used the same
method as Hawkes et al. (1990) to determine dwell time
distributions and also obtained expressions containing



Table 2. Mean value with standard errors and standard deviation (s.d.) of the parameter estimates for the four state scheme.
(For the model of Hawkes et al. (1990) we chose three different dead-time t. For the model including sampling the dead-time is
defined unambiguously.)

true value

dead-time t
including
sampling4Dt 4.5Dt 5Dt

mean value of qC1O1
750.0 697.4G2.3 750.5G2.5 829.5G3.0 753.3G2.4

s.d. of qC1O1
— 51.5 55.8 66.0 54.2

mean value of qO1C1
500.0 470.8G4.0 510.9G4.3 546.1G4.7 503.8G4.0

s.d. of qO1C1
— 89.6 95.8 105.3 90.5

mean value of qO1C2
600.0 499.5G3.1 603.9G3.8 808.2G5.3 606.9G3.9

s.d. of qO1C2
— 69.5 84.1 117.6 87.9

mean value of qC2O1
2000.0 1714.6G8.0 2004.4G9.1 2516.9G14.4 1991.5G9.6

s.d. of qC2O1
— 178.9 204.5 323.1 215.0

mean value of qC2O2
5000.0 4672.2G3.8 4998.5G4.5 5400.7G8.1 4998.0G4.4

s.d. of qC2O2
— 85.1 99.8 180.7 98.2

mean value of qO2C2
500.0 459.9G0.3 500.6G0.4 554.7G0.5 499.7G0.4

s.d. of qO2C2
— 7.1 9.0 10.5 8.6
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m-fold convolutions given by equation (2.7). In contrast
to the arising integrals of the continuous-time case, the
corresponding finite sums are not straightforwardly
computed. We have shown that these sums are
polynomials and have derived recursion formulas to
calculate the corresponding coefficients.

With lemmata 2.1 and 2.2 we were able to show that
the exact dwell time distribution resembles the solution
of Hawkes et al. (1990). It also is piecewise defined and
in the range [(nC1)t, (nC2)t] it has the form of a sum
of polynomials of degree n multiplied with exponen-
tially decaying terms of the form lti where li denotes the
eigenvalues of the matrix A. The resulting recursions
are somewhat more involved compared to the solution
in the continuous-time formulation. Again, the com-
plexity increases with increasing t and becomes
computationally infeasible for large dwell time t.

Therefore, we give in §2.4 an asymptotic solution for
large t. The resulting open time distribution is a sum of
exponential terms mit. The number of summands equals
the number of open states nO and the constants mi are
given by the root of the determinant of W(z) defined in
equation (2.11). The same applies for the closed time
distribution. Thus, for large dwell time t the approxi-
mate solution has the same form as for the ideal case
with no time interval omission. In this case the constants
describing the exponential decay are given by the
eigenvalues of the matrices AOO and ACC, respectively.

We have shown in §3 that the asymptotic solution is
an accurate approximation even formoderate values of t
such as tz2t. Correspondingly, in the case of continu-
ous-timemodelling Hawkes et al. (1992) reported a good
agreement between the exact and the approximate
solution for similar values of t and recommended the use
of the approximate solution for times tO3t. We found
that the computation of the exact solution was even
feasible for values of t up to t!22(tC1), i.e. the
equations involve polynomials of degree 20.

In §3 we also performed a simulation study to
compare the model of Hawkes et al. (1990) and our
model with respect to parameter estimation. Using
the equations derived in §2 we obtained unbiased
J. R. Soc. Interface (2006)
estimates of the rate constants. With the method of
Hawkes et al. (1990) and Jalali & Hawkes (1992) it was
also possible to estimate the rate constants of the
sampled process correctly when the dead-time is chosen
properly.Using a time resolutionwhich lies in themiddle
of the range of possible dead-times resulted in unbiased
estimates. Consequently, for a lower dead-time the
parameters were underestimated, a higher dead-time
gave overestimated parameters. The magnitude of the
bias reached up to 35% in our simulation study.

With the proper choice of the dead-time the
continuous-time model and the one incorporating
sampling do not differ with respect to the standard
deviation of the estimates. Thus, for the numerical
example investigated here these two methods perform
equally well regarding parameter estimation. However,
it is not clear if the choice of time resolution that resulted
in unbiased parameter estimates for the continuous-
time formulation is applicable as a general rule.

Therefore, we present here the appropriate model
which reflects the experimental conditions correctly
and takes into account the fact that measured data are
sampled.
APPENDIX A. PROOF OF LEMMA 2.1

For convenience we recall equation (2.8) that remains
to be shown:

Xt
t 0Z0

at
0
t 0
r Z atC1

Xr
kZ0

Pr
lZ0 E

r
lka

l

ð1KaÞrC1
tk

C
Xr
lZ0

1

ð1KaÞrC1
Fr
l a

l for as1:

The proof is mainly by induction over r. For rZ0
we obtain the result from the geometrical series with
F0
0Z1 and E0

00ZK1.
Now observe that

Xt
t 0Z0

at
0
t 0
rC1 Z a

v

va

Xt
t 0Z0

at
0
t 0
r
;
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and by replacing the induction hypothesis we obtain
after some algebra
Xt
t0Z0

at
0
t0
rC1Z

atC1

1Kað ÞrC2
trC1 KEr
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rC1C
Xr
lZ1

ðlFr
l KðrKlC2ÞFr

lK1ÞalC0a0

)
:

(

The coefficients ErC1
lk and FrC1

l can be read off by
comparison of the coefficients of powers of al and tk. The
coefficients FrC1

l are calculated by the following
recursion formulas:

FrC1
0 Z 0;

FrC1
l Z lFr

l CðrKlC2ÞFr
lK1 for 1% l%r ;

FrC1
rC1 ZFr

r :

The recursion starts with F0
0Z1. For the coefficients

Er
lk the following recursion formulas hold:

ErC1
00 ZEr

00;

ErC1
l0 Z ðlC1ÞEr

l0CðrKlC1ÞEr
ðlK1Þ0 for 1% l%r ;

ErC1
ðrC1Þ0 Z 0;

ErC1
0k ZEr

0k CEr
0ðkK1Þ for 1%k%r;

ErC1
lk Z ð1C lÞEr

lk CðrKlC1ÞEr
ðlK1Þk

CEr
lðkK1ÞKEr

ðlK1ÞðkK1Þ for 1% l; k%r ;

ErC1
ðrC1Þk ZEr

rðkK1Þ for 1%k%r ;

ErC1
0ðrC1Þ ZEr

0r ;

ErC1
lðrC1Þ ZEr

lrKEr
ðlK1Þr for 1% l%r ;

ErC1
ðrC1ÞðrC1Þ ZKEr

rr :

The recursion starts with E0
00ZK1.
APPENDIX B. PROOF OF LEMMA 2.2

We will give a prove for equation (2.9) which reads as
follows:

Xt
nZ0

nr Z
XrC1

kZ0

grk t
k;
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we derive recursion formulas to calculate the coeffi-
cients grk . For fixed t we define the following function:

hða; tÞeexpðaðtC1ÞÞK1

expðaÞK1
Z

PN
kZ0

ðtC1ÞkC1

ðkC1Þ! akPN
kZ0

ak

ðkC1Þ!

e
gða; tÞ
f ðaÞ ;

i.e. h(a, t) is the quotient of two power series gða; tÞZP
bsðtÞas and f ðaÞZ

P
asa

s with f(0)Z1, thus h(a, t) is
itself a power series with coefficients cs(t). The
coefficients can be calculated from the following system
of equations

bsðtÞZ
Xs
rZ0

arcsKrðtÞ: ðB 1Þ

Now, observe that for as0

XN
sZ0

csðtÞas Z hða; tÞZ eaðtC1ÞK1

eaK1
Z
Xt
nZ0

ðeaÞn:

Since the left and the right hand side of the equation are
analytical functions of a for fixed t the equation is valid
even in the case aZ0. Thus, we have

Xt
nZ0

nr Z
vr

var

Xt
nZ0

ean

�����
aZ0

Z
vr

var hða; tÞ
�����
aZ0

Z r!crðtÞ:

ðB 2Þ

The rest of the proof is now by induction over r for cr(t).
From equation (B 1) it follows that c0(t)ZtC1 thus
g00Zg01Z1. From the same equation we obtain

crC1ðtÞZ brC1ðtÞK
Xr
nZ0

anC1crKnðtÞ
 !

1

a0
:

With asZ1/(sC1)!, bs(t)Z(tC1)s/(sC1)! and by using
the induction hypothesis the expression reads after



96 Time-interval omission and sampling Y.-K. The and J. Timmer
some algebra
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From equation (B 2) the desired result follows, and the
coefficients grk are calculated recursively by
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ðnC2ÞðnC1Þ :

9>>>>>>>>>>>>>>=
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ðB 3Þ
The recursion starts with g00Z1 and g01Z1. Note that
from equation (B 3) and g00Z1 all coefficients gr0 equal
zero for rs0.
APPENDIX C. PROOF OF THEOREM 2.2

Denote the eigenvalues of H(z) by li(z). The roots zn of
detW(z) render the matrix (znIKH(zn)) singular and
thus zn is a root of det W(z) if and only if zn is an
eigenvalue of H(zn), i.e. znZli(zn).

First, we consider real, positive z. Since H(z)R0
elementwise for zR0, z2R and at least one element of
H(z) is positive it follows from the second Frobenius
theorem (Karlin & Taylor 1975) that H(z) has a real
eigenvalue l1(z) which is greater than the absolute
value of any other eigenvalue. To this eigenvalue
correspond nonnegative left and right eigenvectors.

Since H(z)%H(z 0) elementwise for zOz 0O0 with
strict inequality for at least one element it follows from
lemma 2.1 in Jalali & Hawkes (1992) that l1(z) is
strictly decreasing. Since for z/0, l1(z) approaches the
largest eigenvalue of the matrix AOO which is positive
the graph l1(z) intersects the main diagonal exactly
once. Thus, the equality zZl1(z) has exactly one
solution z1 which is the largest positive, real root of
detW(z).

Now consider a non-positive, possibly complex root
zs0 of detW(z) and denote its absolute value by u.
Then z is an eigenvalue of H(z). Denote by MC the
matrix whose entries are the absolute values of the
elements ofM and by lmax(M ) the eigenvalue ofM with
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largest absolute value. Then we have elementwise

HðzÞC%AOO CAOC

XtK1

tZ0

At
CCACOjzjKtK1 ZHðuÞ:

By lemma 2.1 of Jalali & Hawkes (1992) and since z is
eigenvalue of H(z), we obtain uZ jzj%lmaxðHðzÞÞ%
lmaxðH ðuÞÞZl1ðuÞ with strict inequality if z is negative
or non-real. Now assume that uRz1. Since l1(z) is
strictly non-decreasing, we have that u!l1ðuÞ%
l1ðz1ÞZz1 which contradicts the assumption.

The conclusion that z1!1 is shown as in the proof of
theorem 2.1 in Jalali & Hawkes (1992) by considering
different dead-times t1!t2. By similar arguments as
above it follows from H(z, t1)%H(z, t2) that z1(t1)!
z1(t2) and therefore z1(t1)!z1(N)Z1.

The residue can be calculated as in the proof of
Theorem 3.1 of Jalali & Hawkes (1992). Let ~W ðzÞ be
the adjoint matrix of W(z) which is sometimes also
termed cofactor matrix. Then we have

W ðzÞ ~W ðzÞZ ~W ðzÞW ðzÞZ detW ðzÞ1; ðC 1Þ

and

WK1ðzÞZ ~W ðzÞ=detW ðzÞ:
W(z1) has rank nOK1 because det W(z) has a simple
root at z1. From

W ðz1Þc1 Z ðz11KHðz1ÞÞc1 Z 0Z r1ðz11KHðz1ÞÞ

Z r1W ðz1Þ;

we obtain that c1r1 is the projector on the subspace that
is mapped to zero. From equation (C 1) evaluated at z1
follows that

~W ðz1ÞZCc1r1;

with some constantC. Then the residue ofR�
OðzÞ at z1 is

given by

lim
z/z1

ðzKz1ÞR�
OðzÞZ lim

z/z1
ðzKz1ÞzWK1ðzÞ

Z
Cc1r1z1

d
dz det W ðzÞ
� 	

zZz1

:
ðC 2Þ

Differentiation of equation (C 1) gives 1 d
dz det W ðzÞZ

W 0ðzÞ ~W ðzÞCW ðzÞ ~W
0ðzÞ. After multiplication of r1 to

the left and c1 to the right we obtain

d

dz
detW ðzÞ

� �
zZz1

Z r1W
0ðzÞc1C ;

which can be substituted into equation (C 2). Equation
(2.12) gives the desired result. &
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