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A qualitative model of cell cycle control is presented and its transition from bistability to limit
cycle oscillations and vice versa is discussed. The origin of this model is the two-dimensional
system of kinetic equations introduced by Novak–Tyson which is illustrated computationally
and analytically. For this purpose a qualitative model is numerically reconstructed from the
steady state behavior of the dynamical variables including the bifurcation parameter. Then, the
reconstructed cubic polynomial model is generalized to an appropriate canonical form and is
analyzed in terms of Lyapunov values. On this basis, the relationship between bistability and
self-oscillatory behavior of mitotic cell cycle is approached qualitatively.
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1. Introduction

As a survey paper on the cell cycle we can refer
to [Murray & Kirschner, 1991]. The cell cycle con-
sists of two controlled growth processes: The chro-
mosomal cycle, in which the genetic material is
duplicated and the cytoplasmic cycle where the
two nuclei are formed. Robustness is essential for
these processes, since each daughter nucleus must
receive the exact replica of each chromosome. The
cytoplasmic cycle is less tightly controlled and
lasts significantly longer than the chromosomal.
During this cycle, the cytoplasmic material dupli-
cates including all cell structures — organelles,
mitochondria etc. The growth is predominantly
continuous during the G1, S and G2 — phases,
pausing briefly only during mitosis [Tyson et al.,
2001, 2002, 2003]. Since these cycles operate con-
trolled in mature organisms, the ratio between cell

mass and nuclear mass remains approximately con-
stant [Novak et al., 2001]. In case of embryonic
organisms it is in addition possible that these pro-
cesses are acting in an uncoupled manner. Such
a behavior has been observed for example during
embryo-genesis of a frog, the egg undergoes twelve
rapid synchronous mitotic divisions to form a ball
called blastula, consisting of 4096 cells. Recently,
many effective mathematical approaches have been
developed to study the mitotic (M-phase) control
mechanisms. Several biochemically sound cell cycle
models have been constructed but these are too
complicated to understand by informal verbal rea-
soning. After studying the models in mathematical
terms, the obtained results have been compared in
quantitative details with experimental observations.
On this basis, experimental and theoretical investi-
gations of cell cycle control have revealed nonlinear
phenomena such as self-oscillations and bistability
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[Tyson et al., 2001, 2002, 2003, Novak et al., 2001; Li
et al., 2004; Petrov & Timmer, 2004; Petrov et al.,
2004]. The close relationship between some kind of
self-oscillatory and bistable dynamics of cell cycle
have been pointed out in [Petrov & Timmer, 2004;
Qu et al., 2003a, 2003b]. The purpose of this paper
is to clarify a principal relationship between these
two types of cell cycle dynamics by giving a simple
mathematical model which is analyzed regarding its
bifurcation behavior.

2. Reconstruction Analysis and
Suggesting Considerations

We consider the Novak–Tyson model of cell cycle
control derived for budding yeast and demonstrate
bistable behavior [Novak et al., 2001]. The model
has the form of the following pair of nonlinear dif-
ferential equations:

dx

dt
= k′

1 − (k′
2 + k′′

2y)x

dy

dt
= (k′

3 + k′′
3A)

1 − y

j3 + 1 − y
− k4

mxy

j4 + y

(1)

Here, x and y are concentrations of cyclin/Cdk
dimers and active Cdh1/APC complexes, respec-
tively. The cell mass is denoted by m. The param-
eter A represents the concentration of protein
phosphatase that removes from Cdh1 the inhibitory
phosphate groups placed there by cyclin/Cdk. In
this way A plays the role of activator of Cdh1. The
k’s are rate constants, and the j’s are Michaelis-
Menten constants. Nullclines of Eq. (1) are

x-nullcline: x =
b

j2 + y
,

y-nullcline: x = (1 − y)
j4 + y

j3 + 1 − y

z

y
.

Here, b = k1/k
′′
2 = 0.04, j2 = k′

2/k
′′
2 = 0.04, j3 =

j4 = 0.04 and z = k′
3 + k′′

3A/k4m taken from
[Novak et al., 2001] is called “reciprocal” mass.
The x-nullcline is a hyperbola and the y-nullcline
is a z-shaped curve intersecting the x-nullcline in
three points, two stable ones and one unstable, for
j3 = j4 � 1. For other values of the parameters,
the number and type, stable or unstable, of the
intersection points may vary. The bifurcation dia-
gram for dynamical system Eq. (1) is illustrated
in Fig. 1. It presents the steady state concentra-
tion of x (cyclin/Cdk) plotted as a function of the
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Fig. 1. Z-shaped bifurcation diagram of the Novak–Tyson
model for the budding yeast cell cycle bistable.

bifurcation parameter z. Saddle-node bifurcations
occur at z = 0.05418 and z = 0.2604.

For a further mathematical analysis, the bifur-
cation diagram is approximated by a polynomial of
third order which conserves the Z-shaped form, as
illustrated in Fig. 2. In the following section the
effect of conserving the bifurcation behavior will
be evaluated analytically by using Lyapunov val-
ues. But first, two-dimensional dynamical system is
reconstructed such that the right-hand side of the
differential equation contains only polynomials up
to third order. Additionally, the Z-shaped bifurca-
tion diagram is sufficiently near to those presented
in Fig. 2. For this purpose the method of reconstruc-
tion described in [Petrov et al., 2002a, 2002b, 2003]
and, developed in [Georgiev, 2003a] is used which
is based on a theorem given in [Georgiev, 2003b].
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Fig. 2. Z-shaped bifurcation diagrams of the Novak–Tyson
model (solid line) and the reconstructed one (dashed line).
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For two-dimensions this theorem claims:

Theorem 1. Let x(t) and z(t) be a real-valued and
analytic functions defined on interval (a, b), such
that for ∀ t ∈ (a, b), the curve �c(t) ≡ {x(t), z(t)}
is simple and regular. Then there exists real-valued
analytic functions F1(x, z) and F2(x, z), defined on
the curve �c(t) and such that x(t)and z(t) present a
solution to

dx

dt
= F1(x, z),

dz

dt
= F2(x, z). (2)

In our case, x(t) and z(t) are implicitly given by
functions parameterizing the bifurcation diagram

0 = a3x
3 + a2x

2 + a1x + a0 − kz. (3)

We assume the requirements of Theorem 1 are valid
by supposing that the simplicity and regularity of
the curve c(t) holds. For almost-periodic analytic
functions, this condition is satisfied by truncating
the curve c(t) and regarding its remainder near the
limit cycle [Georgiev, 2003a]. Thus, we can accept
the existence of dynamical system of type (2) hav-
ing an equilibrium point in the form of (3). Then we
can construct a new system in the following more
specific form by considering x as a cyclin/Cdk con-
centration and new dynamical variable z as a “recip-
rocal” cell mass:

dx

dt
= a3x

3 + a2x
2 + a1 + a0 − kz,

dz

dt
= b1x + b2z + b0.

(4)

Here we treat the parameter z0 = a0 > 0 as a rela-
tively constant part of the reciprocal mass varying
independently (or very slowly) on the key-regulator
which is the concentration x by subtracting the sec-
ond part of reciprocal cell mass rm = z0 − kz from
z0. In this way the system of equations (3) presents
a model of a negative feedback dynamics for the
key-regulator x and dynamical variable z. Qualita-
tively and quantitatively the dynamics of Eq. (3)
is near to that generated by the system (1). As a
result of the numerical approximation we obtain the
following values for the polynomial coefficients

a0 = 74.7817 a1 = −91.2115
a2 = 12.3726 a3 = −1.5696

b0 = 3.9790 b1 = 0.0375
b2 = −16 k = 1.6667.

By replacing these values in Eq. (4), we obtain
the solution shown in Fig. 3. In the following
Fig. 4, a disposition of the corresponding limit cycle

0 50 100 150 200
t

0

0.2

0.4

0.6

0.8
x 

z x

z

Fig. 3. Oscillations of cyclin/Cdk — dimer as solutions of
Eq. (4).
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Fig. 4. Limit cycle disposition with respect to the polyno-
mial approximation of the Novak–Tyson bifurcation diagram.

with respect to the polynomial approximation of
the Novak–Tyson bifurcation diagram for budding
yeast is given in the phase plane formed by the
cyclin/Cdk — dimer and the reciprocal cell mass.

It is displayed that the limit cycle of the recon-
structed dynamical system occupies the same region
of the phase plane, where the forced oscillations
of the Novak–Tyson model take place. Thus we
should accept that the reconstructed polynomial
model (4) simulates approximately the bistable
behavior of the Novak–Tyson model but as self-
oscillatory instead of forced oscillations. On the
other hand, some part of the cell mass now depends
on the key-regulator (cyclin/Cdk). Thus, the recip-
rocal cell mass z is considered as a dynamical
variable.
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3. Determining Lyapunov Value
Formulas of the Generalized Model

Theorem 1 does not only play the role of suggest-
ing the existence of an approximative model, it also
shows that if we have a sufficiently exact approxima-
tion of the original bifurcation diagram, the quanti-
tative and qualitative behavior will be close to that
of Novak and Tyson. In order to analyze the bifur-
cation behavior, Eq. (4) is transformed to the coor-
dinates (u, v) by applying

x = x0 + u,

z = z0 + v,
(5)

where (x0, z0) is the steady state. Then, the trans-
formed system is expanded up to third order such
that the system can be represented by the canonical
form

du

dt
= au + bv + a20u

2 + a30u
3,

dv

dt
= cu + dv.

(6)

It is shown in the following that the bifurcation
behavior is completely determined by Eq. (6), such
that it is not necessary to regard the full model for
any further analysis. Let us therefore consider (6).
The characteristic equation of the linearized system
has the form

χ2 + Rχ + r = 0, (7)

where R = −(a+d) is the trace and r = ad−bc the
determinant of the linearized flux. Furthermore, we
apply the theory of Lyapunov values to bifurcation
analysis at the following boundaries:

(i) R = −(a + d) = 0 under condition r = ad
− bc > 0

(ii) r = ad − bc = 0 under condition R =
−(a + d) > 0.

Case (i) is considered in [Petrov et al., 2004],
in which the corresponding formula of Bautin
[1984] for the first Lyapunov value is presented
and derived. The dynamical interpretation of this
value is explained in [Petrov et al., 2004] and
[Nikolov & Petrov, 2004]. Moreover a detailed pre-
sentation of the theory of Lyapunov values is pre-
sented in [Andronov et al., 1966] and more recently
in [Neimark & Landa, 1992]. For case (i), the
Lyapunov value is determined by

L1(R = 0) =
π

4r
√

r

[
2a a2

20 − a30(a2 + bc)
]
. (8)

Only the coefficients up to third order con-
tribute to the determination of the first Lyapunov
value. If L1 has nonzeroth value, then it determines
the whole bifurcation behavior of the system at
the boundary (i). This fact is due to the following
general proposition proven by Andronov [Andronov
et al., 1966]:

Theorem 2. At transition through the point of
boundary R = 0 (as R decreases for example), a
stable periodic solution, for L1(0) < 0, is generated
by stability loss of the steady state solution of the
full system; for L1(0) > 0, the steady state stability
is lost by merging the state with the unstable peri-
odic solution of Eq. (6).

For L1(0) < 0, a reversible process is possible
as R increases. Then a stable periodic solution van-
ishes and the steady state solution restores its sta-
bility by merging the limit cycle. That is why this
type of transition through the bifurcation boundary
of type (i) is sometime called “soft loss of stability”.
In the literature the name Hopf bifurcation is often
used. For L1(0) > 0 the type of bifurcation is called
“hard loss of stability”. The conditions for this type
of bifurcation are not explicitly treated in the con-
text of the well-known Hopf theorem. Whereas in
the framework of the theory of Lyapunov values
(Theorem 2) they are considered.

Let us now consider the boundary case (ii). Fol-
lowing Bautin [1984] for the first Lyapunov value,
we obtain

l1(r = 0) = ab2 ca20

(a2 + bc)2
. (9)

Evidently, in this case the bifurcation behavior is
determined only by the coefficients of the quadratic
approximation. It is therefore sufficient only to con-
sider Eq. (6).

4. On the Equivalence Between a
Simple Qualitative Model and
Cubic Truncation of the
Generalized Model

In order to study the transition from bistability to
self-oscillatory behavior, it is useful to regard an
even simpler model. Let us now consider the system
given by the dynamical equation

dx

dt
= −(x3 − mx + l)

For m > 0, it has two stable stationary states and
one unstable. The transitions between the stable
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states have been extensively studied by Nitzan et al.
[1974]. As in Sec. 2, for our purposes, we can treat
the parameter l as a constant part of the cell mass
varying independently or very slowly on the key-
regulator concentration x. By adding to l a second
part of cell mass kz depending on the variable z,
we obtain the whole mass M = l + kz as a sum
of parameter l and dynamical term kz. Moreover,
we introduce for the dynamical variables x and z
multiplicative and additive scaling parameters n,
s, p and q respectively, in order to simulate quan-
titatively the key-regulator oscillations. Then the
following negative feedback dynamics for the key-
regulator x and dynamical mass z can be defined:

dx

dt
= −n2(x + p)3 + m(x + p)

− l

n
− ks(z + q)

n
,

dz

dt
=

n(x + p) − s(z + q)
Ts

,

(10)

with parameter values:

k = 1 l = 0.1
m = 0.5 n = 2

p = −0.45 q = −0.21
s = 1.8 T = 40.

(11)

In addition, system (10) is qualitatively identical
to the FitzHugh–Nagumo model (FNm) [Fitzhugh,
1960, 1961; Nagumo et al., 1962] and therefore sim-
ilar to the Hindmarsh–Rose model [Hindmarsh &
Rose, 1984]. Similar dynamical behavior of (10)
with respect to the FNm is therefore expected, such
as saddle-node and Hopf bifurcations found in the
FNm, see e.g. [Murray, 1990; Keener & Sneyd, 1998;
Fall et al., 2002]. However, these results and analysis
methods are not sufficient for our purposes because
of the necessity to analyze the transition between
different types of bifurcations — from bistability
loss bifurcation to Hopf bifurcation and vice versa.
That is why we apply the specific bifurcation anal-
ysis method of Andronov’s to describe the transi-
tions through all bifurcational boundaries in the
parametric space of model (10). Consequently, the
obtained qualitative results are also valid for FNm.

The solution of system (10) is shown in Fig. 5
and the phase plot of the limit cycle is presented in
Fig. 6, where the Z-shaped stationary curve of (10)
and the bifurcation diagram of the Novak–Tyson
model are still present. In addition, the limit cycle
occupies the same region as for forced oscillations
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Fig. 5. Solutions of the simple qualitative model Eq. (10).
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Fig. 6. Z-shaped bifurcation diagrams and limit cycle of
Eq. (10).

in the case of bistability described by the Novak–
Tyson model. Thus, approximately, we consider
Eq. (10) as an alternative self-oscillatory model of
the mitotic cell cycle of budding yeast.

The model (10) is remarkable with the follow-
ing valuable properties:

(1) The cubic truncation of the generalized Z-
shaped model of type (3.1-2) is reducible to
(4.1-2) after canonization (3.3-4).

(2) The transition of model (4.1-2) from bistabil-
ity to limit cycle behavior can be demonstrated
analytically and numerically with mathemati-
cal accuracy.

On the other hand, we have shown in the previ-
ous section that the bifurcation behavior of the gen-
eralized Z-shaped model is fully determined by the
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coefficients of the cubic truncation. Thus the prop-
erty (1) solves the problem of transition behavior
by reducing it to (2). To prove the assertion (1), we
firstly substitute Eq. (5) in Eq. (10). As a result we
obtain the system

du

dt
= au + bv + a20u

2 + a30u
3,

dv

dt
= cu + dv,

(12)

which is the same as the cubic truncation (6) with
the additional condition that the coefficients have
the form

a = m − 3n2(x0 + p)2 b = −ks

n

c =
1
T

d = −c

a30 = −n2 a20 = −3n2(x0 + p).

(13)

This is a system of five independent equations for
five unknown parameters k, m, n, T and x0 +
p, having single-valued solution if the coefficients
a, b, c, d, a20 , a30 are known. The inequalities d < 0,
a03 < 0 must be fulfilled in order to assure the Z-
shaped character of the corresponding stationary
curves. In this way the assertion (1) is proven.

The systems (10) and (12) are equivalent under
condition that the relations (13) hold. Thus defin-
ing the bifurcation behavior of the simple model
(10) or (12) we simultaneously solve the problem
for determining a transition from bistable to self-
oscillatory behavior of the generalized Z-shaped
model of Novak–Tyson.

5. Structural Stability Analysis
of the Simple Qualitative Model

As done before, we apply the theory of Lyapunov
values to bifurcation analysis at the following
boundaries:

(i) R = −(a + d) = 0 under condition r = ad
− bc > 0

(ii) r = ad − bc = 0 under condition R =
−(a + d) > 0.

For the simple qualitative model (10) the equations
of boundaries (i) and (ii) are

R =
3n2(x0 + p)2 − m + 1

T
= 0, r > 0

r = 3n2(x0 + p)2 − m + k = 0 R > 0.
(14)

Apart from (14) we have the steady state equations
of (10) in the form

l = n(m − k)(x0 + p) − n3(x0 + p)3,

z0 =
n

s
(x0 + p) − q.

(15)

By replacing x0 + p from Eq. (14) to Eq. (15), the
following bifurcation curves in the parametric plane
(k, l) can be obtained:

lR =
1

33/2

(
m − 1

T

)1/2(3k − 2m − 1
T

)
,

lr = 2
[
m − k

3

]3/2

.

(16)

Supported by the numerical analysis, see below, the
negative sign of the square root of (x0 + p)2 has to
be taken for deriving lR. It is convenient to rewrite
the formulas (8) and (9) for the Lyapunov values at
boundaries (14) respectively

L1(R = 0) =
π

4r
√

r
[2a a2

20 − a30(a2 + bc)],

l1(r = 0) = ab2 ca20

(a2 + bc)2
.

(17)

By replacing the numerical values (except l) from
(11) to (13), we obtain bifurcation points (values of
bifurcation parameter l) on the bifurcation curves
(i) or (ii). Then by changing the other bifurcation
parameter k in Eq. (16), we obtain the bifurcation
curves lR(k) and lr(k) in the parametric plane (l, k).

Let us first consider the case for the bifurca-
tion value on (i) obtained by taking l from Eq. (16)
at values (11). In this case the Lyapunov value is
equal to the positive number L1 = 94.5665. Due
to Andronov’s Theorem 2, the equilibrium state of
the system (10) is unstable at the bifurcation point
(l = 0.2620, k = 1) in the parametric plane (l, k).
For this case Fig. 7 shows oscillations with constant
amplitude of the key regulator x and reciprocal cell
mass z.

A small decrease of the bifurcation parameter l
is chosen (l = 0.2600) in Fig. 8. It is seen that after
a small displacement from the bifurcation point, an
unstable (with increasing amplitude) self-oscillation
emerges first, therefore a hard loss of stability of
the steady state takes place. However, after some
time, a finite jump of oscillation amplitude occurs
suddenly. This shows that the transition is a typ-
ical “hard self-excitation” (not only “hard loss of
stability”), which type of behavior continues to be
in computational agreement with the corresponding
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Fig. 7. Oscillations of the simple qualitative model at the
bifurcation point (l = 0.2620, k = 1).
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Fig. 8. Response of the simple qualitative model to small
displacement of l at the bifurcation point.

assertion in the second part of Andronov’s Theo-
rem 2. In our case, the knowledge of positive sign
of the Lyapunov value plays the role of a suggested
consideration to obtain the computational results
presented in Figs. 7 and 8.

Some additional explanations seem to be nec-
essary in the case presented in Fig. 8. The notion
“hard loss of stability” is more general than
“hard self-excitation of oscillations”. In many cases
[Bautin, 1984; Nikolov & Petrov, 2004; Andronov
et al., 1966], a hard loss of stability is followed only
by destabilization of the steady state and the van-
ishing of the unstable small cycle, without being
surrounded in the phase plane, by a finite stable
limit cycle. This is not the case here. In our con-
siderations we have a finite stable limit cycle (self-
oscillation), that occurs firstly in the neighborhood

of a small unstable limit cycle and is surrounding a
stable equilibrium point. Then the small limit cycle
and steady state merge at the unstable equilibrium
point surrounded by the stable finite cycle. This
type of occurrence of a self-excited finite oscilla-
tion is called “hard self-excitation”. Evidently, it
is a specific type of “hard loss of stability”, which
is the more general term.

However, as we have shown here, the theory of
Lyapunov values can be used as an analytical basis
and suggested consideration to find a computational
illustration of this nonlinear effect. In Fig. 9, the
bifurcation line lR(k) is plotted together with the
bifurcation curve lr(k). It is easy to show that if
the inequality r = ad − bc > 0 holds, there are no
self-oscillations of the system (10) above lR(k), and
below, the self-oscillations exist at every point of
this region. This means we exclude the small part
of lR(k) below the point of self-intersection between
lR(k) and lr(k).

As for the bifurcation curve lr(k), the following
consideration could be made: On considering the
well-known Cardano’s formulas for the roots of the
cubic equation (15), the equation of steady states of
our model (10), we obtain that the semi-inequality

lr ≤ 2
[
m − k

3

]3/2

(18)

is a necessary and sufficient condition for existence
of three real roots of Eq. (15). Moreover, the oppo-
site inequality

lr > 2
[
m − k

3

]3/2

(19)

0 0.2 0.4 0.6 0.8 1
k

0

0.1

0.2

0.3

l

O

B
S

T

lr

Rl

Fig. 9. Two bifurcation curves of the simple qualitative
model.
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presents a necessary and sufficient condition for the
existence of only one real root. Similar mathemati-
cal assertions can be found in the above mentioned
paper of Nitzan et al. [1974]. It follows that below
the bifurcation curve lr(k) (see Fig. 9), the system
(10) has three steady states, and above lr(k), it has
only one equilibrium state under the assumption
that R = −(a + d) > 0.

The above assertions follow from the numeri-
cal results of the Lyapunov values. As mentioned
before, on the bifurcation curve (i) we have L1 =
94.5665 > 0. Now we can indicate that on the bifur-
cation curve (ii) the corresponding Lyapunov value
is l1 = −2.6552, which is important since this value
is different from zero. In accordance with the theory
of Lyapunov values [Georgiev, 2003b], l1 does not
vanish at the bifurcation curve lr(k) and shows that
the corresponding steady state is unstable. More-
over, it follows that hard transition from three to
one steady states takes place at these region.

Figure 9 is one of the final results in this
paper. It is shown that for practical computa-
tions there are three main regions in the parameter
plane (l, k), where the considered qualitative model
(10) shows essentially different dynamical behavior.
Three steady states (one unstable and two stable)
exist in the area B, which is the region of bistability,
where only forced oscillations of the system (10) are
possible. In this case, we have indeed the behavior
considered from Novak and Tyson for budding yeast
[Novak et al., 2001]. By increasing the parameter k,
the region O can be entered, where only one stable
steady state exists. The vanishing of the other two
steady states is of hard loss type. If the system is in
region O, then further increase of k leads to transi-
tion from region O to S, where finite self-oscillations
occur. This type of transition is called “hard self-
excitation” and belongs to the type of bifurcation
of hard stability loss. Thus both transitions from B
to O and O to B are of this type.

As for the triangle T , we should note that its
two smaller sides cannot be considered as bifurca-
tion boundaries of types (i) and (ii), because the
corresponding inequalities are not satisfied there.
That is why the Lyapunov values theory cannot
be applied to distinguish soft and hard loss of sta-
bility at these sides of T . Nevertheless, according
to the general theorems of the nonlinear differen-
tial equation theory [Neimark & Landa 1992], we
can assert that in the triangle T , the system has
three unsteady states, all surrounded by one limit
cycle.

6. Further Results from the
Computation of Lyapunov Values

It will be shown however, that not the whole curve
lr(k) is a bifurcation boundary of hard loss of sta-
bility. For values larger than k = 1.0833 a type of
soft self-excitation takes place.

For values smaller than k = 1.0833, the
Lyapunov value becomes negative and in accor-
dance with Theorem 2, we obtain soft loss of sta-
bility. In Fig. 10 the graphical dependence of the
Lyapunov value on the system parameter k is
shown. We call it Lyapunov values curve. The hor-
izontal line presents the two curves lr(k) and lR(k)
which look like a straight line because of the large
vertical scale (too large Lyapunov absolute values).
If we reduce the vertical scale, the graphical pre-
sentation of Lyapunov values curve and bifurcation
curve is shown in Fig. 11.
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Fig. 10. Dependence of the Lyapunov value L1 on the
parameter k.
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Fig. 11. Bifurcation boundaries and the Lyapunov value L1.
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Now, the two bifurcation curves look like those
presented in Fig. 9, but the Lyapunov values curve
is presented by an almost straight vertical line
because of the very small vertical scale. In view of
these results we can assert that the loss of stabil-
ity at transition through the bifurcation boundary
lR(k) can both be hard and soft.

In detail, the formula (17) for the Lyapunov
value can be transformed in an expression of the
system parameters including k

L1 =
3πn2

(
2m − ks

n
− 1

T

)

4
(

ks

n
− 1

T

)
√√√√

(
ks − 1

T

)

T

, (20)

which represents the Lyapunov value in function
of the parameter k, as shown in Figs. 10 and 11.
From the condition for vanishing right-hand side of
Eq. (20) we obtain a formula for critical value of the
parameter k

k =
n(2mT − 1)

sT
, (21)

at which the Lyapunov value changes its sign. By
replacing the parameter values (11) in Eq. (21), we
obtain the above-mentioned numerical value k =
1.0833, which separates the bifurcation curve in two
parts: hard self-excitation and soft self-excitation.

It is of importance to note here the critical
role of the parameter k which determines the tran-
sition from forced oscillatory (bistability) to self-
oscillatory (limit cycle) behavior of the cell cycle
dynamics. From one side k is a coefficient of pro-
portionality in the dynamical part of reciprocal cell
mass z, on the other side it is a bifurcation param-
eter leading the system from regions B to S and
vice versa. Thus, the larger k is the influence on the
reciprocal mass increases and the system goes to
the self-oscillatory region S. Vice versa, for smaller
k the dynamical part of reciprocal mass is smaller
and system moves to the region of forced oscilla-
tions B, at which the well-known check points take
place [Novak et al., 2001].

7. Concluding Remarks

In the literature, the question for soft or hard loss
of stability of dynamical models of cell cycle control
has not been considered with a necessary profun-
dity. By now, the analysts and modelers establish
only the existence of bistability and self-oscillations
[Petrov & Timmer, 2004; Petrov et al., 2004; Qu

et al., 2003a, 2003b] without treating the question
of bifurcation character, despite the fact that it
concerns essentially the debate point for norm and
pathology in the cell cycle control [Tyson et al.,
2001, 2002, 2003; Novak et al., 2001; Li et al., 2004;
Petrov & Timmer, 2004]. This paper presents an
initial attempt to apply the theory of Lyapunov val-
ues to analyzing the bifurcation behavior of Novak–
Tyson type at transition from bistability to limit
cycle dynamics and vice versa.

Frog eggs and budding yeast are widespread
subjects of experimental and theoretical investiga-
tions of cell cycle kinetics. Previously, it has been
shown that the appearance and disappearance of a
limit cycle in the cell cycle control model of frog
eggs are always due to a soft loss of stability type
[Petrov et al., 2004]. In this paper we demonstrate
analytically that the cell cycle of budding yeast
can be modeled on the basis of Novak–Tyson Z-
shaped diagram as a self-oscillation obtained by
hard-excitation of one stable dynamics, which has
also been obtained after bifurcation from bistable
behavior of the cell kinetics. Thus, the transition
from bistability to limit cycle dynamics and vice
versa takes place in the cell cycle of budding yeast.
Contrary to the frog eggs cell cycle, the appearance
and disappearance of a limit cycle in the cell cycle
dynamics of budding yeast are both of hard and soft
loss of stability.

As mentioned in Sec. 4, the above conclusions
are also valid for Fitzhugh–Nagumo model, if the
term “cell cycle” is exchanged by “cell cycle” and
the expression “budding yeast cell cycle” should
be replaced by “single action potential”. In this
way, the interpretation of the “all or nothing”-
scenario of nerve excitation [Fitzhugh, 1960, 1961]
can be explained in terms of bistability behavior
in the considered model. On the other hand, the
“frog eggs cell cycle” should be substituted by the
expression “repetitive action potential” and can
be interpreted in the sense of limit cycle behav-
ior. It is possible that the dynamical mechanism
of cell cycle and nerve excitation is very similar,
but that means that the Fitzhugh–Nagumo model
and Novak–Tyson bifurcation diagram might have
some paradigmatic importance, which merits to be
analyzed in more detail in the future.
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