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In this paper we discuss two modifications of the surrogate data method based on phase ran-
domization, see [Theiler et al., 1992]. By construction, phase randomized surrogates are circular
stationary. In this respect they differ from the original time series. This can cause level inaccura-
cies of surrogate data tests. We will illustrate this. These inaccuracies are caused by end to end
mismatches of the original time series. In this paper we will discuss two approaches to remedy
this problem: resampling from subsequences without end to end mismatches and data tapering.
Both methods can be understood as attempts to make non-circular data approximately circular.
We will show that the first method works quite well for a large range of applications whereas
data tapering leads only to improvements in some examples but can be very unstable otherwise.

Keywords : Surrogate data; resampling; time series analysis.

1. Introduction

A classical algorithm to generate surrogate data
is the method of phase randomization, see
[Theiler et al., 1992]. Phase randomized surro-
gates have the same linear properties as the
observed data: the mean and the periodogram
(at the Fourier frequencies) of the observed times

series are preserved. This implies that the pop-
ulation auto-covariance function of the surro-
gate data vector is exactly equal to the circular
auto-covariance function of the data, see [Chan,
1997]. But only the circular autocorrelation func-
tion is preserved, not the usual autocorrelation
function. Moreover, for the hypothesis of circular
stationary Gaussian processes, tests based on
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phase-randomized surrogates attain the exact level,
see [Chan, 1997] for univariate time series, [Mam-
men & Nandi, 2008] for multivariate processes and
[Mammen & Nandi, 2004] for consequences of this
property on power properties. This is not true for
the more general hypothesis of stationary Gaussian
processes. Then tests based on Fourier-based sur-
rogates may not work well. From a practical point
of view, this is an essential drawback. The hypoth-
esis of possibly noncircular processes is much more
important. One reason why surrogate data fails for
noncircular processes are end to end mismatches.
Typically, the last point of the observed time
series deviates from the starting point. These edge
effects lead to periodicity artifacts. We will illus-
trate this below. In this paper, we will discuss two
approaches that have been proposed in the litera-
ture to remedy this problem: choosing subsequences
without end to end mismatches and data taper-
ing, see [Theiler et al., 1992]. Both methods are
attempts to make noncircular data approximately
circular.

In the first approach, one ignores some values of
the time series at the beginning and at the end. This
is done such that the first and the last data points
are approximately equal. In the second approach
one first applies tapering of the data before gener-
ating the surrogates (windowed Fourier-transform
surrogates). For a detailed description of the meth-
ods, see the next section. This paper presents a
thorough analysis of both approaches. We will check
level accuracy of surrogate data tests for a class of
noncircular stationary Gaussian processes and for
a set of test statistics. We will show that the first
method based on subsequences works quite well for
a large range of applications whereas data tapering
leads only to improvements in some examples but
can be very unstable otherwise. The paper is orga-
nized as follows. In Sec. 2, we discuss the proposed
methods. Numerical experiments are described and
discussed in Sec. 3 and finally we conclude the paper
in Sec. 4.

2. Correcting End to End
Mismatches: Two Methods

We now give a detailed description of the two proce-
dures to correct the effect of end to end mismatches.
The method based on taking subsequences will be
introduced in Sec. 2.1. Section 2.2 describes the
method based on data tapering. We will introduce
automatic implementations of the two procedures.

This will allow us to study in the next section if
these corrections improve the level accuracy of the
modified surrogate data tests.

2.1. Taking subsequences of the
time series

Suppose that a time series X1, . . . ,XN is observed.
For quantifying the mismatch between the start and
the end of the time series we use a very simple
measure. We consider the absolute difference of the
two end points |X1−XN |. In [Schreiber & Schmitz,
2000] it has also been proposed to measure the mis-
match between the end points in their first deriva-
tives. We consider the subseries procedure by the
following steps:

1. Fix two integers K1 and K2 that are much
smaller than the sample size N

2. Calculate the measure of mismatch τ(i, j) as

τ(i, j) = |Xi − Xj |

for all K1×K2 pairs (i, j) with i = 1, . . . ,K1 and
j = N −K2 + 1, . . . , N and find that pair (i, j),
for which τ(i, j) is minimized.

3. Take the subseries {X ′
1, . . . ,X

′
j−i

} = {Xi+1, . . . ,

Xj } of size j−i and base the whole data analysis
on this subseries. In particular, use the subseries
to generate the surrogate data.

The procedure drops at K1 most data points in the
beginning and then drops at K2 − 1 most points at
the end of the series. The corrected series will be at
least of length N − K1 − K2 + 1.

2.2. Data tapering

Data tapering is the second method to be corrected
for jump discontinuities between end points of the
observed series. The tapering is applied before the
surrogate resamples (FT-based surrogates) are gen-
erated. For the generation of the surrogate data,
the sample mean of the original series and the
periodogram values of the tapered data are used.
In the tapering, the observed series is multiplied
by a window function, say u(t) which gradually
decreases to zero at end points. We have used
u(t) = 1/2[1 + cos(2π(t − (N/2))/(N + 1))] as data
taper, see [Brillinger, 1981, p. 55] for an extensive
list of other data tapers.
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3. Numerical Experiments

In this section, we describe our simulation experi-
ment. The aim is to see how the end to end mis-
match corrections affect the level of accuracy of the
modified surrogate data tests. We have considered
the following data generating processes:

• M1 : Xt = 0.9Xt−1 + et

• M2 : Xt = 0.99Xt−1 + et

• M3 : Xt = 1.4Xt−1 − 0.48Xt−2 + et

• M4 : Xt = 1.7Xt−1 − 0.72Xt−2 + et

• M5 : Xt = 1.8Xt−1 − 0.81Xt−2 + et

• M6 : Xt = 2.4Xt−1 − 1.91Xt−1 + 0.504Xt−3 + et

• M7 : Xt = 2.6Xt−1 − 2.25Xt−1 + 0.648Xt−3 + et.

All these models are stationary Gaussian autore-
gressive (AR) models. They are of different orders;
M1 and M2 are of order 1, M3 − M5 are of order 2
and M6 and M7 are of 3. All processes are station-
ary, but they are all near to unit root models.

For these processes, we have considered the fol-
lowing test statistics in our simulation study.

T1 =
1
N

N−1∑
t=1

(XtX
2
t+1 − X2

t Xt+1),

S1 =
#{Xt > Xt+1}

N
,

S2 = N − 1 − S1, T2 = S1, T3 =
|S2 − S1|
S1 + S2

T4 = max
τ

Q(τ),

Q(τ) =

N∑
t=τ+1

(Xt−τ − Xt)3

[
N∑

t=τ+1

(Xt−τ − Xt)2
]3/2

,

T5 = max
{

#{|Xt+1 − X | > |Xt − X |}
#{|Xt+1 − X | < |Xt − X |} ,

#{|Xt+1 − X | < |Xt − X |}
#{|Xt+1 − X | > |Xt − X |}

}
,

T6 = CN (r),

CN (r) =

N∑
i=2

i∑
j=1

I(‖Xν
i − Xν

j ‖ < r)

N(N − 1)
2

.

Test statistics T1, . . . , T5 are measures of time asym-
metry. The statistic T5 was proposed in [Maiwald

et al., 2008]. Test statistic T6 = CN (r) is the cor-
relation sum which is defined as the sample ana-
logue of the correlation integral, see [Theiler et al.,
1992] who discusses correlation sums as discrimina-
tion statistics. In the definition of CN (r), I is the
indicator function and ‖X‖ = maxk |Xk|. The vec-
tor Xν

i = (Xi−(ν−1)d,Xi−(ν−2)d, . . . ,Xi)T belongs
to the phase space with embedding dimension ν
and delay time d. We have used delay time d = 2.
The results are reported for embedding dimension
ν = 4. We have used different values of r for differ-
ent models.

In the simulations, we generated data XN =
(X1, . . . ,XN ) from the models listed in (1) and
we calculated the test statistics Tj(XN) for j =
1, . . . , 6. We used sample size N = 512. For gen-
erating surrogates we computed periodogram val-
ues (DFT) at Fourier frequencies ωj = (2πj/N)
for 1 ≤ j ≤ N/2. For each simulated XN, 1000
surrogate resamples X∗

N were generated. For each
of these resamples, we calculated test statistics
Tj(X∗

N), j = 1, . . . , 6. We denote the (1 − α)th
quantile of Tj(X∗

N) by k∗
jα. Then the surrogate data

test rejects the hypothesis of a linear stationary
Gaussian process, if Tj(XN) > k∗

jα. The aim of
our simulations is to check the level of accuracy
of this test, i.e. to check if the rejection probabil-
ity on the hypothesis is approximately equal to the
nominal level αnom: P [Tj(XN) > kjα] ≈ αnom. For
this check, the whole procedure was repeated 1000
times. The empirical fraction of Tj(XN) > kjα gives
an estimate of the level of the test, say α̂. The sim-
ulation results are given in Tables 1 and 2. We have
used the nominal value αnom = 0.05.

Similar simulation experiments were carried out
for obtaining the levels of the two mismatch cor-
rected time series. For the first procedure, for each
XN, we applied the procedure described in Sec. 2.1
to obtain the end corrected subseries, say X′

N
. Here

N = j − i is the sample size of the subseries. We
used K1 = K2 = 40 for all models. For each X′

N
,

1000 surrogates X
′∗
N

were generated. Then the rejec-
tion probability P [Tj(X′

N
) > k′

jα] is estimated sim-
ilarly as for Tj(XN). Let us call it α̂ec. Here k′

jα

is the (1 − α)th quantile of X
′∗
N

. Note that in our
implementation the test statistic is calculated for
X′

N
and not for XN. Thus the test statistic is cal-

culated for the same sample size as in the resam-
pling. For small values of K1 and K2 one could also
consider the use of Tj(XN) > k′

jα as test criterion.
We have not done this here. The (estimated) levels
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Table 1. Level of accuracy of surrogate data tests using surrogates of the complete original series (uncorr.),
of end to end corrected subseries (subseq.) and of tapered series (dt.). The level of accuracy is marked by
“− − −” if the level (i.e. α̂, α̂ec or α̂dt, respectively) is 0.0, “ok” if it lies between 0.03 and 0.075, “+” if it
lies between 0.075 and 0.125, “++” if it lies between 0.125 and 0.25, and “+++” if it is larger than 0.25.
The nominal level is 0.05. The table reports the results for test statistics T1, T2 and T3.

Test Statistics

T1 T2 T3

Models uncorr. subseq. dt. uncorr. subseq. dt. uncorr. subseq. dt.

M1 + ok +++ ok ok ok ok ok ok
M2 +++ + +++ + ok ok + ok +
M3 ++ ok +++ ok ok ok ok ok ok
M4 +++ ok +++ ok ok ok + ok +
M5 +++ ok +++ + ok + + ok +
M6 +++ ok +++ + ok + ++ ok +
M7 +++ + +++ ++ ok + ++ ok +

Table 2. Level of accuracy of surrogate data tests. The notation is as in Table 1. Now the results are reported
for T4, T5 and T6.

Test Statistics

T4 T5 T6

Models uncorr. subseq. dt. uncorr. subseq. dt. uncorr. subseq. dt.

M1 ok ok ok ok ok ok ok ok −−−
M2 ++ + + ok ok ok +++ + −−−
M3 ok ok ok ok ok ok ok + −−−
M4 ok ok ok ok ok ok +++ ok −−−
M5 ok ok ok + ok ok +++ + −−−
M6 ok ok ok + ok ok +++ ok −−−
M7 ok ok ok ++ ok ok +++ + −−−

of the second procedure are denoted by α̂dt. Here,
for each XN, we first obtained the tapered data, say
Xt

N. Using the method given in Sec. 2.2, 1000 sur-
rogates, say Xt∗

N for Xt
N was generated. Then, the

(1 − α)th quantile for each test statistic Tj(Xt∗
N)

was estimated as kt
jα. Finally the level α̂dt was esti-

mated as the fraction of Tj(XN) > kt
jα. Here the

test is based on Tj(XN), not on Tj(Xt
N). The sim-

ulation results for α̂ec and α̂dt are summarized in
Tables 1 and 2.

Before we discuss the results of the simulation
study let us briefly visualize how the jump disconti-
nuity affects the surrogate resamples. A realization
of size N = 512 of the model M7 has been generated
and plotted in Fig. 1 (left plot). There is a big jump
between the first and the last points of this series.
A phased-randomized surrogate data with the same
sample mean and the same periodogram values has
been plotted on the right plot in Fig. 1. We observe
that there are small artificial fluctuations visible in

the surrogate series, that was not present in the
original series. Now we apply the mismatch cor-
rection procedure given in Sec. 2.1 with K1 = 50
and K2 = 50. The procedure chooses an end to end
corrected subseries of length 445. This sequence is
plotted in Fig. 2 (left plot) and a surrogate resam-
ple of it is given in Fig. 2 (right plot). The small
fluctuations which were observed for the surrogates
in Fig. 1 are not present now. Figure 3 illustrates
the method of data tapering. The tapered data are
plotted in Fig. 3 (left plot) and one of its surrogate
data are displayed in Fig. 3 (right plot).

We now compare the outcomes of our simula-
tions, reported in Tables 1 and 2. The simulation
shows that the estimated level of the uncorrected
surrogate data test does not keep its level. The sur-
rogate data test rejects too often in many cases. For
the test statistics T1 and T6 the rejection probabil-
ity is larger than 0.25 (+++) in five out of seven
models. This means that the surrogate data test is
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breaking down here: the test outcome is the same as
for a random number that is produced without look-
ing at the data. The breakdown of the test in these
cases can be easily explained by Fig. 1. The small
bumps appearing in the right plots cause erroneous
calculations of the two statistics that are both based
on the quantitative evaluation of neighbored values
of the time series. The other test statistics use only
overall measures (T4) or qualitative measures based
on the qualitative comparison of neighbored values
(T2, T3 and T5). For the test statistics T2–T5, the
uncorrected surrogate data test is unreliable in some
cases for models M2, M6 and M7. If we qualify the
performance “− − −”, “++” and “+++” as unre-
liable we get that the uncorrected surrogate data
test is unreliable in 16 out of 42 cases. (There were
no test outcomes with rejection probability between
0 and 0.03.) This is a quite unstable behavior. The
performance is only slightly improved if data tapers
are used before the surrogates are generated. This
method is unreliable in 14 out of 42 cases: it breaks
down in all models for test statistics T1 and T6.

Thus for these two test statistics the performance
is not improved although the little bumps have been
removed for the surrogates (compare the right plots
in Figs. 1 and 3). For T6 the data taper test always
rejects, in all 1000 runs of the simulations. Clearly,
formally this results in a valid test that keeps its
level. But it clearly indicates that the data taper
surrogates are not able to capture the stochastic
structure of the data and one cannot expect any
reasonable power for this test with neighbored alter-
natives. For the other test statistics application of
data tapers lead to an improvement of level accu-
racy. The data taper test is clearly outperformed
by the end to end correction based on taking a sub-
series. The latter test has a reliable performance in
all 42 cases. For the test statistics T4 and T5 the
improvements are comparable to using data tapers
but it clearly outperforms the data taper tests for
all other test statistics. In particular, the perfor-
mance is reliable for the test statistics T1 and T6

where the uncorrected test and the data taper test
break down in most or all models.
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Fig. 1. A sample of size 512 of the process M7 (left plot) with one Fourier-based surrogate (right plot).
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Fig. 2. A subseries of the series given in Fig. 1 without end to end mismatch (left plot) with one Fourier-based surrogate of
the subseries (right plot).
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Fig. 3. Tapered data of the series given in Fig. 1 (left plot) with one Fourier-based surrogate of this series (right plot).

Thus, our simulations give a very clear pic-
ture. In the simulated cases data tapering only
leads to moderate improvements. In particular, it
helped mostly in cases where the unmodified sur-
rogate data test was already quite reliable. In cases
where the unmodified test broke down data tapering
was not of any use. End to end corrections based on
taking a subseries turned out to be very successful.
It nearly always leads to improvements and it also
produced a reliable test when the unmodified sur-
rogate data tests (and its data taper modification)
broke down.

4. Summary and Conclusions

In our numerical experiments, we have estimated
the level of different tests for a class of linear sta-
tionary Gaussian processes. The critical values of
the tests were fitted by using surrogate resamples,
surrogate resamples for subseries without end to
end mismatch or surrogate resamples generated for
tapered data, respectively. We observed partially
large level inaccuracies of the unmodified surrogate
data test. The level inaccuracies were partially cor-
rected by the application of data tapering. But data
tapering does not always lead to improvements.
For some test statistics it even produced totally
misleading values. Surrogate resampling for sub-
series was quite reliable. It has not always produced
totally accurate levels, but it has nearly always
lead to improvements of the level accuracy and the
improvements were partially drastic. The paper has
shown that it is highly recommendable to repair
mismatches between end values of time series before
generating surrogate data. In this paper we only
used the absolute difference of the end observations

as mismatch criterion. This worked quite well for
the considered test statistics. We conjecture that for
more involved data analysis more complicated mis-
match criterions should be used, e.g. for checking
embeddings in higher dimensional spaces the mis-
match of the tuple of the last values and the tuple
of the first values could be checked. But this would
only make sense for very long time series. Then it
may be too complex to check the performance in
a larger simulation study where a large number of
surrogates must be generated for a large number of
original samples.
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