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We study the influence of noisy transcription factor signals on cis-regulatory promoter elements. These
elements process the probability of binary binding events analogous to computer logic gates. At equilibrium,
this probability is given by the so-called input function. We show that transcription factor noise causes
deviations from the equilibrium value due to the nonlinearity of the input function. For a single binding site,
the correction is always negative resulting in an occupancy below the mean-field level. Yet for more complex
promoters it depends on the correlation of the transcription factor signals and the geometry of the input
function. We present explicit solutions for the basic types of AND and OR gates. The correction size varies
among these different types of gates and signal types, mainly being larger in AND gates and for correlated
fluctuations. In all cases we find excellent agreement between the analytical results and numerical simulations.
We also study the E. coli Lac operon as an example of an AND NOR gate. We present a consistent mathematical
method that allows one to separate different sources of noise and quantifies their effect on promoter occupa-
tion. A surprising result of our analysis is that Poissonian molecular fluctuations, in contrast to external
fluctuations, do no contribute to the correction.
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INTRODUCTION

Life is a phenomenon emerging from the subtle interplay
of physical processes on a molecular scale. Nowadays, these
processes are directly observable in single molecule experi-
ments. This opens the door for bottom-up approaches to un-
derstand cellular function such as genetic regulation. In this
fundamental biological process transcription factors �TFs�
bind in response to environmental or cellular signals to spe-
cific DNA regions, the promoter, thereby triggering or inhib-
iting the expression of genes. If multiple TFs bind to distinct
sites, thus integrating multiple signals, the promoter com-
prises a cis-regulatory module controlling gene expression
through the Boolean combination of bound TFs �1,2�. The
input-output behavior attributed to the transcriptional logic
gate has been measured for various genes �3–6� at constant
inducer levels. Because many TFs are present in low copy
numbers per cell, however, the regulatory processes are in-
evitably stochastic.

Although there has been intense theoretical �7–14� and
experimental work �15–23� on fluctuations arising from gene
expression to explain cell-to-cell variations, little focus has
been on the effect of such fluctuations on TF binding �24,25�.
A common framework for quantifying molecular fluctuations
in biochemical reactions are master equations �26�. These
have been successfully used for the analysis of gene expres-
sion noise by various authors �8–10,27�. The inherent non-
linearity arising from the bimolecular TF-promoter interac-
tion, however, impedes the analysis of the binding reaction
with master equations substantially because moment-closure

schemes fail. Therefore previous investigations on TF-
promoter binding either used rate equations �28� or thermo-
dynamic equilibrium models �1,29,30�. When concerning
noise in genetic networks, several authors have used mean-
field approximations �8,10,19� which are equivalent to a lin-
earization of the system. Although these works have pro-
vided groundbreaking insights into the propagation of noise
in genetic cascades, a systematic analysis of this nonlinear
stochastic system is missing so far. This paper presents a
detailed analysis of a TF-promoter interaction finding and
quantifying noise-induced corrections due to the nonlinearity
of the reactions. For a single binding site we find a negative
correction to the mean-field level, while for cis-regulatory
modules the correction depends nontrivially on the geometry
of the input function and the correlation of the TF signals.

SINGLE SITE

We start by studying a single site and then extend the
model to cis-regulatory modules. The single-site model con-
sists of two reaction steps: First, TFs are synthesized with
constant rate � and degraded proportional to the total number
of TFs, n, with first-order rate constant D. In principle, this
could also be a reversible activation or dimerization reaction
if the amount of inactive �or monomer� TFs can be consid-
ered as a reservoir. Second, active TFs reversibly bind to a
single promoter site s at rate j+n and, in turn, dissociate at
rate j−:

��
Dn

�

n�
j−

j+n

sn . �1�

This kinetic model has been proposed previously by Berg et
al. �24�. The reaction scheme manifests in the corresponding
master equation,
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�t��n;t� = ����En
− − 1� + D�En

+ − 1�n�1

+ �− j− j+En
+n

j−En
− − j+ ����n;t� , �2�

determining the time-evolution of the vector density ��n ; t�
= ��1�n ; t� ,�0�n ; t���. The components describe the probabil-
ity of finding n free TFs and the promoter either occupied,
�1�n ; t�, or free, �0�n ; t�. The shift operators En

� change the
argument of ��n ; t� by �1, according to the associated
change of molecules in the reaction �26�. The first term on
the right-hand side �rhs�. in Eq. �2� accounts for the produc-
tion and degradation of TFs, the latter term governs the in-
teraction. The stationary solution of Eq. �2� is given by a
vector Poisson distribution:

��n� = � h�a�
1 − h�a�

�P�n;a� , �3�

where the symbol P�n ;a�=e−a�a�n /n! defines the Poisson
distribution with parameter a=� /D= 	n
, while the equilib-
rium input function h is given by

h�a� = a/�a + J� �4�

with J= j− / j+. There are two things to note: First, the station-
ary distribution of the free TF is a Poisson distribution and
unaffected by the binding reaction, ��n�=�0�n�+�1�n�
= P�n ;� /D�. Second, the degree of occupation �1=�n�1�n�
=h�	n
� is completely determined by the mean TF abun-
dance, although one might expect corrections due to molecu-
lar fluctuations. This is related to detailed balance, as dis-
cussed in �24�. We conclude that in this kinetic model,
Poissonian molecular fluctuations do not cause corrections.
Because there exists many other sources of noise in a realis-
tic biological model in addition to Poissonian molecular fluc-
tuations, we will present a systematic strategy for separating
these two sources and quantifying their effect on the binding
kinetics.

External noise

We include other sources of noise by letting the synthesis
rate � be a stochastic process itself, i.e., �→���t�, where �t
is an external noise process. This arises, e.g., from mRNA
fluctuations in gene expression noise �11� or signaling fluc-
tuations in TF activation. In principle, �t could also represent
slowly varying factors commonly summarized as extrinsic
noise.

Whereas the undisturbed system defined in Eq. �2� relaxes
to the stationary vectorial Poissonian, Eq. �3�, with a con-
stant parameter a=� /D, external noise counteracts this pro-
cess. Hence, instead of finding a single Poissonian distribu-
tion, one finds a superposition due to the noisy reaction rates.
As shown in the Appendix, the resulting stationary distribu-
tion can be approximated for fast binding and slow fluctua-
tions by

��n� � 
0

� � h���
1 − h���

�P�n;��f���d� . �5�

This strategy is, in general, termed Poisson representation
�31�. The function f��� is the stationary probability density
of a process defined by the stochastic differential equation
�SDE�:

d

dt
�t = ���t� − D�t. �6�

This process can be interpreted as the “center-of-mass” dy-
namics since it holds that 	nt
= 	�t
. For the stationary vari-
ance one finds that �n

2= 	n
+��
2 . This addition rule of �n

2

results from lacking feedback �32�: 	n
 stems from internal
molecular �Poissonian� fluctuations, while ��

2 is the variance
caused by external noise. For mRNA fluctuations this ac-
cords with previous studies using moment-closure schemes
�8,11�.

The approximation in Eq. �5� is valid if the dynamics of
the TF are slow compared to the binding reaction. Then the
promoter is equilibrated with the fluctuations according to
h���. Studying the relevant rates shows that this condition is
fulfilled in vivo: Being a random telegraph process, the inter-
action equilibrates at rate j+	n
+ j−. Previous theoretical and
experimental investigations agree that TF search times are on
the order of 10 s–1 min �33,34�. For TF abundances of 10–
100 per cell, this yields j+	n
�1 /s. In contrast, the charac-
teristic rate of TF fluctuations is D, which can be assumed to
be D�0.1–0.01 /s. This is at least an order of magnitude
slower than the binding dynamics, D	 j+	n
; therefore the
interaction is equilibrated on the time scale of TF fluctua-
tions since the condition D	 j+	n
+ j− is fulfilled. In this
case, the promoter occupation h��� adiabatically follows ex-
ternal fluctuations. A quantitative discussion of this effect is
given in the Appendix. There we also show that fluctuations
faster than the binding kinetics are mediated rendering the
mean-field value to be exact.

According to Eq. �5�, the stationary promoter occupation
is given by �1=�0

�h���f���d�; it thus depends on the station-
ary distribution f���. In most cases, however, only the first
central moments 
�

�i� are known. We therefore expand this
expression into a series,

�1 = �
i=0

�
h�i��	�
�

i!

�

�i� = �1
�0� + �1

�2� + . . . , �7�

where h�i� are the Taylor coefficients of h. If �
�
�i�h�i��	�
��

vanishes sufficiently fast, one can truncate the sum after the
second term giving rise to �1��1

�0�+�1
�2�. Here �1

�0�=h�	n
� is
the mean-field result and �1

�2�=−J��
2 / �J+ 	n
�3 the first cor-

rection due to noise; the order �1
�1� vanishes since 
�

�1�=0.
This type of approximation is sometimes referred to as small
noise expansion �9�. To analyze if the second order causes a
significant correction, we study its relative size

�1
�2�

�1
�0� = −

x

�1 + x�2��
2 , �8�

with the dimensionless parameters x= 	n
 /J and ��
2
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=��
2 / 	�
2. Independent of x, external noise ��

2 causes a
negative correction to the mean-field occupation, with a
maximally possible value of −��

2 /4. This effect can be ex-
plained by the negative curvature of the input function h
weighting negative deviations from the mean more strongly
than positive ones as shown in Fig. 1�a�. Yet this notion is
somewhat oversimplified, since Poissonian molecular fluc-
tuations do not contribute as discussed in the previous sec-
tion. The predicted linear dependency on the noise compo-
nent ��

2 is fully supported by numerical simulations using the
Gillespie algorithm �35� as depicted in Fig. 1�b�. The noise
correction is zero for ��

2 =0; in this case the approximation
exactly reproduces the mean-field value according to Eq. �3�.

The noise component ��
2 is defined by the stochastic dif-

ferential equation Eq. �6�. Thus different types of external
noise processes �t can lead to identical stationary moments of
�, and hence to identical noise correction terms. We have
tested this hypothesis and found that this is indeed the case
�data not shown�. Since the dampening −D�t filters fast ex-
ternal noise components this ensures that the time-scale
separation between binding kinetics and TF fluctuations re-
mains valid.

The same expansion strategy holds for the unoccupied
state �0 yielding correction terms �0

�i�=−�1
�i�. Hence the noise

correction for the unoccupied state is always positive. Fur-
thermore, this result also ensures that the truncated series in
Eq. �7� can be interpreted as a probability at every order
since the correction terms for occupied and unoccupied states
cancel pairwise.

PROMOTER LOGIC

Having found a strategy to quantify the effect of TF noise
at a single site we are now able to study cis-regulatory ele-
ments. While the influence of noise at a single binding site

could be represented as a function of the TF noise level, the
effect at complex promoters depends on the combination of
logic gate and the correlation structure of the multivariate
input. We will first present a general approach and then de-
rive explicit solutions for basic AND and OR gates.

For a promoter having M binding sites we define binary
variables si denoting whether the ith binding site is free, si

=0, or occupied, si=1, respectively. These will be summa-
rized by a binary vector s= �s1 , . . . ,sM�. Reconsidering the
single-site expression in Eq. �5� in an index notation, �s

=�hs���f���d� with h1���=h��� and h0���=1−h���, it is
straight-forward to generalize this expression to the case of
M binding sites and N different TFs. Then the probability for
a given state s reads

�s = hs���f���d� . �9�

The vector �= ��1 , . . . ,�N� contains the center-of-mass vari-
ables �i of each TF ni, which are distributed by a joint den-
sity f���. The probability of occupying the state s at a given
level of � is given by the input function hs��� which can be
determined by thermodynamical approaches �1,30�. The ge-
netic induction will then be a product of the probability for
the occupation state s and the corresponding induction rate
accounting for the RNA polymerase affinity of that particular
state. Logic gates arise from the idealization that successful
transcription does only occur in one particular state, the gene
is said to be on, and is fully suppressed—off—in the others.

Since we wish to link the mean occupation to the noise
level we expand Eq. �9� similarly to the single-site case:

Transcription factor abundance

Pr
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y

〈h〉

h

〈n〉
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FIG. 1. �a� Schematic illustration of the noise correction. For slow TF fluctuations the promoter occupation is a saturating function h of
the regulator abundance �black line�. Under external noise, the distribution of the regulator, ��n� �solid gray line�, can be expressed as a
superposition of Poisson distributions with a distribution f��� �black dashed curve� with mean 	�
= 	n
. According to Eq. �5� the distribution
f determines the occupation level. Because of the curvature of h, positive deviations 	n
+�� have less influence on the occupation than
negative ones, 	n
−��. Thus external fluctuations cause a negative correction to the mean-field level, h�	n
�, leading to a smaller mean
occupation 	h
 �black dash-dotted line�. �b� The noise component ��

2 =��
2 / 	n
2 causes a linear decrease of the mean promoter occupation.

Shown are data for x= 	n
 /J=1. The black line denotes the linear decrease with slope −0.25 as supposed by Eq. �8�. The squares are the
results of numerical simulations using the Gillespie algorithm �35� with increasing external noise levels. Error bars denote the standard
deviation of the numerical estimator due to the finite simulation length.
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�s = hs�	�
� +
1

2 �
i,j=1

N

hs
�i,j��	�
�C�

�i,j� + . . . ¬ �s
�0� + �s

�2� + . . . .

�10�

The symbol hs
�i,j��	�
� denotes the partial derivative of hs

with respect to �i and � j; C�
�i,j� is the covariance matrix of �.

The notion behind this approximation is similar to the single-
site case: The correction due to noise �s

�2� is given by the
curvature of the input function hs

�i,j��	�
� times the variability
of the input signal in the i− j direction, as given by C�

�i,j�. The
noise correction critically depends on the correlation struc-
ture of the input signal: For an uncorrelated input the sum
consists only of N diagonal terms. For correlated input fluc-
tuations, however, all N2 terms contribute to the noise cor-
rection. We will explicitly illustrate this effect for the AND

and OR gates.
So far, we have not specified the input function hs��� in

Eq. �9�. Assuming M =N and independent binding kinetics
for clarity, it is of product form, hs���=�i=1

N hsi
��i�, with

hsi
��i�=h��i�si�1−h��i��1−si being the single site input func-

tion of the state si in index notation. Since all TFs bind
independently the mean-field order is a product of the corre-
sponding single-site occupations:

�s
�0� = hs�	�
� = �

i=1

N

�si

�0�. �11�

It is also straightforward to calculate the Taylor coefficients
by the derivatives of the single site input function h��i�. For
the relative size of the noise correction, it follows that

�s
�2�

�s
�0� =

1

2 �
i,j=1

N

��i� j log hsi
�	�i
�log hsj

�	� j
�

+ �ij�i
2 log hsi

�	�i
��C�
�i,j�. �12�

This expression can be readily evaluated for the different
logic gates.

AND

In an AND gated promoter, all promoter sites si need to be
occupied for the gene to be active. The corresponding prob-
ability thus is

�N,AND = �1,. . .,1. �13�

For the independent input function it follows from Eq. �10�
that the mean-field level is given by

�N,AND
�0� = �

i=1

N
xi

1 + xi
, �14�

with the dimensionless quantities xi= 	ni
 /Ji. It is further con-
venient to assume that all kinetic rates are equal, xi=x,
thereby reducing parameter space. With increasing N the in-
put function displays a sigmoid behavior corresponding to a
genetic switch. The noise correction is, in principle, given by
Eq. �12�; yet it still depends on the input correlation C�i,j�

�.
Instead of presenting the general case it is thus elucidating to

analyze two limits: Multiple independent transcription fac-
tors giving rise to an uncorrelated input signal, and a single
type of regulator binding to multiple sites causing identical
fluctuations at each binding site. In the first limit one has
C�

�i,j�=�ij��
2 . Since the covariance matrix is diagonal, Eq.

�12� only sums the terms h1,. . .,1
�i,i� �	�
�. This gives rise to a

relative correction of

�N,AND
�2��

�N,AND
�0�

= N
�1

�2�

�1
�0� = − N

x

�1 + x�2��
2 . �15�

Here, the superscript � denotes the uncorrelated case. Com-
paring this result with Eq. �8�, one finds that the relative
correction for N independent regulators, each subject to a
noise level ��

2 , is identical to the case of a single regulator
with noise strength N��

2 . Hence its absolute value increases
with the number of sites N as shown in Fig. 2�a� �black
lines�. As a result, the size of the correction could change
easily by an order of magnitude if the gene is dependent on
sufficiently many regulators.

For identical fluctuations it holds that C�
�i,j�=��

2 for all i , j.
Denoting this case with the symbol � one finds a correction,
according to Eq. �12�, of

�N,AND
�2��

�N,AND
�0�

=
N

�1 + x�2�N − 1

2
− x���

2 . �16�

Here, all of the N�N−1� off-diagonal terms contribute to the
noise correction in addition to the diagonal elements. For x


N−1
2 the correction is negative and, in the limit of large x,

equals that of the uncorrelated case, whereas for x�
N−1

2 the
correction is positive and increases quadratically with N.
Hence the noise correction changes sign as shown in Fig.
2�b� �black lines� because of the sigmoidal input function
h1,. . .,1�	�
�=h�	�
�N. Overall, both positive and negative cor-
rections smear out the response of the genetic switch, thereby
constraining ultrasensitivity �36�. This effect is illustrated in
Fig. 3: While the mean-field result �N,AND

�0� displays a distinct
threshold, the noise-corrected response �N,AND

�0� +�N,AND
�2� is less

steep. An exception is the single-site case N=1 where noisy
signals cause a steeper response. This counterintuitive effect,
caused by the input function being hyperbolic, has been
termed stochastic focusing �24,37�.

OR

For an OR gated promoter it is already sufficient that one
of N possible sites si is occupied in order to activate the
transcription. The probability corresponding to this event is

�N,OR = 1 − �0,. . .,0. �17�

The absolute noise correction for the state s= �1, . . . ,1� can
be calculated from Eq. �12� for a given input correlation. We
will again discuss the two opposite limits of multiple uncor-
related signals, and a single TF. The resulting second-order
noise corrections to the mean-field OR state are presented in
Table I. The correction terms are negative in both limits. As
illustrated in Figs. 2�a� and 2�b� �gray lines� the maximal
correction decreases with increasing N for uncorrelated fluc-
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tuations but increases for identical external noise; in both
cases it vanishes for large and small x.

The results for both types of gates and fluctuations are
summarized in Table I. As required, all types of approxi-
mated gates reproduce the single site result for N=1. By
construction, the results are linear in the noise component
��

2 . Hence for no external noise, i.e., vanishing ��
2 , all cor-

rections are zero; it still holds that Poissonian fluctuations do
not contribute to the noise correction in promoter logic gates.

We tested the validity of our analysis by numerical simu-
lations using the Gillespie algorithm �35�. External noise was

modeled as a Poisson process feeding into the production of
regulators. As shown in Fig. 2 our analytical terms are in
excellent agreement with the simulations.

Lac operon: AND NOR

From the definition Eq. �9� it is also possible to construct
more complex logic gates. A prominent example that also
nicely illustrates the notion of the noise correction is the E.
coli Lac operon which resembles some properties of an AND

NOT gate �3�. This operon regulates the expression of lactose
digesting enzymes in the presence of this nutrient; otherwise
the production is repressed. Successful transcription initia-
tion only occurs if the activator, cAMP repressor protein
�CRP�, is bound and activated by cyclic adenosine mono-
phosphate �cAMP�, and the repressor LacR, which is in-
duced by allolactose, is not. Thus cAMP and allolactose
could be potential external noise sources. If the activator
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FIG. 2. Relative second order corrections to the mean-field result for different promoter logic. The gray lines denote results for the OR

gate and the black lines for the AND gate, respectively. N indicates the number of binding sites. Square symbols represent results from
numerical simulations; error bars were calculated from the variance of the numerical estimator for the occupancy. �a� Independent TFs/
uncorrelated input signal. The relative size of the first correction increases with N for the AND gate, whereas it decreases for the OR gate. �b�
A single TF binding to multiple sites/identical fluctuations. The noise correction changes sign for the AND gate for N1. For the OR gate,
the correction remains negative, however, the size does not increase significantly with N. The inset shows the relative correction on a smaller
scale. The gray dashed line denotes the case N=2.
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FIG. 3. Identical fluctuations counteract thresholding at AND

gates. Shown are the mean-field value �N,AND
�0� = �x / �1+x��N and the

noise-corrected occupation according to �N,AND
�2� for identical ��� and

uncorrelated ��� input fluctuations. While the pronounced threshold
of the mean-field result is essentially shifted for uncorrelated TF
signals, correlated fluctuations smear out the response. This situa-
tion arises, e.g., if there exists multiple binding sites for the same
TF. Results shown are computed for N=5 binding sites and a noise
level of ��

2 =0.4.

TABLE I. Relative size of the first order corrections to the
mean-field result, ��2� /��0�, for different logic gates and input cor-
relations. The number of binding sites is N, x= 	n
 /J denotes the
rescaled mean TF abundance, and ��

2 is the external noise
component.

Gate
Uncorrelated

���
Identical

���

AND −Nx

�1+x�2��
2 N

�1+x�2 �
N−1

2
−x���

2

OR −1

��1+x�N−1�
Nx2

�1+x�2��
2 −1

��1+x�N−1�
N�N+1�

2

x2

�1+x�2��
2

NOR
a Nx2

�1+x�2��
2 N�N+1�

2

x2

�1+x�2��
2

a�N,NOR=�0,. . .,0.
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binds to site s1 and the repressor to site s2, the event of
finding bound CRP and the LacR site unoccupied, i.e., “CRP
AND NOT LacR,” is given by s= �s1 ,s2�= �1,0�. If activator
and repressor are stochastically independent, the relative
noise correction is, cf. Eq. �12�, �1,0

�2� /�1,0
�0� =�1

�2� /�1
�0�

+�0
�2� /�0

�0�.
In fact, however, the Lac operon contains three binding

sites for the LacR repressor; it is thus an example of an AND

NOR gate where neither of the repressor sites may be occu-
pied. The event that the activator is bound but no repressor
thus corresponds to the vector s= �1,0 ,0 ,0� where the last
three digits denote the unoccupied LacR binding sites. If the
activator is again stochastically independent from the repres-
sor, the respective probability is �1,0,0,0=�1�0,0,0. Since the
LacR fluctuations are identical our theory predicts a correc-
tion according to Eq. �12� of

�1,0,0,0
�2�

�1,0,0,0
�0� =

�1
�2�

�1
�0� +

�0,0,0
�2��

�0,0,0
�0� , �18�

where the first term on the rhs is the single-site correction to
the CRP binding site as given by Eq. �8�. The latter term is
the NOR-gated correction of finding no LacR repressor,
namely

�0,0,0
�2��

�0,0,0
�0� =

1

2��
i�j

3
xixj

�1 + xi��1 + xj�
+ 2�

i=1

3
xi

2

�1 + xi�2���LacR

2 .

�19�

Here we have dropped the assumption of identical binding
kinetics and xi= 	LacR
 /Ji with Ji being the dissociation con-
stant of each LacR binding site. The expression shows that
even in the limit of strong interaction at all sites xi�1 the
relative size of the noise correction does not vanish; instead
it reaches a stationary value of 6��

2 . Since the correction is
always positive, we conclude that a mean-field approach sys-
tematically overestimates the strength of repression by LacR.

Including the effect of noisy CRP activation causes a
more diverse correction landscape depending on the mean
and external noise levels of CRP and LacR. The resulting
total correction and the mean-field input function are shown
in Fig. 4 assuming identical noise levels. Depending on the
curvature of the input function, noise locally causes positive
or negative corrections. Since the susceptibility to noise is
strongest in regions with maximal curvature we conclude
that, in most cases, a noisy TF input decreases the steepness
of the transitions. In the Lac operon this is apparent by the
sigmoidal shape of the LacR repression curve: Here the noise
correction is strongest at its shoulder thereby flattening the
average response.

Experiments indicate that the Lac repressor LacR is
present at abundances of about 10 molecules/cell �34�. Low
concentrations coincide, in general, with large noise levels.
Because both correction terms in Eq. �18� are proportional to
the corresponding noise levels, one or the other may domi-
nate the correction depending on the relative noise strength.
Since only the non-Poissonian noise component ��

2 contrib-
utes to the correction, this indicates two scenarios for LacR:
If the activation is uniform the noise is purely Poissonian and

the second term on the rhs of Eq. �18� vanishes. Then the
correction depends solely on the first term, i.e., on the dy-
namics of CRP. Because CRP has only one binding site, the
resulting correction is negative. Yet if the activation of LacR
is bursty, the external noise component is large and may
dominate the correction. In this limit, the overall correction
is governed by the dynamics of LacR and changes sign de-
pending on the local curvature.

We note that the presented kinetics are only an approxi-
mation of the complex interactions at the operon. DNA loop-
ing facilitates a stabilizing interaction between two LacR re-
pressors bound at sites O2 and O3 �38,39�. Kinetically, this
results in a slower dissociation rate of the LacR complex,
which in turn alters the shape of the input function h���.
However, the time-scale separation between TF noise and
binding kinetics is mainly based on the fast association rate.
We therefore expect that the general approximation, Eq. �10�,
will still be valid for complex promoter dynamics. We con-
clude that, although the presented approach simplifies the
complex regulation of the Lac operon, the resulting equilib-
rium input function displays the relevant features of experi-
mentally observed induction curves �3,5�. Furthermore, the
corresponding analytical expressions allowed us to explicitly
calculate the predicted corrections for fluctuating inputs.

DISCUSSION

In summary, we presented a comprehensive analytical and
numerical analysis of a stochastic transcription factor bind-
ing to promoters with one or multiple binding sites. We de-
rived explicit expressions for the noise corrections arising
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FIG. 4. �Color� The noise correction to the mean-field occupa-
tion depends on the geometry of the input function. Shown on the z
axis is the mean-field occupation ��0� as a function of CRP and
LacR concentrations in units of their corresponding promoter dis-
sociation constants J. The color denotes the size of the noise cor-
rection ��2�, Eq. �19�. This plot illustrates the influence of the cur-
vature: In regions with positive curvature, the correction is positive
�red colors�, whereas for negative curvature it is negative �blue
colors�. Positive corrections thus occur for intermediate repression
but high induction by CRP, whereas negative corrections prevail for
low repression but intermediate activation. For simplicity, it is as-
sumed that all LacR binding sites have the same affinity and that
noise levels of both CRP and LacR are equal.
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from slow TF fluctuations and fast binding. At a single site
external noise reduces the average promoter occupation be-
low the mean-field level due to saturation effects. In the dis-
cussed model Poissonian noise, surprisingly, does not con-
tribute to the noise correction �Fig. 1�. We note that although
the non-Poissonian noise component cannot be measured di-
rectly, it could be inferred from the observable total noise
level since �2=1 / 	n
+��

2 where 	n
 is the average number
of TFs. This relation also implies that the external noise com-
ponent in most cases dominates the total noise level because
the Poissonian contribution vanishes as 1 / 	n
.

The noise contribution ��
2 is defined by the “center-of-

mass” equation, Eq. �6�. Interestingly, this is a Langevin
equation which has also been used by other authors �14,19�
and which is typically assumed to be a mesoscopic approxi-
mation to the discrete molecular description by master equa-
tions �26�. We modeled external noise entering additively
through the process of TF synthesis ���t�. In a realistic bio-
logical model, also the degradation or deactivation reaction
is regulated by other processes and hence subject to external
fluctuations. Then noise enters the system multiplicatively
through −D��t�. The presented method is also capable of
handling this situation, however, calculating the resulting
moments of � becomes slightly more complicated since the
equations for the moments are not of closed form.

In vivo, most genes are combinatorially regulated by mul-
tiple TFs in both prokaryotes �40� and eukaryotes �2� en-
hancing the programmability of gene expression. Yet the
strong nonlinearity in logic gates amplifies the effect of
noise. We derived an exact analytical expression for an arbi-
trary occupational event accounting for the effect of external
noise. A systematic expansion of this expression revealed
that a combination of the geometry of the input function and
the correlation structure of the TF signal determines the
noise resistance of the gate. Having solved these expressions
explicitly for the basic types of AND and OR gates we have
shown that, in general, the noise correction increases with
the number of binding sites in AND gates, whereas OR gates
are only moderately affected. Combining these two types
with a logical NOT allows one to construct the solutions for
realistic promoters such as the E. coli Lac operon or even
more complex ones. For the Lac operon we showed that
noise causes nontrivial corrections depending on the mean
levels of Lac repressor and CRP.

The analyzed models for the input function h simplify the
binding dynamics at complex promoters, however, they
qualitatively reproduce the characteristic nonlinearities and
saturation effects which have been modeled by detailed ther-
modynamic approaches �1,30�. In prokaryotes the TF bind-
ing process is thought to require one-dimensional diffusion
along DNA by nonspecific binding �33,34�, cooperative in-
teractions of the transcription factors �40�, DNA looping
�38,39�, and many other phenomena. In eukaryotes an addi-
tional layer of complexity exists by chromatin remodeling
�41�. Successful transcription initiation may also occur from
more than one TF occupation state, most likely at different
rates. The resulting genetic activation is then the sum of all
active states weighted by their initiation rate.

Our analysis revealed that in nonequilibrium models, the
nonlinearities are causing deviations from the mean-field lev-

els since fluctuations do not compensate. Experimentally ob-
served input functions also comprise effects downstream
from the TF promoter interactions, basically generating
“black box” models of gene response with the TFs, or their
inducers, as inputs and the gene product �typically a fluores-
cent dye� as its output. Again, a common feature of all ob-
served input functions are strong nonlinearities and satura-
tion effects �3,6�. Extending the notion that noisy inputs
cause deviations in the mean output for nonlinear gates, we
expect that the same effect also holds for the experimentally
assessed promoters.

We have assumed that external sources of noise arise from
gene expression or TF activation by environmental stimuli.
Recently it has been shown in yeast that regulation by the
transcription factor Crz I occurs in a frequency-dependent
manner through short bursts of nuclear localization �42�.
This mechanisms is thought to coordinate the regulation of
multiple target genes because of the identical peak ampli-
tude. However, it also results in strong noise levels and thus
in mean induction levels that might not accurately be ac-
counted for by equilibrium approaches.

Experimentally observed noise levels in prokaryotes �15�
and extrapolated values of eukaryotes �43� were on the order
of �2�0.1. For such noise levels our theory predicts the
single-site corrections of �1%. This, in turn, states that mod-
eling approaches with rate equations and thermodynamical
equilibrium approaches have a high accuracy for simple
binding kinetics. For AND gates with many inputs, however,
we predict corrections on the order of 10%. In these cases, a
macroscopic description might thus not be appropriate.

While most studies concerning noise in genetic networks
have only focused on the propagation of noise while assum-
ing that the mean dynamics are constant, our analysis reveals
that fluctuations also quantitatively affect the mean dynamics
of transcriptional regulation in a nontrivial way. As the mean
dynamics are inherently linked to the noise levels, this, in
turn, affects noise levels of the system. In summary, we con-
clude that this potentially also affects the qualitative behavior
of complex genetic networks.
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APPENDIX: POISSON REPRESENTATION

The Poisson representation �31,44� was originally intro-
duced to approximate nonlinear chemical master equations.
However, it also allows one to quantify the influence of ex-
ternal fluctuations on a first-order chemical reaction such as
TF synthesis or protein translation.

Introducing the time-evolution operators

L0 = ���En
− − 1� + D�En

+ − 1�n�1 , �A1�
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L1 = �− j− j+En
+n

j−En
− − j+ � , �A2�

the master equation, Eq. �2�, has a compact representation
�t�= �L0+L1��. If all rates are constant, the corresponding
stationary density is the vectorial Poissonian, Eq. �3� of the
main text. If the production rate, however, depends on an
external stochastic process �= ���t�, the solution ��n ; t � ��t��
deviates from a Poisson distribution and depends function-
ally on the external process. The marginal distribution then
reads ��n ; t�=���n ; t � ��t��dP���t�� where P���t�� is the prob-
ability measure of all trajectories ��t�. To study the effect of
the external noise, the main trick is to expand this density
into real Poisson distributions,

��n;t���t�� = 
0

�

P�n;��f��;t���t��d� , �A3�

with a bivariate function f�� ; t � ��t��= �f1�� ; t � ��t�� ,
f0�� ; t � ��t����. This is the vector case of the Poisson repre-
sentation �44�. Partial integration of the master equation �Eq.
�2�� yields, after summing over n,

�tf��;t���t�� = �− ������t� − D��

+ �− j− j+�

j− − j+�
��f��;t���t��

¬�L̂0��t� + L̂1�f��;t���t�� , �A4�

with the transformed operators L̂0��t� and L̂1. The corre-
sponding transformation of L0��t� is based on the identities
�En

−−1�P�n ;��=��P�n ;�� and �En
+−1�P�n ;��=���P�n ;��;

whereas L1 is transformed according to En
+nP�n ;��

=�P�n ;��, and En
−P�n ;��=�−1P�n ;��. The dynamics of the

density ��n ; t � ��t�� acting on the discrete space is hereby
mapped to the equivalent dynamics of f�� ; t � ��t��, which is
defined on the positive real space. This has the advantage
that the methods of stochastic calculus can be applied to
quantify the effect of external noise. To illustrate the proper-
ties of the expansion �A3�, however, we will first show how
the moments of � are generally related to those of n. Let
f���=limt→� ��s=0,1fs�� ; t � ��t��dP���t�� be the marginalized
stationary density. Then, by multiplying Eq. �A3� with n and
summing over all states as well as integrating out ��t�, one
finds for the stationary mean

	n
 = �
s=0,1

�
n

n�s�n� = 
0

�

�f���d� = 	�
 . �A5�

Thus the expectation of n and � coincide. Similarly, the vari-
ance is

�n
2 = �

n=0

� 
0

�

�n − 	n
�2P�n;��f���d�

= �
n=0

� 
0

�

�n − ��2P�n;��f���d� + 
0

�

�� − 	�
�2f���d�

= 
0

�

�f���d� + ��
2 = 	n
 + ��

2 , �A6�

with f���= f0���+ f1��� being the stationary distribution of
�. Here the variance contribution 	n
 corresponds to Poisso-
nian fluctuations, whereas ��

2 stems from external noise. This
is similar to previous results for the noise addition rule �32�
and has been explicitly derived for mRNA fluctuations
�11,27�.

Moments of �

Having shown the relation between the moments of � and
n, we will now derive an explicit expression for � in terms of
the external noise process �t. Marginalizing the operator
state, i.e., summing over both components of fs, s=0,1,
yields

�t f��;t���t�� = − ������t� − D��f��;t���t�� , �A7�

since L1
ˆ vanishes under the sum. Equation �A7� is the

“center-of-mass” dynamics of free transcription factors as
�nn��n ; t � ��t��=��f�� ; t � ��t��, i.e., ����t�� can be identified
with the �time-dependent� expectation value of free TF. One
recognizes Eq. �A7� to be a Fokker-Planck equation with a
stochastic drift ���t�−D� and vanishing diffusion, i.e., a
Liouville equation. This is equivalent to an ensemble of re-
alizations evolving according to the SDE

d

dt
�t = ���t� − D�t, �A8�

with a corresponding integral

�t − �t0
e−D�t−t0� = 

t0

t

e−D�t−�������d� . �A9�

From this equation, the moments of �t=����t�� can be di-
rectly calculated as a function of the moments of �t. For
���t�=��t, with �t being a stationary process with mean 	�
,
the resulting stationary expectation value reads

	�
 = �
−�

0

eD� ��dP������d� =
�

D
	�
 �A10�

because initial conditions vanish in the limit t− t0→�. Simi-
larly, the stationary variance and two-time-covariance can be
shown to be

��
2 = �2

−�

0 
−�

0

eD��+���	��,���
d�d��, �A11�

	�t,�t�
 = �2
−�

t 
−�

t�
eD��−t+t�−���	��,���
d�d��. �A12�
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That is, the variance ��
2 depends on the dynamical properties

of the external noise process. For the two-time-covariance of
the external process decaying exponentially, as in the case of
mRNA noise, 	�t ,�t�
=��

2e−k�t−t��, the resulting variance is
given by ��

2 =�2 /D2 ·D / �k+D� ·��
2. One realizes that the

variance vanishes if k�D, i.e., the external process being
much faster than the TF decay.

Interaction

The quantity of interest is the stationary expectation of the
operator s. It is given by multiplying both sides of Eq. �A4�
with s and summing over the two possible values s=0,1 as
well as integrating over � and averaging �t

�t	st
 = 
0

�  �j+�f��;t���t��

− �j+� + j−�f1��;t���t���dP���t��d�

= j+	�t
 − 	�j+�t + j−�st
 . �A13�

Hence the dynamics of the operator site s are equivalent to
the dynamics of a stochastic variable st governed by an SDE,

d

dt
st = j+�t − �j+�t + j−�st. �A14�

Here, the process �t acts both additively and multiplicatively.
Moment expansion. Introducing the mean-field value s�0�

=J / �J+ 	�
� and the centered variable �t=st−s�0�, the integral
corresponding to Eq. �A14� reads

�t = �0e−�t0
t ��d� +

j+j−

	�
 t0

t

e−��
t ���d����d� , �A15�

with �t= j+�t+ j− and �t=�t− 	�
. The resulting expectation
value reads in the stationary limit

	�
 =
j+j−

	�
 −�

0

e	�
t�	e−j+�
t�
0

�t�dt��t�
dt�

= −
j+j−

	�
 −�

0

e	�
t��
i=0

�
�− j+�i

i! ��
t�

0

�t�dt��i

�t��dt�

= −
j+j−

	�
 �
i=0

�
�− j+�i

i!


−�

0 
t�

0

¯ 
t�

0

e	�
t�	�t1�
¯ �ti�

�t�


�dt1� ¯ dti�dt� ¬ s�1� + s�2� + ¯ , �A16�

where the exponential inside of the expectation value has
been expanded into its Taylor series. The terms 	�t1�

¯�ti�



are the centralized i-time moments of �t. These provide a
series for the mean promoter occupancy 	s
. The first order,
s�1�, vanishes because of 	�t�
=0. The second order contains
the two-time-covariance, 	�t1�

,�t2�

= 	�t1�

,�t2�

. Namely, this

order reads

s�2� = −
�j+�2j−

	�
 
−�

0 
t�

0

e	�
t�	�t�,�t�
dt�dt�. �A17�

This order will be termed noise correction; when referring to

the whole series Eq. �A16�—where, in fact, all orders correct
for fluctuations—the term moment expansion will be used.
Inserting the above result into the definition of the promoter
occupation yields

	s
 = s�0� + s�2� + ¯

�
	�


	�
 + J
−

	�

	�
 + J

j+j−

	�
 −�

0 
t�

0

e	�
t�	�t�,�t�
dt�dt�.

�A18�

For the case of exponentially decorrelating external noise,
the behavior of this expression is depicted in Fig. 5 as a
function of the ratio of the decorrelation time scales of the
promoter, 	�
, and �. Figure 5 demonstrates that the noise
corrections present an excellent approximation to the mean
occupation over all orders of magnitude. Furthermore, it can
be seen that the noise correction vanishes if the dynamics of
� is faster than the promoter and reaches a plateau in the
opposite limit. As this situation is biologically relevant and
allows a suggestive interpretation we will explicitly derive
simplified equations for this limit.

Adiabatic limit. If the process �t is slow compared to
	�
= j+	�
+ j−, Eq. �A14�, can be assumed to be equilibrated
on the time scale of changes in �t. For a stationary process �t
the i-time moments 	�t1�

¯�ti�

 necessarily vanish for every

pair �ti− tj�→�. The maximal decay rate is given indepen-
dently of �t by the dampening −D�t according to Eq. �A8�.
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FIG. 5. Relative correction to the mean-field description as a
function of the time scales of promoter, 	�
, and the transcription
factor D. Shown is the analytical expression �solid line� and nu-
merical simulations. The relative noise correction vanishes if the
regulator noise is faster than the binding kinetics, 	�
 /D	1 and
approaches a stationary value of −0.25��

2 for the biologically rel-
evant case of fast binding dynamics. In this limit, the stationary is
given by the adiabatic noise correction Eq. �8� as presented in the
main text. In this plot, external noise was modeled with a two-time-
covariance of 	�t ,�t�
=��

2e−d�t−t��, where, in this case, D /d=10. Er-
ror bars denote the standard deviation of the numerical estimator
based on the finite simulation length. The small yet statistically
significant deviation from the analytical expression stems from the
second-order truncation of the series in Eq. �A16�.
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Thus for 	�
�D, the factor e	�
t� in Eq. �A16� decays so
rapidly that the integral over the i+1-time moments can be
linearly approximated by 
�

�i+1�ti and the expression simpli-
fies to

	�
 � −
j+j−

	�
 �
i=0

�
�− j+�i

i!

�

�i+1�
−�

0

e	�
t��− t��idt�

= − j−�
i=0

�

�

�i+1�

i!

�j+�i+1

	�

�	�


i 
−�

0

e	�
t�dt�

= �
i=1

�

�

�i�

i!
�	�


i J

	�
 + J
= �

i=2

�

�

�i�

i!
h�i��	�
� , �A19�

from which it follows that

�1 = 	s
 = �
i=0

�

�

�i�

i!
h�i��	�
� , �A20�

where h�i� denotes the ith derivative of h���=� / ��+J�. This
is identical to the expansion Eq. �7� in the main text. The
intuitive notion of this result is that for sufficiently fast op-
erator equilibration the occupation s can be approximated by
the steady state of the SDE, Eq. �A14�, st�h��t�. Then it
follows that

�1 = 
0

�

h���f���d� . �A21�

Evaluating this integral after expanding h��� about the ex-
pectation value 	�
 yields the series Eq. �A20� where
h�i��	�
� / i! can be interpreted as the Taylor coefficients.
Note, however, that this intuitive derivation faces the
problem that the Taylor series does only converge on a sub-
set of R+.
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