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Abstract

Objective: Abnormal synchronization of neurons plays a central role for the generation of epileptic seizures. Therefore, multivariate time
series analysis techniques investigating relationships between the dynamics of different neural populations may offer advantages in pre-
dicting epileptic seizures.
Methods: We applied a phase and a lag synchronization measure to a selected subset of multicontact intracranial EEG recordings and
assessed changes in synchronization with respect to seizure prediction.
Results: Patient individual results, group results, spatial aspects using focal and extra-focal electrode contacts as well as two evaluation
schemes analyzing decreases and increases in synchronization were examined. Averaged sensitivity values of 60% are observed for a false
prediction rate of 0.15 false predictions per hour, a seizure occurrence period of half an hour, and a prediction horizon of 10 min. For
approximately half of all 21 patients, a statistically significant prediction performance is observed for at least one synchronization mea-
sure and evaluation scheme.
Conclusions: The results indicate that synchronization changes in the EEG dynamics preceding seizures can be used for seizure predic-
tion. Nevertheless, the underlying pathogenic mechanisms differ and both decreases and increases in synchronization may precede epi-
leptic seizures depending on the structures investigated.
Significance: The prediction method, optimized values of intervention times, as well as preferred brain structures for the EEG recordings
have to be determined for each patient individually offering the chance of a better patient–individual prediction performance.
� 2006 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Epilepsy is a disorder characterized by intermittent
hyper-synchronous activity of local and wide-spread neural
networks. So far, the mechanisms underlying this patho-
physiological system are incompletely understood. The
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occurrence of ‘‘seizures’’ seems to be unforeseeable for
the patients.

Since a significant proportion of epilepsy patients can
neither be treated satisfactorily by medication nor by epi-
lepsy surgery, novel treatment methods are required. One
new and important device could be based on preventing
seizures in advance of their clinical manifestation, a ‘‘brain
defibrillator’’ in analogy to cardiac defibrillators (Milton
and Jung, 2003). The basic idea is to record electric brain
activity continuously and to detect preictal changes. If this
prediction was early enough, an intervention such as an
gy. Published by Elsevier Ireland Ltd. All rights reserved.
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electric stimulation or the delivery of a short-term antiepi-
leptic drug could be triggered to successfully suppress the
upcoming seizure (Nicolelis, 2002; Schiff et al., 1994;
Gluckman et al., 2001).

Besides the development of proper intervention strate-
gies and their technical realization, a reliable prediction
of epileptic seizures is the major challenge. In order to
detect preictal changes in the EEG dynamics, concepts
originating especially from the theory of linear and non-lin-
ear time series analysis have been applied to invasive and
scalp electroencephalographic (EEG) recordings (Lehnertz
and Elger, 1998; Lehnertz et al., 2001; Lehnertz and Litt,
2005; Mormann et al., 2000, 2003a,b, 2005a; Iasemidis
et al., 1990, 2003, 2005; Litt et al., 2001; Litt and Lehnertz,
2002; Esteller et al., 2005; Le van Quyen et al., 1999, 2000,
2001a,b, 2005; Navarro et al., 2002; Osorio et al., 1998;
Schindler et al., 2002; Jerger et al., 2001; Chaovalitwongse
et al., 2005). These studies have shown that changes in the
EEG dynamics prior to seizure onsets are identifiable and
that a particular preictal state might exist. However, the
reproducibility of studies and the applicability of nonlinear
algorithms to EEG data is controversially debated in the
recent literature (De Clercq et al., 2003; Lai et al., 2003;
Lai et al., 2004; McSharry et al., 2003; Aschenbrenner-
Scheibe et al., 2003). Moreover, the existence of a pre-
seizure state in some types of epilepsies is also discussed
(Lopes da Silva et al., 2003a; Lopes da Silva et al., 2003b).

Since epileptic seizures are generated by an abnormal
synchronization of neural populations, bivariate analysis
techniques originating from synchronization theory
(Pikovsky et al., 2001; Boccaletti et al., 2002) have come
into focus of seizure prediction research. The concept of
phase synchronization, which requires only a weak interac-
tion and which has been observed even for chaotic oscilla-
tory processes, has attracted particular interest
(Rosenblum et al., 1996). We have analyzed the mean phase

coherence R (Mormann et al., 2000), a measure for phase
synchronization, with respect to its seizure prediction per-
formance. A lag synchronization index Smin is utilized as a
measure for lag synchronization, derived from a function
describing the correlation between time series for different
time lags (Rosenblum et al., 1997). The latter quantifies
amplitude-related synchronization. It is impossible to
detect the weak form of synchronization affecting only
the phases of the signals using Smin. To cover the broad
variety of synchronization phenomena which might con-
tribute to changes in the EEG dynamics prior to seizure
onsets, we evaluated both quantities.

A decreasing as well as increasing synchronization in the
EEG dynamics has been detected in a wide range between
several minutes up to a few hours prior to epileptic seizures
analyzing long-term intracranial EEG data (Mormann
et al., 2000, 2003a,b, 2005a; Le van Quyen et al., 2005).
To utilize this observation in order to predict seizures
and apply synchronization methods in a therapeutic device
to suppress upcoming seizures, the temporal aspects of a
prediction have to be considered more closely. In contrast
to previous studies (Mormann et al., 2000, 2003a,b, 2005a;
Le van Quyen et al., 2005), we have investigated short-term
changes of the decreasing and increasing synchronization
in the EEG dynamics in pre-seizure periods of 50 min dura-
tion, as detecting dynamic changes prior to seizure onsets
not too far away from the seizure onset would be prefera-
ble for several interventions.

To assess the prediction performance of such short-term
synchronization changes, we utilized the concept of the
‘‘seizure prediction characteristic’’ (Winterhalder et al.,
2003; Maiwald et al., 2004). It relates sensitivity with spec-
ificity as well as two time intervals, the seizure prediction
horizon and the seizure occurrence period characterizing
the temporal aspects of a prediction. The differentiation
between both time intervals is preferable having in mind
a clinical application of the seizure prediction algorithm.
For an intervention system to be effective against an
impending seizure, a minimum time interval between an
alarm and the corresponding seizure onset is required,
the seizure prediction horizon. This time period can also
be referred to as ‘‘intervention time’’. A perfect prediction
would indicate the exact point in time when a seizure is
going to start. As this cannot be expected for methods ana-
lyzing physiological data, quantification of an uncertainty
in the prediction time is necessary. The uncertainty in the
prediction time, the seizure occurrence period, is the time
interval during which the predicted seizure is expected to
occur.

Besides calculating sensitivity and specificity as well as
the temporal aspects of a prediction, a retrospective analy-
sis of seizure prediction methods has to include a proof of
the superiority that a predictor performs better than ran-
dom (Mormann et al., 2005b; Aschenbrenner-Scheibe
et al., 2003; Winterhalder et al., 2003). To decide about
the statistical significance of seizure predictability, boot-
strap based methods have been proposed (Andrzejak
et al., 2003; Kreuz et al., 2004). An alternative and analytic
approach is utilized in this study based on comparing sei-
zure prediction characteristic values with critical sensitivity
values for a given significance level. The critical sensitivity
is calculated on basis of a random prediction following a
Poisson process in time and takes into account the number
of seizures investigated as well as the number of different
features calculated for each patient individually. For exam-
ple, applying the bivariate and symmetric measure mean
phase coherence to EEG time series recorded from six elec-
trode contacts, 15 different time courses of the mean phase
coherence are extracted simultaneously. Increasing the
number of electrode contacts to a value of 10, for instance,
would result in 45 different pairs of electrodes with corre-
sponding time courses of the mean phase coherence. There-
fore, the probability of changes in any of these time courses
leading to a prediction of seizures by chance strongly
increases with the number of electrode contacts
investigated.

The paper is organized as follows: Patient characteris-
tics, the EEG database, a description of the phase and
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lag synchronization measure, and the methodology to
assess the prediction performance are summarized in Sec-
tion 2. Group results averaged for all 21 patients as well
as patient individual results are presented in Section 3. Fur-
thermore, changes in synchronization are analyzed with
respect to two evaluation schemes, a decrease and an
increase in synchronization. Additionally, the effects of dif-
ferent prediction horizons and spatial effects concerning the
brain regions are examined in Section 3. The results are dis-
cussed in Section 4 with special emphasis on the spatio-
temporal aspects of a prediction.

2. Materials and methods

2.1. Patient characteristics and EEG database

The analyzed database consists of invasive EEG record-
ings of 21 patients suffering from medically intractable
focal epilepsy. The retrospective evaluation of the data
received prior approval by the Ethics Committee, Medical
Faculty, University of Freiburg. Informed consent was
obtained from each patient. The data were recorded during
invasive pre-surgical epilepsy monitoring at the Epilepsy
Center of the University Hospital of Freiburg, Germany.
In 11 patients, the epileptic focus was located in neocortical
brain structures, in eight patients in the hippocampus, and
in two patients in both. For the 21 patients under investi-
gation, the AEDs and AED levels were not identical as
the antiepileptic medication had to be adapted to the indi-
vidual patient’s clinical needs. Patients obtained thus differ-
ent medications when entering monitoring. Further
characteristics of the patients are given in Table 1.

In order to obtain a high signal-to-noise ratio, fewer
artifacts, and to record directly from focal areas intracrani-
al grid-, strip-, and depth-electrodes were utilized. The
EEG data were acquired using a Neurofile NT digital video
EEG system with 128 channels, 256 or 512 Hz sampling
rate, and a 16 bit analog-to-digital converter. To eliminate
possible line noise and low frequency components, the
EEG data sets were preprocessed by a 50 Hz notch filter
and a band pass filter between 0.5 and 120 Hz. For analyz-
es no downsampling was performed.

A subset of electrode contacts was selected prior to the
analysis by visual inspection by an experienced electroen-
cephalographer. Three focal electrode contacts, i.e., three
recording sites initially involved in ictal activity based on
the available electrode coverage of the brain, and three
extra-focal electrode contacts, i.e., recording sites not
involved at all or – in most cases – latest during spread
of ictal activity, were selected for analysis. For the two
patients with seizure onset zone in the hippocampus and
in the neocortex, two focal contacts were located in the
neocortex and one contact in the hippocampus (patient
14) and all three electrode contacts in the neocortex
(patient 15). The electrode contacts were referenced to a
contact located in a brain structure with lowest epileptic
activity. Using a bivariate analysis technique, this selection
of electrode contacts leads to three different classes of elec-
trode contact combinations. The focal electrode contacts
themselves yield three combinations (foc,foc) as well as
the extra-focal contacts themselves (ext,ext). Nine different
combinations between focal and extra-focal electrode con-
tacts form the third class (foc,ext).

Details about the EEG data sets analyzed in this study
are given in Table 1. In order to determine the specificity
of the synchronization measures, interictal, seizure-free
EEG data of 24 h for each patient were analyzed. To deter-
mine sensitivity, 2–5 seizures (in total 88) were investigated
for each patient, including pre-seizure EEG data of at least
50 min duration.

For 13 patients, one complete interictal recording day
was available. For the remaining patients, shorter segments
with a total duration of 24 h were selected such that com-
parable times of the day were covered (cf. Table 1). The
temporal distance between interictal and pre-seizure
recordings was not identical for the patients. The median
of the time periods between the last seizure and the interic-
tal data set was 5 h 18 min, the median of the time periods
between the interictal data set and the first following sei-
zure was 9 h 36 min.

The seizures analyzed occurred spontaneously; there
were no other provoking mechanisms such as hyperventila-
tion or photostimulation used, but medication was reduced
in the majority of patients. The seizures analyzed occurred
at different times of day.

2.2. Two bivariate synchronization measures

2.2.1. Mean phase coherence R

Weakly coupled self-sustained oscillators are able to
synchronize their phases. The phenomenon of phase
synchronization has been detected even for coupled,
non-identical, chaotic oscillators (Rosenblum et al.,
1996). To detect phase synchronization, a definition of
the phase U(t) of the real-valued signal x(t) is required.
Here, we follow the approach of Gabor’s analytic signal
(Gabor, 1946)

uðtÞ ¼ xðtÞ þ i~xðtÞ ¼ AðtÞ expðiUðtÞÞ;
where the imaginary part of u(t) is derived using the Hilbert
transformation

~xðsÞ ¼ 1

p
P:V:

Z
xðtÞ
s� t

dt:

P.V. refers to Cauchy’s principle value. Phase synchroniza-
tion is represented by an almost constant phase difference,
i.e., two integer numbers n and m exist with

jnUð1ÞðtÞ � mUð2ÞðtÞj ¼ jUn;mðtÞj < const

for all time points, where U(i)(t) denotes the phase of the
signal i at time t. In case of phase synchronization and
presence of additional stochastic influence, the distribution
of Wn,m = Un,m mod2p deviates from a uniform distribution
(Tass et al., 1998). The deviation from a uniform



Table 1
Patient characteristics and EEG data characteristics

Patient Sex Age Seizure type H/NC Electrodes Preictal EEG data sets Interictal EEG data sets

Total number of
seizures

# of seizures between Seizure
frequency
(1/day)

Interictal
duration (h)

# interictal
intervals

Duration of interictal intervals (h)

9 am to 9 pm 9 pm to 9am Between
9 am to 9 pm

Between
9 pm to 9 am

1 f 15 SP,CP NC g,s 5 1 4 6.3 24 1 12.00 12.00
2 m 38 SP,CP,GTC H d 3 3 0 2.8 24 2 9.00 15.00
3 m 14 SP,CP NC g,s 5 0 5 0.6 24 1 12.00 12.00
4 f 26 SP,CP,GTC H d,g,s 5 1 4 0.4 24 1 12.00 12.00
5 f 16 SP,CP,GTC NC g,s 5 2 3 1.7 24 3 13.50 10.50
6 f 31 CP,GTC H d,g,s 3 2 1 0.9 24 1 12.00 12.00
7 f 42 SP,CP,GTC H d 3 0 3 0.2 25 1 13.00 12.00
8 f 32 SP,CP NC g,s 2 0 2 6.8 24 2 15.75 8.25
9 m 44 CP,GTC NC g,s 5 3 2 1.6 24 2 12.25 11.75

10 m 47 SP,CP,GTC H d 5 4 1 1.1 24 1 12.00 12.00
11 f 10 SP,CP,GTC NC g,s 4 0 4 0.6 24 1 12.00 12.00
12 f 42 SP,CP,GTC H d,g,s 4 1 3 1.0 25 1 13.00 12.00
13 f 22 SP,CP,GTC H d,s 2 1 1 0.1 24 1 12.00 12.00
14 f 41 CP,GTC H and NC d,s 4 1 3 6.3 24 5 11.75 12.25
15 m 31 SP,CP,GTC H and NC d,s 4 0 4 0.4 24 1 12.00 12.00
16 f 50 SP,CP,GTC H d,s 5 2 3 4.5 24 2 8.75 15.25
17 m 28 SP,CP,GTC NC s 5 2 3 1.0 24 1 12.00 12.00
18 f 25 SP, CP NC s 5 1 4 6.6 25 1 13.00 12.00
19 f 28 SP,CP,GTC NC s 4 3 1 3.6 24 3 6.50 17.50
20 m 33 SP,CP,GTC NC d,s 5 3 2 5.1 26 1 14.00 12.00
21 m 13 SP,CP NC s 5 1 4 0.2 24 2 6.25 17.75

Total 88 31 57 509 245 264

Mean 4.2 2.5 24.2

Seizure types: simple partial (SP), complex partial (CP), and generalized tonic–clonic (GTC). Seizure origin: hippocampal (H) and neocortical (NC). Electrodes: grid (g), strip (s), depth (d).
Characteristics of the preictal and interictal EEG data segments analyzed. For each patient, either all or five seizures (mean 4.2/total 88) and at least 24 h of interictal EEG recordings (mean 24.2 h/total
509 h) were examined. The seizure frequency varies between 0.1 and 6.8 seizures per day.
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distribution can be quantified by Mormann et al. (2000)
and Rosenblum et al. (2001)

R2
n;m ¼ hcos Wn;mðtÞi2 þ hsin Wn;mðtÞi2;

taking values close to zero if there is no deviation and val-
ues close to one for preferred values, respectively. When
applied to EEG data from epilepsy patients, a decrease in
the synchronization index R: = R1,1, also called mean
phase coherence, has been detected in advance of seizure
onsets using a sliding window technique (Mormann et al.,
2000, 2003a,b). In the present study, the mean phase coher-
ence has been applied to the EEG data for sliding time
intervals of 32 s duration, shifted by 1 s for each calcula-
tion. The extracted feature, the mean phase coherence, is
processed by a median filter of 220 s duration and thresh-
old crossings are used to trigger alarms. Threshold values
have been varied between zero and one in steps of 0.01.

2.2.2. Lag synchronization index Smin

A different synchronization phenomenon is obtained for
an increase in coupling compared to the coupling for phase
synchronization between chaotic oscillators. Lag synchro-
nization is characterized by an additional high correlation
between the amplitudes with a specific time lag (Rosenblum
et al., 1997). The function

S2ðsÞ ¼ hðx2ðt þ sÞ � x1ðtÞÞ2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2

1ðtÞihx2
2ðtÞi

p
takes a value close to zero for a time lag smin in case of lag
synchronization between two signals x1 and x2 (Rosenblum
et al., 1997). In the present application to the EEG data,
this minimum is calculated for sliding time intervals and
for a given range of time lags s 6 1 s, leading to the lag syn-
chronization index Smin. This synchronization measure has
been applied to the EEG data for sliding time intervals of
32 s duration, shifted by 1 s for each calculation. The
extracted feature, the lag synchronization Smin, is processed
by a median filter of 220 s duration and threshold crossings
are used to trigger an alarm. Threshold values have been
varied between zero and one in steps of 0.01.

Both synchronization phenomena may occur for cou-
pled, nonlinear, and even chaotic oscillators and rely on
strong physical assumptions, described by the theory of
Nonlinear Dynamics. Construction of the phase using the
concept of Hilbert transform is based on narrow frequency
band signals and narrow frequency bands may have advan-
tages in applications to EEG data (Chavez et al., 2003).
However, as we are interested in the seizure prediction per-
formance, we follow earlier studies using wide-band EEG
data (Mormann et al., 2000) and analyze changes of the
mean phase coherence in advance of seizure onsets.

The theoretical concept of phase synchronization is
based on coupled, self-sustained oscillatory processes. It
has been shown recently that phase synchronization analy-
sis applied to data sets with unknown dynamics is not
capable of detecting the correct class of underlying dynam-
ics (Winterhalder et al., 2006). Thus, in the present applica-
tion to EEG data, conclusions about the exact type of the
underlying dynamics should be avoided. However, the syn-
chronization measures detect interdependencies between
signals. In this study, both measures are used to investigate
interrelations between the dynamics of different brain
structures and are assessed only with respect to their sei-
zure prediction performance. The application of both
bivariate measures reflects the intensity of the interaction
between two signals, but we do not claim that the measures
reflect true synchronization according to the strict physical
definition.

2.3. Statistical assessment of seizure prediction performance

In order to illustrate the necessary factors for a proper
evaluation of prediction performance, exemplary time
courses of the mean phase coherence are shown in Fig. 1
for a preictal and an interictal period, respectively. The sei-
zure onset in Fig. 1a is marked by the vertical line at time
point zero. A decrease of the mean phase coherence can be
observed approximately 35, 20, and 5 min in advance of the
seizure onset. Evaluating this decrease in synchronization,
a change in the EEG dynamics is detected as a threshold
indicated by the horizontal line is crossed downwards
twice.

In contrast to seizure detection and for an intervention
system to be effective against an impending seizure, a min-
imum time interval between an alarm and the correspond-
ing seizure onset is required, the seizure prediction horizon
SPH. In order to consider an uncertainty in the prediction
time, the seizure occurrence period SOP is taken into
account which is the time interval during which the predict-
ed seizure is expected to occur. The two consecutive time
intervals SPH and SOP follow the first alarm triggered
by the downwards threshold crossing of the mean phase
coherence (Fig. 1b). In this example, the seizure starts dur-
ing the seizure occurrence period and is thus predicted
correctly.

In Fig. 1c, an exemplary time course of the extracted
feature mean phase coherence is shown for an interictal
period. The downwards threshold crossing raises an alarm
after approximately 10 min, again triggering the two con-
secutive time intervals SPH and SOP (Fig. 1d). As no sei-
zure during the interictal period occurs, the prediction has
to be classified as a false prediction. Towards the end of the
interictal period, a second false alarm is raised. Lowering
the value of the threshold would ensure that the false pre-
dictions are avoided in the interictal period (Fig. 1c and d),
but at the expense of losing the correct prediction (Fig. 1a
and b).

This example shows that the choice of the threshold is
related not only to the number of correct predictions but
also to the amount of false predictions during interictal
periods. The observed false prediction rate FPR corre-
sponds closely to the specificity of the prediction method.
A minimum specificity, i.e., a maximum allowed number
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of false predictions per time interval FPRmax, can be deter-
mined by a suitable choice of the threshold value during
interictal epochs. In particular, the maximum false predic-
tion rate is useful in the context of seizure prediction, as the
number of false predictions has to be related to the seizure
frequency. Considering a prediction method with a sensi-
tivity of 100% and a false prediction rate identical to the
seizure frequency, then, every second alarm of the predic-
tion method would be a false one. An average maximum
seizure frequency of 3.6 seizures per day (0.15 seizures
per hour) of patients during presurgical monitoring has
been observed (Haut et al., 2002). Taking this aspect into
account, a sensitivity of 100% does not necessarily lead to
an appropriate predictor, even for comparably low false
prediction rates.

These aspects are incorporated in the concept of the sei-
zure prediction characteristic S(FPRmax;SOP;SPH) (Win-
terhalder et al., 2003) which is utilized in the present
study. Sensitivity S is calculated as a function of three fac-
tors, i.e., the time intervals SPH and SOP and the maxi-
mum false prediction rate FPRmax.

A test to decide about the statistical significance of a giv-
en value of the seizure prediction characteristic is defined
by the ‘‘prediction performance’’ of an unspecific random
prediction. For an unspecific random prediction alarms
are triggered completely randomly without using any infor-
mation from the EEG. The probability of predicting at
least k of K seizures using d features is

P binomial; dfk; K; Pg ¼ 1�
X
j<k

K

j

� �
P jð1� PÞK�j

 !d

based on the probability P ¼ 1� e�FPRmaxSOP for one alarm
event during SOP and a given maximum false prediction
rate (Winterhalder et al., 2003). The exponential form of
P is valid for SOP� sampling interval. As the number
of independent features is usually unknown, two critical
values are derived. For a significance level a, the lower crit-
ical value is given by

rlow ¼ max
k
ðP binomial;1fk; K; Pg > aÞ � 100%

for d = 1. For an r-variate, symmetric feature extraction
and n electrode contacts investigated, the upper critical
value

rmax ¼ max
k
ðP binomial; dmaxfk; K; Pg > aÞ � 100%

is obtained for independent features with dmax =
n!/((n � r)! r!) (Schelter et al., 2006a). In the present study,
a is set to 0.05. The upper critical value takes account for
the fact that for the prediction technique always the best
channel combination is selected. For each prediction meth-
od, sensitivity has to exceed at least the lower critical value.
A sensitivity of a prediction method exceeding the upper
critical value can be interpreted as reliably superior to an
unspecific random predictor.

Different values of d lead to different upper critical sen-
sitivity values. For example, comparing sensitivities of the
class of focal/focal and of focal/extra-focal combinations
would not only yield higher critical values but also higher
sensitivities due to the higher number of independent val-
ues of d for the class of focal/extra-focal combinations.
Thus, it is impossible to compare the sensitivity values
between these classes directly. Nevertheless, a test for the
performance difference between such different clusters with
specific values of d and sensitivities is desired. An exact
two-sided paired Wilcoxon signed rank-sum test with
respect to each patient for differences in Pbinomial, d

{k;K;P}-values can be performed, if independence between
the clusters of Pbinomial, d {k;K;P}-values is assumed.
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3. Results

Sections 3.1–3.3 describe an analysis of a decrease in the
synchronization of the EEG dynamics with respect to sei-
zure prediction. The prediction performance is investigated
as a function of the maximum false prediction rate, the sei-
zure occurrence period, and seizure prediction horizon
averaged for all patients and two representative patients.
In Section 3.4, the results evaluating a decrease in the syn-
chronization are compared to the results obtained when
evaluating an increase in the EEG synchronization. To
investigate differences between the prediction performances
for individual patients, the sensitivity depending on the sei-
zure prediction horizon is presented for each patient in Sec-
tion 3.5. Finally, prediction performance with respect to
the three classes of electrode combinations is examined.
In the following, sensitivities are given as maximum sensi-
tivities for the corresponding electrode combinations,
together with the respective critical values.

3.1. Sensitivity as a function of the maximum false prediction

rate FPRmax

In Fig. 2, sensitivities of the synchronization measures R

and Smin are shown as a function of the maximum false
prediction rate, for a fixed seizure prediction horizon of
10 min and a seizure occurrence period of 30 min. The
investigated values of maximum false prediction rates
range between one false prediction within a day and one
within one hour. The gray areas mark the corresponding
range of the unspecific random prediction, limited by the
lower and upper critical values.

In Fig. 2a, the sensitivity values are averaged over all 21
patients. Their averages exceed the averaged lower critical
value of the unspecific random prediction for both syn-
chronization measures and all values of FPRmax. However,
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Fig. 2. Sensitivity for the synchronization measures R and Smin depending on t
has been set to 10 min and the seizure occurrence period to 30 min. The gray
limited by the lower and upper critical values. (a) Sensitivity values and the
individual sensitivity is given for patient 01 and patient 03 exemplarily.
sensitivities are not higher than the averaged upper critical
value for several values of the false prediction rate. Values
of the maximum false prediction rate exceeding one false
prediction per hour are not investigated, as the averaged
upper critical value yields a value of 100% and even the
averaged lower critical value for the random prediction is
higher than 80%.

Patient individual values of sensitivity depending on the
false prediction rate are shown for patient 01 and patient
03 exemplarily in Fig. 2b. For patient 01, high sensitivity
values between 80% and 100% are obtained for both syn-
chronization measures, even at low false prediction rates.
The lower as well as the upper critical value of the unspe-
cific random prediction is exceeded for FPRmax 6 0.7 false
predictions (FP) per hour (approximately 17 false predic-
tions per day) showing a significant prediction.

In contrast, for patient 03, sensitivity values for the syn-
chronization index Smin are not even higher than the lower
critical value of the unspecific random prediction. For the
mean phase coherence R, sensitivity values are close to
the upper critical value of the unspecific random predic-
tion. Therefore, prediction performance by chance cannot
be excluded for patient 03, especially for the synchroniza-
tion measure Smin.

3.2. Sensitivity as a function of the seizure occurrence period

SOP

For both synchronization measures investigated, depen-
dence of the sensitivity on the seizure occurrence period is
shown in Fig. 3. The maximum false prediction rate has
been fixed at FPRmax = 0.15 FP/h, corresponding to 3.6
false predictions within one day, and the seizure prediction
horizon at 10 min. The gray areas mark the corresponding
range of the unspecific random prediction, limited by the
lower and upper critical values.
1/d 2/d 4/d 1/4h 1/2h 1/h
0

20

40

60

80

100

S
en

si
tiv

ity
 [%

]

FPR
max

pat 01 – R
pat 01 – Smin
pat 03 – R
pat 03 – Smin

he maximum false prediction rate FPRmax. The seizure prediction horizon
areas mark the corresponding range of the unspecific random prediction,
corresponding critical values are averaged for all 21 patients. (b) Patient



0 5 10 15 20 25 30 35 40
0

20

40

60

80

100
S

en
si

tiv
ity

 [%
]

SOP [min]

21 patients averaged – R
21 patients averaged – Smin

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

S
en

si
tiv

ity
 [%

]

SOP [min]

pat 01 – R
pat 01 – Smin
pat 03 – R
pat 03 – Smin

a b

Fig. 3. Sensitivity for the synchronization measures R and Smin depending on the seizure occurrence period. The maximum false prediction rate has been
set to FPRmax = 3.6 FP/d = 0.15 FP/h and the seizure prediction horizon to 10 min. The gray areas mark the corresponding range of the unspecific
random prediction, limited by the lower and upper critical values. (a) Sensitivity values and the corresponding critical values are averaged for all 21
patients. (b) Patient individual sensitivity is given for patient 01 and patient 03 exemplarily.
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In Fig. 3a, sensitivity averaged over all patients yields
higher values than the averaged lower critical value of the
unspecific random prediction for the entire range of seizure
occurrence periods investigated. Furthermore, both syn-
chronization measures yield a similar prediction perfor-
mance. However, for some values of SOP, sensitivity
values of the synchronization index R do not surpass the
averaged upper critical value of the unspecific random
prediction.

In analogy to the investigation in the previous section, a
high and significant seizure prediction performance with
respect to the upper critical value of the unspecific random
prediction is detected for patient 01 using both synchroni-
zation measures (cf. Fig. 3b). On the other hand, for
patient 03 significant values of the sensitivity are only
obtained for the mean phase coherence R in a range of sei-
zure occurrence periods between 16 and 30 min.
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3.3. Sensitivity as a function of the seizure prediction horizon

SPH

The dependence of sensitivity on the seizure prediction
horizon for both synchronization measures is given in
Fig. 4. As SPH reflects the actual prediction time, a high val-
ue would offer a long time period to trigger an intervention or
prepare the patient for the upcoming seizure. In order not to
obscure the impact of SPH on sensitivity, the seizure occur-
rence period indicating the uncertainty in the prediction time
has been chosen to be a quite short time interval of 10 min
duration. Again, a maximum false prediction rate of
FPRmax = 0.15 FP/h has been chosen. The gray areas mark
the corresponding range of the unspecific random predic-
tion, limited by the lower and upper critical values.

The averaged sensitivity in Fig. 4a is approximately
constant for the whole investigated range of prediction
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horizons and exceeds at least the averaged lower critical
value. A slight trend to short prediction horizons is
observed for the synchronization measures Smin. But there
is no common range of prediction horizons which is opti-
mal for all patients.

Individual results for patient 01 and patient 03, respec-
tively, are shown in Fig. 4b. In contrast to the group
results, patient 01 has an optimal range of seizure predic-
tion horizons between 10 and 30 min for both seizure pre-
diction methods. The performance of the seizure prediction
method is significantly better than the upper critical value
for this range. This is not the case for patient 03. But at
least for the synchronization index R, the lower critical val-
ue is exceeded for several values of the prediction horizon.
There is no optimal range of seizure prediction horizons for
this patient.

3.4. Comparison between decrease and increase in

synchronization

Changes in synchronization preceding an epileptic sei-
zure could consist of either a decrease or of an increase.
Though a decrease in synchronization has been observed
between signals recorded from several electrode contacts
in advance of seizure onsets in the previous sections, it
remains to be investigated whether an increase in synchro-
nization can be utilized to predict seizures. Therefore, the
prediction performance of the mean phase coherence is
analyzed with respect to two evaluation schemes: a
decrease and an increase in the mean phase coherence.

Dependency of the sensitivity on the seizure prediction
horizon for both evaluation schemes is given in Fig. 5.
The seizure occurrence period has again been chosen to
be 10 min. A maximum false prediction rate of
FPRmax = 0.15 FP/h has been selected. The gray areas
mark the corresponding range of the unspecific random
prediction, limited by the lower and upper critical values.
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Fig. 5. Sensitivity depending on the seizure prediction horizon for the mean ph
and increase in synchronization. The seizure occurrence period has been set to 1
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corresponding critical values are averaged for all 21 patients. (b) Patient indiv
In (a) the averaged sensitivity is shown for all 21
patients. The sensitivity using both evaluation schemes is
approximately constant. Analyzing an increase in synchro-
nization leads to a substantially lower averaged sensitivity
close to the lower critical value.

In Fig. 5b, sensitivity is shown for patient 10 exemplari-
ly. In contrast to the group result, a high and significant
prediction performance is only observed analyzing an
increase in synchronization. For prediction horizons
between 22 and 30 min, sensitivity values are superior to
the upper critical value. A significant prediction perfor-
mance is not observed for a decrease in synchronization
for this patient.

3.5. Sensitivity as a function of SPH for each patient

individually

The previous sections have shown that optimal predic-
tion horizons vary considerably between the exemplary
patients. Interestingly, changes indicative of an impending
seizure may comprise both, a decrease or an increase in
synchronization. It appears that changes in synchroniza-
tion may be utilized to predict seizures, but the evaluation
scheme and the performance strongly depends on the indi-
vidual patient. To emphasize the temporal characteristic of
a prediction, sensitivity is calculated as a function of the
seizure prediction horizon at a short duration of the seizure
occurrence period, for both synchronization measures and
for all patients individually with respect to a decrease and
an increase in synchronization.

In Figs. 6 and 7, significant sensitivity values with
respect to the upper critical values are presented depending
on the seizure prediction horizon for each patient individ-
ually. The maximum false prediction rate has been set to
FPRmax = 0.15 FP/h and the seizure occurrence period to
SOP = 10 min. Sensitivity values are shown for both syn-
chronization measures R and Smin and both evaluation
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Fig. 6. Sensitivity depending on the seizure prediction horizon for 11 patients with seizure onset zone in neocortical brain structures. The maximum false
prediction rate has been set to FPRmax = 0.15 FP/h and the seizure occurrence period to SOP = 10 min. Sensitivities are shown for both synchronization
measures R and Smin, and for the combinations between focal contacts (foc,foc), between focal and extra-focal (foc,ext), and between extra-focal contacts
(ext,ext), respectively. Changes in synchronization are evaluated with respect to an increase (Inc) and a decrease (Dec) in synchronization. Maximum
sensitivity values exceeding the upper critical values are shown.
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schemes, an increase (Inc) and a decrease (Dec) in synchro-
nization. Furthermore, maximum sensitivity values are
estimated for the three different classes of electrode combi-
nations individually, the electrode combinations between
pairs of focal contacts (foc,foc), pairs consisting of one
focal and one extra-focal contact (foc,ext), and pairs of
extra-focal contacts (ext,ext).
For the majority of patients, a decrease in synchroniza-
tion leads to a high prediction performance for individual
optimal ranges of the prediction horizon. For instance
for patient 09, high and significant sensitivity values are
obtained a few minutes before seizure onsets for both syn-
chronization measures (cf. Fig. 6). Nevertheless, an
increase in synchronization also yields a significant predic-
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Fig. 7. Sensitivity depending on the seizure prediction horizon for eight patients with seizure onset zone in hippocampal brain structures as well as for two
patients with neocortical and hippocampal seizure onset zones (patient 14 and 15). The maximum false prediction rate has been set to FPRmax = 0.15 FP/h
and the seizure occurrence period to SOP = 10 min. Sensitivities are shown for both synchronization measures R and Smin, and for the combinations
between focal contacts (foc, foc), between focal and extra-focal (foc, ext), and between extra-focal contacts (ext, ext), respectively. Changes in
synchronization are evaluated with respect to an increase (Inc) and a decrease (Dec) in synchronization. Maximum sensitivity values exceeding the upper
critical values are shown.
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tion performance for some patients (cf. Fig. 7). Further-
more, not all classes of electrode combinations and both
synchronization measures show similar performance. In
summary, the prediction performance between all patients
differs considerably and no common rules can be proposed
neither with respect to optimal prediction horizons, opti-
mal classes of electrode combinations nor with respect to
the evaluation scheme, decrease or increase in
synchronization.
3.6. Spatial effects of electrode contacts selected for

prediction

The previous section presented results for the three dif-
ferent classes of electrode combinations and for the 21
patients individually. This section reports results of a more
detailed investigation concerning spatial effects by analyz-
ing different brain structures with the three different classes
of electrode contact combinations.



Table 2
Averaged sensitivities (%)

Algorithm (foc,foc) (foc,ext) (ext,ext)

R – increase 25.3 30.3 29.1
Smin – increase 22.0 36.0 23.8
R – decrease 37.3 53.3 34.4
Smin – decrease 37.9 59.8 28.8

For each patient and for each class of electrode combinations, the maxi-
mum sensitivity is extracted from a range of seizure prediction horizons
between 2 and 40 min for a decrease and an increase in synchronization.
Sensitivity values averaged over patients are given.

2410 M. Winterhalder et al. / Clinical Neurophysiology 117 (2006) 2399–2413
For each patient and for each class of electrode combi-
nations, the maximum sensitivity is extracted from a range
of seizure prediction horizons between 2 and 40 min for a
decrease and an increase in synchronization. Values aver-
aged over patients are given in Table 2.

As the number of focal/extra-focal combinations is
higher than for the remaining two classes, sensitivities as
well as the critical values for these focal/extra-focal combi-
nations are expected to be higher. To decide about the sta-
tistical significance of differences in the prediction
performance using the three different classes of electrode
combinations, Pbinom,d{k;K;P}-values of the maximum sen-
sitivity were calculated for each patient and class of combi-
nations (cf. Section 2.3). The corresponding results of exact
two-sided paired Wilcoxon signed rank-sum tests with
respect to each patient for the differences between the
Pbinom,d{k;K;P}-values are given in Table 3. A significant
difference between two classes of combinations is detected
between the focal/extra-focal combinations and the focal/
focal as well as the extra-focal/extra-focal combinations
for the lag synchronization index Smin and a decrease in
synchronization. The results of the tests for an increase in
the lag synchronization as well as for the mean phase
coherence R are not significant (p > 0.05).

Finally, differences in the prediction performance
between both synchronization measures were investigated.
decrease       

increase (foc,foc) (foc,ext) (ext,ext) (foc,foc

(foc,foc) 0.34 0.9

(foc,ext) 0.53   0.19 0.13

(ext,ext) 0.45 0.11 0.09

Index R

Table 3
Comparison of spatial effects in the prediction performance

Results of an exact two-sided Wilcoxon signed rank-sum tests for the differen
combinations for both synchronization measures and evaluation schemes. Signi
Smin, the class consisting of pairs of one focal and one extra-focal electrode co
(p = 0.01) as well as to the class consisting of two extra-focal contacts (p = 0.
For each class of electrode combinations exact two-sided
paired Wilcoxon signed rank-sum tests were performed
for each patient. The results of all six tests are not signifi-
cant (p > 0.05).

4. Discussion

We investigated changes in synchronization in the intra-
cranial EEG dynamics of epilepsy patients with particular
emphasis on the temporal aspects of a prediction. The pre-
diction performance was assessed for several values of
SPH, SOP, and FPRmax by means of the seizure prediction
characteristic. The statistical significance was tested on the
basis of an analytic approach by comparison with critical
sensitivity values for a given significance level; the latter
is based on a random predictor following a Poisson process
in time. Averaged results for 21 patients as well as individ-
ual results for each patient were given with respect to differ-
ences in the prediction performance using electrode
contacts placed in focal and extra-focal brain structures,
respectively. The results show that the preceding changes
in synchronization are not uniform and evaluating both
decreasing as well as increasing synchronization in the
EEG dynamics can yield a significant prediction perfor-
mance. Averaged sensitivity values of 60% can be observed
for a false prediction rate of 0.15 false predictions per hour,
an occurrence period of half an hour, and a prediction
horizon of 10 min. The result that bivariate synchroniza-
tion measures can be shown to be superior to a random
predictor and both, decreasing and increasing synchrony
is observed, is in close agreement with a recent study com-
paring 30 prediction algorithms (Mormann et al., 2005a).

Analyzing a decrease in synchronization, sensitivities
averaged for all 21 patients were close to the averaged
upper critical value for dependence on the maximum false
prediction rate, on the seizure occurrence period as well as
on the seizure prediction horizon for both synchronization
) (foc,ext) (ext,ext)

0.01* 0.62

0.01*

0.57

Index S min

ces between the Pbinom, d{k;K;P}-values of the three classes of electrode
ficant results are marked by asterisks. For the lag synchronization measure
ntact is significantly superior to the class consisting of two focal contacts

01) for a decrease in synchronization.
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measures. The relatively low prediction performance was
related to a high inter-individual variability in the predic-
tion performance for the different patients. On an individ-
ual basis, sensitivity values of both synchronization
measures depending on the maximum false prediction rate,
seizure occurrence period, and prediction horizon can be
considerably higher compared to group results.

Different explanations for the high inter-individual var-
iability in the prediction performance are conceivable. We
performed a selection of electrode contacts in this study.
This leads to a coarse sampling of the spatio-temporal pro-
cess which might not be optimal. Analyzing all electrode
contacts results in a prediction performance that cannot
be shown to be superior to a random predictor, since the
random predictor will achieve a spurious sensitivity of
100%. As a trade-off between coverage of the epileptogenic
process and the ability to prove superiority to a random
predictor, we restricted our analysis to six electrode con-
tacts selected prior to data analysis. Based on the available
electrode coverage of the brain, the three recording sites
initially involved in ictal activity as well as the three elec-
trode contacts latest involved in seizure spread were ana-
lyzed to include focal and extra-focal brain regions. For
the patients with non-significant prediction performance,
there is a possibility that electrode contacts not matching
these selection criteria might lead to a prediction of
seizures.

Limitations in the duration of the EEG recordings, dif-
ferent localizations of recording sites and differences in
patient characteristics including their antiepileptic medica-
tion during the monitoring period may all contribute to the
high interindividual variability of the results obtained. In
addition, it has been hypothesized recently, that different
states of vigilance and circadian changes in the measures
might influence the seizure prediction performance (Mor-
mann et al., 2005a). In our study, the seizures analyzed
did not occur at similar times of the day, but a relation
between seizure prediction performance and time points
of seizure onsets is not evident. There is evidence that the
distribution of false predictions depends on circadian
changes in EEG dynamics (Schelter et al., 2006b).

Up to now, synchronization measures for the detection
of changes in the EEG dynamics in long preictal time inter-
vals have been investigated (Mormann et al., 2000,
2003a,b, 2005a; Le van Quyen et al., 2005). Anticipation
times between minutes up to several hours were reported.
In contrast, our study focused, first, on the temporal assess-
ment under conditions required for a prediction, i.e., short
seizure occurrence periods and various seizure predictions
horizons that can be considered as intervention times,
and, second, on prediction horizons shorter than 1 h. The
uncertainty in the exactness of the prediction, the seizure
occurrence period, should be as short as possible. The max-
imum tolerable value of the occurrence period depends on
the type of intervention, which is triggered based on a pre-
diction. In the case of a warning of the patient followed by
behavioral adaptation, the strain on the patients increases
for longer occurrence periods. In the case of an interven-
tion using, for instance, administration of short-acting,
anticonvulsive drugs, possible impairment due to side-ef-
fects may depend on the duration of an intervention.

The probability of predicting seizures by chance increas-
es with increasing duration of the seizure occurrence peri-
od, as the former depends on the product of maximum
false prediction rate and seizure occurrence period. For
example, accepting five false predictions within one day
and a seizure occurrence period of 2 h, the sensitivity of
an unspecific random prediction reaches a value of 100%,
if up to five seizures and 15 independent features were
investigated. Thus, tuning of algorithms to detect long
occurrence periods is of limited use for two reasons: the
dependence of the random predictor on the seizure occur-
rence period and the subsequent behavioral or interven-
tional consequences to avoid or suppress the seizures.

Considering the impact of behavioral or interventional
consequences would be dispensable if a single treatment
could suppress seizures hours in advance of seizure onsets.
Whether or not such an intervention is possible is specula-
tive since there is no proof so far. The concept of the sei-
zure prediction horizon allows for long intervention
times, as there is no restriction when the intervention has
to be placed during the seizure prediction horizon. Thus,
we claim that in general long seizure occurrence periods
are of limited use, since they quantify the uncertainty of
the occurrence of the seizure. For statistical reasons long
seizure occurrence periods could be accepted in combina-
tion with low false prediction rates, since the product of
false prediction rate and seizure occurrence period defines
the random predictor.

To assess the seizure prediction performance depending
on the duration of the prediction horizon, this time interval
has been varied at a short seizure occurrence period of
10 min duration. The group results averaged for all 21
patients have shown that there are no common optimal
prediction horizons in the investigated range of 40 min
duration. However, analysis on an individual basis has
shown that for approximately half the patients optimal val-
ues of the prediction horizon exist. These prediction hori-
zons can differ considerably between the patients. The
fact that for some patients sensitivity values are non-signif-
icant for all investigated prediction horizons does not indi-
cate a non-predictability of seizures for those patients.
Changes in the EEG dynamics earlier than the investigated
range of 50 min preictal EEG data segments could still be
useful for a seizure prediction. But preictal changes in the
EEG dynamics of several hours (Mormann et al., 2003b;
Le van Quyen et al., 2005) are especially useful for thera-
peutic or behavioral interventions if the seizure occurrence
period is fixed at a short duration. The value of such long
preictal changes remains to be investigated in further stud-
ies on the basis of longer preictal EEG data sets, by
increasing the duration of the seizure prediction horizon
for a sufficiently short duration of the seizure occurrence
periods.



2412 M. Winterhalder et al. / Clinical Neurophysiology 117 (2006) 2399–2413
It has been demonstrated in the present study that there
is no common rule for all patients as to whether a decrease
or an increase in synchronization precedes seizures. For
some patients only a decrease in synchronization yields a
significant prediction performance. In contrast, analyzing
an increase in synchronization obtains significant predic-
tion performance for some other patients. In recent studies
investigating synchronization changes in the EEG dynam-
ics for five patients using long-term EEG recordings, a sim-
ilar effect has been observed (Le van Quyen et al., 2005;
Mormann et al., 2005a). This may point to the fact that
various pathogenic mechanisms precede epileptic seizures:
a decrease in synchronization between specific brain
regions accompanied by an increase in synchronization
between other brain regions. Both mechanisms seem to
be individually pronounced for the individual patients.

So far, the contribution of inter-focal and extra-focal
changes in brain dynamics to the generation of epileptic
seizures has remained unclear. Whereas several studies
have focused on an investigation of preictal changes in
the primary epileptogenic area as indicated by the seizure
onset zone (Lehnertz and Elger, 1998; Litt et al., 2001),
other results suggest widespread preictal changes (Le van
Quyen et al., 2000). The synchronization of focal and
extra-focal areas may be of particular importance for the
local generation of epileptic activity. Thus, the spatial
effects concerning focal and extra-focal brain structures
have been investigated by analyzing the three classes of
electrode combinations separately.

In the present study, combinations of focal and extra-fo-
cal electrodes have a significantly higher prediction perfor-
mance for the lag synchronization. The statistically
significant superiority of the focal/extra-focal electrode
combination for the lag synchronization index is achieved
by a change in sensitivity of more than 20%. In contrast,
for the mean phase coherence R no similar trend is
observed. This result indicates that the lag synchronization
index captures differences and time delays in the EEG
dynamics between focal and extra-focal brain structures
in particular. This may point to underlying pathogenic
mechanisms, i.e., decoupling of dynamics of focal and
extra-focal areas as a contribution to the generation of
local, highly hyper-synchronized activity. The result for
the mean phase coherence R is in agreement with a previ-
ous study (Mormann et al., 2003b), where the spatial distri-
bution of preictal changes in the EEG dynamics was not
exclusively restricted to focal brain areas.

In summary, using the seizure prediction characteristic
with its critical sensitivity values, we assessed changes in
the synchronization of the EEG dynamics with respect to
seizure prediction. Examination of dynamics in different
brain structures with combinations of focal and extra-focal
electrode contacts yields a significantly higher seizure pre-
diction performance than using combinations of exclusive-
ly focal or exclusively extra-focal contacts, respectively, for
the lag synchronization measure. Our results strongly indi-
cate that the prediction method and its evaluation scheme,
optimized values of the prediction horizons, and preferred
brain structures for the EEG recordings have to be deter-
mined for each patient and prediction method individually.

5. Data availability

The data analyzed in this study are available on request:
Web page: http://www.fdm.uni-freiburg.de/EpilepsyData
Email: epilepsydatabase@fdm.uni-freiburg.de
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