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Summary: Purpose: Available seizure-prediction algorithms
are accompanied by high numbers of false predictions to achieve
high sensitivity. Little is known about the extent to which changes
in EEG dynamics contribute to false predictions. This study ad-
dresses potential causes and the circadian distribution of false
predictions as well as their relation to the sleep–wake cycle.

Methods: In 21 patients, each with 24 h of interictal inva-
sive EEG recordings, two methods, the dynamic similarity index
and the mean phase coherence, were assessed with respect to
time points of false predictions. Visual inspection of the inva-
sive EEG data and additional scalp electroencephalogram data
was performed at times of false predictions to identify possible
correlates of changes in the EEG dynamics.

Results: A dependency of false predictions on the time of day
is shown. Renormalized to the duration of the period patients are
asleep and awake, 86% of all false predictions occurred during
sleep for the dynamic similarity index and 68% for the mean

phase coherence, respectively. Combining two reference inter-
vals, one during sleep and one in an awake state, the dynamic
similarity index increases its performance by reducing the num-
ber of false predictions by almost 50% without major changes
in sensitivity. No obvious dependence of false predictions was
noted on visible epileptic activity, such as spikes, sharp waves,
or subclinical ictal patterns.

Conclusions: Changes in the EEG dynamics related to the
sleep–wake cycle contribute to limits of specificity of both
seizure-prediction methods investigated. This may provide a clue
for improving prediction methods in general. The combination
of reference states yields promising results and may offer oppor-
tunities to increase further the performance of prediction meth-
ods. Key Words: Seizure prediction—Seizure anticipation—
False predictions—Phase synchronization—Dynamic similarity
index.

The daily life of epilepsy patients who cannot be treated
successfully with current therapeutic strategies is impaired
by recurrent unforeseeable seizures, which potentially
lead to life-threatening situations (Buck et al., 1997). The
reliable prediction of epileptic seizures in advance of a
seizure onset could dramatically improve the quality of
life of these patients (Schachter, 1994). For instance, they
could either be warned to prevent dangerous situations or
be treated in time by implanted devices by using electrical
stimulation or the delivery of short-acting drugs (Elger,
2001).

So far the challenge to predict epileptic seizures is ap-
proached by searching for characteristic changes in the
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electroencephalogram before seizure onsets. Such char-
acteristic changes are, for instance, quantified by features
taking extreme values when such changes occur. A thresh-
old can be fixed, and whenever the threshold is crossed,
an alarm is raised. However, detecting threshold crossings
before seizure onsets and using the corresponding alarms
to predict seizures are different issues. For instance, if the
distribution of alarms before seizures is rather widespread,
a reliable seizure prediction is not possible. To assess
whether an algorithm is capable of predicting seizures,
we suggest the use of the seizure-prediction characteris-
tic (Winterhalder et al., 2003). This assessment method
evaluates the prediction performance with particular em-
phasis on the temporal aspects of a prediction. First, sub-
sequent to an alarm, a time interval is necessary during
which no seizure is supposed to start, to be regarded as
a correctly predicted. This time interval, accounting for
interventions, quantifies the actual prediction time. In the
context of the seizure-prediction characteristic, it is called
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seizure-prediction horizon (SPH). Second, subsequent to
the SPH, a time interval is fixed in which a seizure is
supposed to start to be regarded as correctly predicted.
This time interval, the so-called seizure occurrence pe-
riod (SOP), accounts not only for the uncertainty in the
prediction but also limits the time period the patient is un-
der risk of having a seizure. After fixing a range for both
time intervals before any analyses, the seizure-prediction
performance must be compared with a random predictor
(Schelter et al., 2006). If and only if the performance of the
prediction algorithm is superior to a random predictor, we
speak of a seizure prediction. Neglecting the SPH and the
comparison with a random predictor would correspond to
an anticipation of seizures.

To determine promising algorithms for seizure predic-
tion, numerous efforts have been undertaken to detect
characteristic changes in the EEG dynamics before seizure
onsets over the last few years. Several linear and nonlinear
methods have been intensively studied, including accumu-
lated energy (Litt et al., 2001), neuronal complexity based
on the correlation dimension (Lehnertz and Elger, 1995;
1998; Osorio et al., 2001), approaches based on neural
cell models (Schindler et al., 2002), the largest Lyapunov
exponent (Iasemidis et al., 1990), a dynamic similarity
index (Le van Quyen et al., 1999; 2000; 2001a; 2001b;
Navarro et al., 2002), or synchronization measures (Mor-
mann et al., 2000; Jerger et al., 2001; Mormann et al.,
2003a; 2003b; 2005). The current state of the art in the
field of seizure anticipation and prediction is summarized
in these reports (Litt and Echauz, 2002; Litt and Lehnertz,
2002).

On the one hand, high sensitivity is a desired goal in
seizure prediction. A missed seizure in a patient relying
on a prediction method could cause life-threatening situa-
tions. On the other hand, too many false predictions may be
accompanied by potential side effects of interventions or
by the loss of the patient’s acceptance of seizure-warning
devices. Thus seizure-prediction methods have to achieve
both, sufficient sensitivity and specificity. An assessment
of several algorithms within the framework of the seizure
prediction characteristic has shown that low specificity
has to be accepted to achieve high prediction sensitivity
(Aschenbrenner-Scheibe et al., 2003; Winterhalder et al.,
2003; Maiwald et al., 2004).

Possible reasons for false predictions, the number of
which is an appropriate measure for specificity in the con-
text of seizure prediction (Osorio et al., 1998), are thus
of particular interest. In addition, the distribution of false
predictions over the day may be relevant for the practi-
cal application of a prediction method. If, for instance, all
false predictions occur while patients are asleep, a missed
seizure may be less harmful than a seizure during the day,
because patients are less vulnerable to accidents or injuries
during sleep. Consequently, seizure-prediction methods
could be adjusted if false predictions occurred only dur-
ing particular states of vigilance.

The relation of changes in EEG dynamics during pre-
seizure periods to visual inspection of the EEG has been
investigated recently (Navarro et al., 2005). However, ex-
aminations into the causes of false predictions and their
relations to EEG dynamics have not been the focus of
research. False predictions of two previously published
algorithms are analyzed in this study. The first one is a
univariate approach that quantifies the similarity of pat-
terns in the EEG data, the dynamic similarity index (Le
van Quyen et al., 1999). More precisely, the dynamic sim-
ilarity index compares the EEG characteristics in a given
time window with the EEG characteristics in a reference
interval. The similarity index is a reference-dependent
method.

Second, a bivariate method takes into account relations
between different electrode contacts, with the mean phase
coherence measuring synchronization (Mormann et al.,
2000; 2003a; 2003b). This method makes no use of refer-
ence intervals and is thus a reference-free method.

Intracranial EEG data of 21 patients with pharmacore-
sistant focal epilepsy form the basis of the present study.
First, seizure-prediction performance is presented for both
algorithms and compared with the performance of a ran-
dom predictor to illustrate that both seizure-prediction
methods are reasonable candidates that may be used for
seizure prediction in the future. Second, time points of
false predictions and their distribution over the day are
analyzed for all patients. To determine states of vigilance
during the emergence of false predictions, a subgroup of
10 patients for whom simultaneous scalp EEG recordings
are available is studied.

Third, the relation of false predictions to potential
events in the invasive EEG is analyzed. Based on the re-
sults for circadian dependencies of false predictions for
the reference-dependent seizure-prediction method (i.e.,
the dynamic similarity index), a strategy is investigated
to reduce the number of false predictions. Although the
specificity of the method is improved considerably, the
sensitivity hardly changes, which leads to an improved
overall seizure-prediction performance.

The article is structured as follows. In the next sec-
tion, the patients’ characteristics and the invasive and
scalp EEG data are described. Furthermore, the seizure-
prediction characteristic is briefly summarized and the two
investigated seizure-prediction methods are introduced.
Results are followed by the discussion. Some of the results
have been reported previously in abstract form (Schelter
et al., 2004).

METHODS

The EEG database used for this investigation and the
two prediction methods are briefly introduced in this sec-
tion. The method for evaluation of the prediction perfor-
mance is summarized.
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TABLE 1. EEG data and patient characteristics

Patient Sex Age Seizure type H/NC Origin Electrodes # Seizures analyzed Interictal duration [h]

1 F 15 SP,CP NC Frontal g,s 5 24
2 M 38 SP,CP,GTC H Temporal 3 24
3 M 14 SP,CP NC Frontal g,s 5 24
4 F 26 SP,CP,GTC H Temporal d,g,s 5 24
5 F 16 SP,CP,GTC NC Frontal g,s 3 24
6 F 31 CP,GTC H Temporo-occipital d,g,s 3 24
7 F 42 SP,CP,GTC H Temporal d 2 25
8 F 32 SP,CP NC Frontal g,s 5 24
9 M 44 CP,GTC NC Temporo-occipital g,s 5 24

10 M 47 SP,CP,GTC H Temporal d 4 24
11 F 10 SP,CP,GTC NC Parietal g,s 4 24
12 F 42 SP,CP,GTC H Temporal d,g,s 25
13 F 22 SP,CP,GTC H Temporo-occipital d,s 2 24
14 F 41 CP,GTC H and NC Frontal-temporal d,s 4 24
15 M 31 SP,CP,GTC H and NC Temporal d,s 4 24
16 F 50 SP,CP,GTC H Temporal d,s 5 24
17 M 28 SP,CP,GTC NC Temporal s 5 24
18 F 25 SP,CP NC Frontal s 5 25
19 F 28 SP,CP,GTC NC Frontal s 4 24
20 M 33 SP,CP,GTC NC Temporopariental d,g,s 5 26
21 M 13 SP,CP NC Temporal g,s 5 24

total 88 509
mean 4,2 24,2

Seizure types: SP, simple partial; CP, complex partial; and GTC, generalized tonic–clonic seizure origin; H, hippocampal and NC, neocortical; g,
electrodes grid; s, strip; d, depth.

For each patient, either all or five seizures (mean, 4.2; total, 88) and ≥24 h of interictal EEG recordings (mean, 24.2 h/total, 509 h) are examined.

EEG recordings and patient characteristics
Data from invasive long-term EEG recordings from 21

patients undergoing presurgical epilepsy monitoring were
investigated. The retrospective evaluation of the data re-
ceived prior approval by the Ethics Committee, Medical
Faculty, University of Freiburg. Informed consent was ob-
tained from each patient. The EEG data were recorded
using a sampling rate of 256 Hz or 512 Hz, respectively,
and were bandpass-filtered between 0.5 and 120 Hz. A 50
Hz notch-filter was used to eliminate possible line noise.

A restriction of the analysis to few electrode contacts is
necessary because the performance of a random predictor
is strongly dependent on the number of electrode contacts
investigated (Schelter et al., 2006). To be able to achieve a
prediction performance superior to a random predictor, six
contacts of all implanted grid, strip, and depth electrodes
were selected before any analyses by visual inspection of
the raw data by a certified epileptologist (A.S.).

Three contacts were chosen from the seizure-onset zone
(i.e., from areas involved early in ictal activity). The re-
maining three electrode contacts were selected as not in-
volved or involved latest during seizure spread. This pro-
cedure ensures that electrodes from the seizure focus as
well as out-of-focus areas of the brain are well represented.

At least 24 h of continuous interictal recordings were
available for 13 patients. For the remaining eight patients,
interictal EEG data consisting of <24 h were joined such
that ≥24 h per patient (mean, 24.2 h) and all times of
day were included. In total, the time period between 9 pm
and 9 am comprises 265 h of the total interictal record-

ing, and the time period between 9 am and 9 pm, 243 h.
The median time between the last seizure and the begin-
ning of the interictal period was 5 h 18 min, and the me-
dian time between the end of the interictal period and the
next seizure was 9 h 36 min. The minimum time between
the end of the interictal period and the next seizure was
1 h 18 min for one patient (number 14). For the remain-
ing patients, this time interval was ≥3 h. In a subgroup
of 10 patients, additional scalp EEG recordings includ-
ing electrooculographic (EOG) electrodes and submental
electromyographic (EMG) electrodes were available for
classification of sleep stages according to Rechtschaffen
and Kales (1968).

To evaluate the sensitivity of both methods, 88 seizures
with 50 min preictal invasive EEG recordings were exam-
ined. The number of seizures per patient varied from two to
five, with a mean value of 4.2 seizures per patient. Further
details of the patients’ characteristics and the investigated
EEG data base are given in Table 1.

The seizure-prediction characteristic
The seizure prediction performance is evaluated by us-

ing the recently introduced seizure-prediction character-
istic S(FPRmax, SOP, SPH) (Winterhalder et al., 2003).
The seizure-prediction characteristic estimates sensitivity
based on three factors characterizing a prediction.

First, it depends on the maximum false prediction rate
FPRmax, which is the maximum number of false predic-
tions allowed in a certain time interval. This limit is nec-
essary because of the possible side effects of intervention
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systems or of the loss of the patient’s acceptance of a
seizure-warning device after too many false predictions.

For a prediction, the time interval after an alarm during
which the seizure is expected to occur must be specified.
To account for the impossibility of a perfect prediction
and to allow a temporal uncertainty in the occurrence of
predicted seizures, the SOP is introduced. A correct pre-
diction is defined by the occurrence of a seizure within the
SOP.

Furthermore, any intervention system or seizure-
warning device would need some time between being ac-
tivated and becoming effective. Therefore a time interval
between the alarm and the beginning of SOP is required,
the SPH. Only seizures starting after the SPH and within
the SOP are classified as correctly predicted.

A test to decide about the statistical significance of a
certain value of the seizure-prediction characteristic is de-
fined by the “prediction performance” of an unspecific
random prediction (Schelter et al., 2006). For an unspe-
cific random prediction, alarms are triggered randomly
according to a Poisson process in time without using any
information from the EEG. Critical sensitivity values of
the random prediction can be calculated for an individual
patient based on the parameters FPRmax, SOP, the number
of preseizure periods investigated, and the number of fea-
tures analyzed. Because it is unknown whether the data in
two different electrode contacts can be assumed to be sta-
tistically independent, two critical sensitivity values have
to be considered. Sensitivity of a prediction method can
be considered superior to a random predictor if it is higher
than the upper critical sensitivity. Superiority to a random
predictor cannot be clarified finally, if it is between the
lower and upper critical value. However, a certain pre-
diction performance can be expected for these seizure-
prediction algorithms. For details concerning the statisti-
cal test used in this study, see (Schelter et al., 2006).

In summary, we use the term “prediction” if sensitivity
is calculated in dependence on FPRmax, SOP, and SPH;
the range of values for both time intervals are fixed with
respect to a clinical application; and the prediction algo-
rithm is superior to a random predictor. In contrast, we
use the term “anticipation” if the SPH was ignored and a
comparison with a random predictor was missing.

In this study, the focus was on false predictions. To ob-
tain a sufficient amount of false predictions, we used a
maximum false-prediction rate of 0.5 FP/h. The random
predictor will yield a rather high upper critical value. Thus
it will hardly be possible to obtain higher prediction per-
formance than the upper critical sensitivity of the random
predictor. To assess the prediction methods that achieve
some prediction performance, we require the prediction
algorithm to be, at least, comparable with the upper critical
value of the random predictor and above the lower critical
value. Strictly speaking, we cannot really prove superior-
ity to a random predictor in these cases. However, some

prediction performance is guaranteed by our approach,
and the parameters are a trade-off between showing pre-
dictability of seizures and obtaining a sufficient amount
of false predictions to be able to assess them.

In the following, the SPH has been fixed to 2 min, which
is an appropriate value to enable, for instance, adminis-
tration of short-acting drugs or warning of the patient.
The SOP has been chosen to last for 30 min. When the
seizure-prediction methods have been shown to work suf-
ficiently well, a much smaller SOP might be eligible, for
example, for a seizure-warning device. However, thinking
of automatic seizure prevention, an SOP on the order of
half an hour is reasonable, too, if the treatment effect lasts
for this period. This is, for example, usually expected for
antiepileptic drugs (AEDs).

Two seizure-prediction methods
A seizure-prediction method analyzing similarity pat-

terns in the EEG data as well as a prediction method based
on synchronization theory is analyzed in this study.

Dynamic similarity index
The dynamic similarity index compares the dynamic

behavior of the EEG signals within sliding time intervals
St with a fixed reference interval Sref (Le van Quyen et
al., 1999). The reference interval is chosen at the begin-
ning of the interictal period and is 5 min long. The slid-
ing time window has a duration of 25 s (Le van Quyen
et al., 1999). Specific features of the invasive EEG data are
captured by constructing time intervals between positive
zero crossings, which are delay-embedded and projected
on the principal axes calculated for the reference interval,
subsequently leading to X(St). A random selection Y(Sref)
of the reference interval is compared with the sliding time
intervals by using the cross-correlation sum

C(Sre f , St ) = 1

Nref Nt

Nref∑

i=1

Nt∑

j=1

�(r − ‖�Yi (Sref) − �X j (St )‖). (1)

The Heaviside function is denoted with �, the Euclidean
norm with ‖·‖, and the numbers of vectors with Nref and
Nt , respectively. Finally, the dynamic similarity index

γ (St ) = C(Sref, St )√
C(Sref, Sref)C(St , St )

. (2)

is estimated. An alarm is triggered by lower values of the
dynamic similarity index than a given threshold value in
one electrode.

Mean phase coherence
Nonidentical, self-sustained, chaotic oscillators have

been shown to synchronize their phases if the oscillators
are weakly coupled. Amplitudes stay uncorrelated in the
case of this phase synchronization. An almost constant
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phase difference (Rosenblum et al., 1996)∣∣n�(1) − m�(2)
∣∣ = ∣∣�n,m

∣∣ < const (3)

leads to the notion of phase synchronization, where �(1,2)

denotes the phase signals of the two time series inves-
tigated, and n,m are two integers. In presence of addi-
tional stochastic influences, particular values of �n,m =
�n,mmod2π are preferred. The corresponding distribu-
tion can be quantified (Mormann et al., 2000; Rosenblum
et al., 2001)

R2
n,m = 〈

cos�n,m (t)
〉2 + 〈

sin �n,m (t)
〉2

. (4)

Perfect synchronization is represented by a value of one,
whereas values close to zero occur in the absence of any
phase synchronization. When applied to EEG data from
epilepsy patients, a decrease of the mean phase coherence
R: = R1,1 has been reported in advance of seizure on-
sets (Mormann et al., 2000; 2003a). An alarm is raised
once a threshold is crossed in the mean phase coherence
estimated for a certain pair of electrodes.

Originating from nonlinear dynamics estimating the
mean phase coherence based on the Hilbert transform
is reasonable for narrow-band signals only. In terms of
seizure prediction, the method, however, is used to pre-
dict seizures and not to estimate synchronization. There-
fore any procedure using filters or not is reasonable as
long as a proper statistical assessment of the prediction
performance is ensured. Moreover, no easy rule can be
given for in which frequency band the signals should be
band-pass filtered, especially for nonictal data. Using too
many frequency bands would increase the performance
of a random predictor, leading to hardly any significant
superiority of the seizure-prediction performance of the
proposed algorithms.

RESULTS

In the following investigations, the maximum false-
prediction rate has been fixed to FPRmax = 0.5 FP/h. As
our study focused on the analysis of false predictions, pa-
rameters had to be chosen to allow a sufficient number of
false predictions to render a statistical evaluation possible.
Nevertheless, to ensure that we do not discuss arbitrary re-
sults, more false-prediction rates have been evaluated but
are not reported, as they show very similar results. The
SOP has been set to half an hour, and the SPH, to 2 min.
This was done to ensure that we could use the same pa-
rameter set for all patients. Averaged for all 21 patients, a
sensitivity of 82% is obtained for the dynamic similarity
index. For the mean phase coherence, an average sensitiv-
ity of 89% is achieved.

Patient individual performance is shown in Fig. 1. The
central bar represents the detected sensitivity, whereas
the left and right bars represent 5% significance levels.
The significance levels are calculated on the basis of
an unspecific random predictor, which has been adapted

to be suitable for the seizure-prediction characteristic
(Schelter et al., 2006). Two critical sensitivity values exist,
as it is usually unknown whether the data in two different
electrode contacts can be assumed to be statistically inde-
pendent. The left bar, representing the lower critical sen-
sitivity value, is obtained for complete dependence. The
right bar, representing the upper critical sensitivity value,
is obtained for complete independence. As discussed, sen-
sitivity can definitely be considered superior to a random
predictor, if it is higher than the upper critical sensitivity.
Because a sufficient amount of false predictions is required
and to apply a common parameter set for all patients to
ensure comparability of the results, the desired prediction
performance in this study is achieved when sensitivities
are at least above the lower critical value and compara-
ble to the upper critical value. The localizations of the
electrode contacts for the dynamic similarity index and
the electrode combinations for the mean phase coherence
thereof selected by the algorithms as yielding highest pre-
diction performance are reported in Table 2.

To examine the false predictions, their times of occur-
rence and especially circadian dependencies are investi-
gated. Furthermore, to analyze the relation of false predic-
tions to epileptic activity and vigilance, a visual inspection
of scalp and invasive EEG data is performed. Finally, the
choice of the reference interval for the dynamic similarity
index and its effects on the emergence of false predictions
is analyzed.

False predictions depending on the time of day
Time points of false predictions for both prediction

methods during 24 h are shown for patient 15 in Fig. 2.
For the maximum number of allowed false predictions of
12 within 1 day, altogether six false predictions emerge
for the mean phase coherence and 10 false predictions for
the dynamic similarity index.

To statistically evaluate circadian dependencies for all
patients, including those without scalp EEG recordings,
nighttime is considered to be the period between 9 pm
and 9 am. Patients are usually asleep during major parts
of this period. For the patient in question, all false predic-
tions for the mean phase coherence occur during night.
For the dynamic similarity index, two seizures are falsely
predicted at ∼1 pm and at ∼6 pm. The remaining eight
false predictions occur again during the night.

In Fig. 3, histograms of the occurrences of false predic-
tions for a given interval of 1 h duration are shown for all
21 patients, for the dynamic similarity index in (a) and the
mean phase coherence in (b). Again, the period between
9 p.m. and 9 a.m. during which patients are usually sleep-
ing is marked by the gray area. The total number of false
predictions amounts to 103 during the night compared
with 38 during the day for the dynamic similarity index (in
total, 141) and 78 compared with 40 for the mean phase
coherence (in total, 118).
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FIG. 1. Patient individual seizure-
prediction performance. The central bar
represents the detected sensitivity of
the dynamic similarity index and the
mean phase coherence. The left bars
correspond to the lower critical sensitivity
values calculated for a 5% significance
level, assuming complete dependence
between the features. The right bars
correspond to the upper critical sensitivity
values calculated for a 5% significance
level, assuming complete independence
between the features. The critical sensitiv-
ity values are calculated on the basis of an
unspecific random predictor.

The difference in the number of false predictions dur-
ing night and daytime is statistically significant for the
dynamic similarity index (p < 0.01), validated by an ex-
act two-sided Wilcoxon signed rank test with respect to
each patient. The difference is not statistically significant
for the mean phase coherence (p = 0.07).

Visual inspection of scalp EEG data
Based on the circadian dependency of false predictions

of one of the two algorithms under investigation (i.e., the
dynamic similarity index), we hypothesized that different
stages of vigilance are associated with changes in the ex-
tracted feature. As the period between 9 pm and 9 am,
which was considered “nighttime” in the previous inves-

TABLE 2. Electrode contacts for the dynamic similarity index and electrode combinations for the mean phase coherence yielding
highest prediction performance

Dynamical similarity index Mean phase coherence
Patient H/NC Origin Focal contact Extra-focal Focal/focal Focal/extra-focal Extra-focal/extra-focal

1 NC Frontal X X
2 H Temporal X X
3 NC Frontal X X
4 H Temporal X X
5 NC Frontal X X
6 H Temporo-occipital X X
7 H Temporal X X
8 NC Frontal X X
9 NC Temporo-occipital X X

10 H Temporal X X
11 NC Parietal X X
12 H Temporal X X
13 H Temporo-occipital X X
14 H and NC Fronto-temporal X X
15 H and NC Temporal X X
16 H Temporal X
17 NC Temporal X X
18 NC Frontal X X
19 NC Frontal X X
20 NC Temporoparietal X X
21 NC Temporal X X
Total 10 11 4 15 2

tigation, is rather long compared with the approximate
8 h patients sleep on average, a more refined analysis of
the state of vigilance at the times of false predictions is
performed in the following. Sleep stages are classified in
the subgroup of 10 patients.

In Fig. 4, the numbers of false predictions occurring
during rapid eye movement (REM) sleep, non-REM sleep,
and wakefulness, respectively, are shown for each patient.
For the dynamic similarity index, 24% of all 72 false pre-
dictions occurred while the patient was awake, 65% during
non-REM sleep, and 8% during REM sleep. For the mean
phase coherence, 4% of all 49 false predictions occurred
during REM sleep. False predictions emerge with the same
frequency during non-REM sleep and while the patients

Epilepsia, Vol. 47, No. 12, 2006
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FIG. 2. Times of false predictions during a continuous interictal EEG recording of 24 h duration. For both seizure-prediction methods
investigated, times of false predictions are shown for patient 15 for FPRmax, 0.5 FP/h; SOP, 30 min; and SPH, 2 min. The gray area marks
the period between 9 pm and 9 am and is defined as nighttime, comprising the period during which patients are usually asleep. For the
mean phase coherence, all six false predictions occurred during this time period. Only two of 10 false predictions occurred between noon
and 6 pm for the dynamic similarity index.

are awake (47% each) for the mean phase coherence. Be-
cause of missing scalp EEG data at the corresponding time
points, states of vigilance were not assessable for two false
predictions for the dynamic similarity index and one false
prediction for the mean phase coherence, respectively. The
results for both algorithms and a detailed classification of
sleep stages are reported in Tables 3 and 4. The majority
of false predictions in non-REM sleep are associated with
sleep stage II.

Considering that, on average, patients are asleep 8 hours
per day and are awake for the remaining time, the a priori
chance of false predictions occurring during a period when
patients are awake is twice as high as during a period
when patients are asleep. Renormalization to the different
duration of the time periods “asleep” (REM plus non-
REM) and “awake” leads to the result that 86% of all
false predictions emerge during REM and non-REM for
the dynamic similarity index and 68% for the mean phase
coherence.

The results have been tested for their statistical signifi-
cance by using an exact two-sided Wilcoxon signed rank
test with respect to each patient. The results for the dy-
namic similarity index are statistically significant (p <

0.05). For the mean phase coherence, the results are non-
significant (p > 0.05).

Furthermore, a short interval of 1 min in advance of each
false prediction has been examined with respect to changes
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FIG. 3. Histograms of the circadian dependencies for number of false predictions for all 21 patients and both prediction methods. The gray
area marks the period between 9 p.m. and 9 a.m., considered as nighttime. For the dynamic similarity index, 73% of all false predictions,
and for the mean phase coherence, 66% of all false predictions occurred during the period between 9 p.m. and 9 a.m.

in the state of vigilance, which are, for example, arousals
or long-lasting changes from the sleep stage to awake stage
or vice versa. For the mean phase coherence, 22% of false
predictions are associated with a change of the state of
vigilance versus 21% for the dynamic similarity index
(cf. Tables 3 and 4).
Visual inspection of invasive EEG data

Besides investigations of dependencies on different
states of vigilance, invasive EEG data are examined at
the times of false predictions with respect to interictal
epileptic activity, such as interictal spikes and sharp waves,
subclinical electroencephalographic ictal activity, and ar-
tifacts that might potentially lead to false predictions.

A 1 min time interval in advance of each false prediction
is inspected, as artifacts and interictal activity within this
time interval might affect a subsequent prediction. Only
5% of false predictions could possibly be related to arti-
facts for the dynamic similarity index, and 6.7% for the
mean phase coherence, respectively.

Interictal epileptic activity was present during a ma-
jor part of the segments in which false predictions have
been observed. This interictal activity is not necessarily
restricted to the periods associated with false predictions,
because interictal activity is also observed in periods not
related to false predictions.

Finally, time intervals after each false prediction of 32-
min duration, corresponding to the sum of SPH and SOP,
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FIG. 4. Incidence of false predictions de-
pending on the states of vigilance for 10 pa-
tients with simultaneous scalp EEG record-
ings, which allow assessment of sleep
stages. For the dynamic similarity index, 24%
of all 72 false predictions occurred while the
patient was awake, 65% during non-REM
sleep, and 8% during REM sleep. For the
mean phase coherence, 47% of all 49 false
predictions occurred while the patient was
awake, 47% during non-REM sleep, and 4%
during REM sleep. The state of vigilance
could not be determined for one false pre-
diction for the mean phase coherence and
for two false predictions for the dynamic sim-
ilarity index because of missing scalp EEG
data at the corresponding time points.

are investigated with respect to subclinical epileptic activ-
ity. The results are given in Fig. 5 for the dynamic sim-
ilarity index (a) and the mean phase coherence (b) for
all 21 patients individually. Of all 141 false predictions,
14 (9.9%) are followed within the seizure occurrence pe-
riod by a subclinical seizure for the dynamic similarity
index and 20 (16.9%) of all 118 false predictions for the
mean phase coherence. Additionally, seven of 14 subclin-
ical seizures belong to multiple and repeated subclinical
activity for the dynamic similarity index, and six of 20
subclinical seizures for the mean phase coherence.

Dynamic reference intervals
Analysis of the states of vigilance has shown that a vast

majority of false predictions for the dynamic similarity
index occur during non-REM sleep (see section entitled
“Visual inspection of Scalp EEG data”). The calculation
of the dynamic similarity index is based on a comparison
of the dynamics of the EEG data within a fixed reference
interval. The reference interval has been chosen at the
beginning of the interictal recording period according to

TABLE 3. Detailed results for the classification of sleep stages for the dynamic similarity index

Total number Number of false predictions during # of fps associated
of false with change

Patient predictions Awake Non-REM 1 Non-REM 2 Non-REM 3 Non-REM 4 Sum Non-REM REM No scalp in vigilance

1 7 0 0 5 1 1 7 0 0 2
2 5 1 0 1 3 0 4 0 0 0
6 1 0 0 0 0 1 1 0 0 0
8 9 0 2 7 0 0 9 0 0 2
9 0 0 0 0 0 0 0 0 0 0

10 7 1 1 5 0 0 6 0 0 0
13 10 1 0 6 2 1 9 0 0 2
15 10 2 1 7 0 0 8 0 0 1
19 12 7 0 3 0 0 3 1 1 1
20 11 5 0 0 0 0 0 5 1 1
Total 72 17 4 34 6 3 47 6 2 15
Percentage 24% 6% 47% 9% 4% 65% 9% 3% 21%

Le van Quyen et al. (1999). In the following analyses, the
effect of the state of vigilance during the reference interval
on the emergence of false predictions is investigated.

For the subgroup of 10 patients with additional scalp
EEG recordings, two reference intervals of 5-min dura-
tion each were selected. One reference interval was cho-
sen during a period while the patient was awake. The sec-
ond reference interval was chosen during a period while
the patient was asleep (non-REM). For both reference in-
tervals, the dynamic similarity index was calculated and
assessed by using the seizure prediction characteristic for
FPRmax = 0.5 FP/h; SOP = 30 min; and SPH = 2 min. By
visual inspection of scalp EEG recordings, states of vig-
ilance were determined at the time points at which false
predictions emerged.

In Fig. 6, results are given for the reference interval
during wakefulness (a) and during non-REM sleep (b). For
instance, for patient 10 and the reference interval during
the awake state, all seven false predictions occurred during
non-REM sleep (cf. Fig. 6a). This number is reduced to
two false predictions for the reference state “non-REM”
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TABLE 4. Detailed results for the classification of sleep stages for the mean phase coherence

Total number Number of false predictions during # of fps associated
of false with change

Patient predictions Awake Non-REM 1 Non-REM 2 Non-REM 3 Non-REM 4 Sum Non-REM REM No scalp in vigilance

1 2 2 0 0 0 0 0 0 0 0
2 9 2 1 5 0 0 8 0 1 7
6 9 9 0 0 0 0 0 0 0 1
8 3 0 0 2 0 0 2 1 0 0
9 6 1 3 0 1 0 4 1 0 2

10 8 7 1 0 0 0 1 0 0 1
13 0 0 0 0 0 0 0 0 0 0
15 6 0 0 6 0 0 6 0 0 0
19 2 2 0 0 0 0 0 0 0 0
20 4 0 1 1 2 0 4 0 0 0
Total 49 23 6 14 3 0 23 2 1 11
Percentage 47% 12% 29% 6% 0% 47% 4% 2% 22%

(cf. Fig. 6b). Rather an opposite dependency is observed,
as six false predictions occur during wakefulness for the
reference state “non-REM.”

For the reference state “awake,” 53 of 70 false predic-
tions emerge during non-REM sleep, 12 during wakeful-
ness and two during REM sleep. The state of vigilance
could not be determined for three false predictions, as no
scalp EEG recordings were available at the corresponding
time points. For the reference state “non-REM,” 40 of 72
false predictions emerged during non-REM sleep, 23 dur-
ing awake and seven during REM sleep. No scalp EEG
recordings were available at the time points of two false
predictions.

Considering the difference in the duration of the periods
patients are asleep and awake, 88% of all false predictions
occurred during sleep (non-REM plus REM) for the ref-
erence state “awake.” For the reference state “non-REM,”
79% of all false predictions emerged during sleep (non-
REM plus REM).
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FIG. 5. Subclinical events within the
seizure occurrence period of 30-min du-
ration after each false prediction and a
seizure prediction horizon of 2-min du-
ration. For the dynamic similarity index,
10% of all 141 false predictions are fol-
lowed by subclinical activity, and 17% of
all 118 false predictions, for the mean
phase coherence.

The choice of the reference interval influences the emer-
gence of false predictions. The following analysis inves-
tigates whether the number of false predictions can be
reduced by combining the algorithms for both reference
states at a minimal loss of correct predictions.

The combination follows the rule that, within a specific
combination period, two alarm events (i.e., one raised by
the algorithm based on the reference state awake and one
raised by the algorithm based on the reference state non-
REM) are required to trigger a correct or false prediction.
In this study, the combination period was chosen with
30-min duration, according to the SOP.

Sensitivity values are shown in Fig. 7a, and the number
of false predictions is shown in Fig. 7b for the individ-
ual algorithms based on the two reference states “awake”
and “non-REM,” as well as for the combination of both.
The averaged sensitivity for the 10 patients investigated
decreased from 88% (reference state awake) and 77%
(reference state non-REM) to 65% for the combination.
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FIG. 6. Dynamic reference intervals. States
of vigilance at the occurrence of false pre-
dictions for the dynamic similarity index with
different reference intervals. In (a), a refer-
ence interval was chosen in an interictal pe-
riod while the patient was awake. In (b), a ref-
erence interval was selected during an inter-
ictal period while the patient was asleep (non-
REM).

For the combination of both reference states, the total num-
ber of false predictions decreased to 41. Compared with
the algorithm based on the reference state awake, 29 false
predictions were avoided. Compared with the algorithm
based on the reference state non-REM, 31 false predictions
were prevented.

Combining two reference intervals, one during sleep
and one during the awake state, the dynamic similarity
index increases its performance by reducing the number
of false predictions by almost 50% without major changes
in sensitivity.

DISCUSSION

In this study, the performance, temporal aspects, and
causes for the emergence of false predictions for two
seizure-prediction algorithms, the mean phase coherence
and the dynamic similarity index, have been investigated.
The performance for both algorithms could be shown to be
superior to the lower critical sensitivity values and compa-
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FIG. 7. Combination of two reference inter-
vals. Correct predictions (a) and false pre-
dictions (b) for the dynamic similarity index
with a reference interval while the patient
was awake and while the patient was asleep
(non-REM). Combining both reference in-
tervals, a significant reduction of false pre-
dictions was possible at the expense of a
few no longer correctly predicted seizures.

rable to the upper critical values for both algorithms and
almost all patients. Both algorithms thus showed predic-
tive power for seizures. We mention, though, that different
parameter combinations might yield better results, espe-
cially if the false-prediction rate is chosen much lower.
The performance of the mean phase coherence is slightly
better than the performance of the dynamic similarity in-
dex, which could be caused by the fact that the mean phase
coherence uses the data of two channels simultaneously;
the number of channel combinations is more than 2 times
higher than the number of channels used by the dynamic
similarity index.

We observed a high interindividual variability between
the results for the patients for both algorithms. Limita-
tions in the duration of the EEG recordings, different lo-
calizations of recording sites, and differences in patients’
characteristics, including their AED during the monitoring
period, may all contribute to this interindividual variability
of the results.
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Interestingly, more false alarms were raised for the dy-
namic similarity index compared with the mean phase co-
herence evaluated with the same maximum false predic-
tion rate for both algorithms. The fact that the dynamic
similarity index is not reference free may contribute to
this effect. Likewise, it could also be caused by the higher
number of features for the mean phase coherence than for
the dynamic similarity index. For the same sensitivity, the
mean phase coherence can optimize the specificity with
the aid of more features.

A dependency of false predictions on the time of day
has been demonstrated. A statistically significantly higher
number of false predictions for the dynamic similarity in-
dex occurred during a time period between 9 p.m. and
9 a.m., comprising the night and the period when patients
are usually sleeping.

Motivated by this observation, an analysis of the states
of vigilance by visual inspection of scalp EEG recordings
was performed for a subgroup of 10 patients. Considering
the absolute number of false predictions, the majority are
associated with non-REM sleep for the dynamic similar-
ity index. For the mean phase coherence, false predictions
during non-REM sleep and during periods while the pa-
tients are awake emerge with the same frequency. For both
prediction methods, false predictions during REM sleep
were observed for only two patients.

The background activity may be central in explaining
false predictions as opposed to the state of vigilance. Non-
REM sleep is accompanied by an increase in background
delta power. We thus subclassified non-REM sleep phases
that showed that most false prediction occurred during
non-REM II but not during deep sleep phases for both al-
gorithms. This strongly suggests that changes in the spec-
trum of background activity alone, like an increase in delta
power, are not the only contributing factor to the genera-
tion of false predictions.

The durations of the periods patients are asleep and pa-
tients are awake are not identical. Renormalization to the
duration of the corresponding periods shows a statistically
significant increase in false predictions during sleep (REM
plus non-REM) for both algorithms.

Taking dependencies on the state of vigilance of false
predictions into account may offer opportunities for an
improvement of prediction methods. A seizure during the
night may not be as harmful as a seizure during the day,
because patients are usually under safe conditions while
sleeping. In addition, critical values or parameters of pre-
diction methods can be adapted during non-REM sleep,
when more false predictions occur. This leads to lower
sensitivity, as, for example, the extracted features are no
longer able to cross the adapted thresholds, even in the
case of an emerging seizure. However, the number of false
predictions would decrease tremendously.

By visual inspection of the corresponding invasive EEG
recordings at the time points of false predictions, poten-

tial explanations for false predictions have been inves-
tigated. It has been shown that artifacts are of minor
importance as causes for false predictions. This result
may be due to the low rate of artifacts present in inva-
sive EEG recordings or to the robustness of the analyzed
algorithms.

A further focus of the visual inspection of the inva-
sive EEG data was used to investigate electroencephalo-
graphic ictal but subclinical activity after a false predic-
tion. If false predictions somehow predicted subclinical
seizures, it could be argued that the algorithms detect
common physiologic changes underlying clinically mani-
fest seizures as well as underlying subclinical seizures.
It may therefore be debated whether these predictions
should be classified as false predictions. From a therapeu-
tic point of view, for instance, if a seizure-warning device
were applied, a distinction between subclinical and clin-
ical ictal activity could be desirable. Again, only a small
number of false predictions are associated with subclin-
ical events within a time interval corresponding to the
SOP.

The dependency on the state of vigilance has been
shown to be more pronounced for the dynamic similarity
index than for the mean phase coherence. The mean phase
coherence is based on detecting changes of the interactions
between the dynamics measured by two electrode contacts
simultaneously. In contrast, the dynamic similarity index
compares the present dynamics of one electrode contact
with a fixed reference interval. The effect of the reference
interval on the emergence and circadian dependency of
the false predictions was analyzed by applying two differ-
ent reference intervals. One reference interval was cho-
sen in a period when the patients were awake, and the
second reference interval was selected during non-REM
sleep.

For both reference states “awake” and “non-REM,” the
majority of all false predictions raised by the dynamic sim-
ilarity index occurred during sleep. This effect was more
pronounced if the reference interval was chosen in a period
when the patient is awake. Although the major number of
false predictions occurred during sleep for the reference
state chosen during “non-REM” sleep, the number of false
predictions during periods while patients were wake in-
creased. This result strongly indicates that a subgroup of
false predictions for the dynamic similarity index exists,
caused by the difference in the state of vigilance between
the reference interval and the current sliding window.

Combining the algorithm of the dynamic similarity in-
dex for different reference states prevented many false pre-
dictions of this special subgroup. Overall, almost one half
of all false predictions could be avoided. However, a minor
loss of sensitivity has to be accepted. For a few patients in-
vestigated, the results for the combination are promising.
For instance, for patient 10, the total number of false
predictions decreased dramatically for the combination
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at constant sensitivity, compared with the algorithm using
only the reference state, “awake.”

Future research will be devoted to the combination of
several different reference states for the dynamic simi-
larity index. The combination of algorithms introduces
more parameters that must be adjusted. For instance, the
“combination interval” in our investigation was chosen
according to the SOP. As this period is rather long, the
effect of shorter “combination intervals” remains to be
investigated.

In summary, we showed a dependency of the occurrence
of false predictions on the time of day and on the state of
vigilance for two seizure-prediction methods, by inves-
tigating long-term interictal invasive EEG recordings of
24 h duration for each patient. The dependency is more
pronounced for the dynamic similarity index. The major-
ity of false predictions occurred during sleep. This may
turn out to be advantageous, as false predictions may be
less problematic during sleep. Dependencies on circadian
changes in the EEG dynamics may offer clues for time-
dependent adaptations of thresholds or parameters of the
prediction algorithms. A strategy for the reduction of false
predictions has been proposed for the dynamic similarity
index by combining different reference states. The com-
bination yielded promising results for several patients in-
vestigated and may offer opportunities to further increase
the performance of seizure-prediction methods.
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